Texas Instruments TLE2024MJB, TLE2024MJ, TLE2024MFKB, TLE2024MDW, TLE2024IN Datasheet

...
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
D
Supply Current...230 µA Max
D
D
High Slew Rate...0.45 V/µs Min
D
Supply-Current Change Over Military Temp Range...10 µA Typ at V
D
Specified for Both 5-V Single-Supply and
CC ±
= ± 15 V
±15-V Operation
D
Phase-Reversal Protection
description
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use.
D
High Open-Loop Gain...6.5 V/µV (136 dB) Typ
D
Low Offset Voltage . . . 100 µV Max
D
Offset Voltage Drift With Time
0.005 µV/mo Typ
D
Low Input Bias Current...50 nA Max
D
Low Noise Voltage . . . 19 nV/Hz Typ
This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail.
A variety of available options includes small-outline and chip-carrier versions for high-density systems applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1997, Texas Instruments Incorporated
1
TLE202x, TLE202xA, TLE202xB, TLE202xY
CHIP
TLE2021CDBLE
t
µ
TLE2021AIP
µ
CHIP
t
300 µV
TLE2022ACD
TLE2022ACP
t
300 µV
TLE2022AID
TLE2022AIP
55 C
150 µV
TLE2022BMJG
CHIP
500 µV
TLE2024BCDW
TLE2024BCN
µ
500 µV
TLE2024BIDW
TLE2024BIN
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021 AVAILABLE OPTIONS
PACKAGED DEVICES
VIOmax
T
A
AT 25°C
0°C to 200 µV TLE2021ACD
70°Cµ500 µV TLE2021CD
–40°C
85°C
–55°C 100 µV TLE2021BMFK TLE2021BMJG
125°C 500 µV TLE2021MD TLE2021MFK TLE2021MJG TLE2021MP
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).
The DB and PW packages are only available left-end taped and reeled.
§
Chip forms are tested at 25°C only.
70°C
–40°C
85°C
–55°C 150 µV TLE2022BMJG
125°Cµ500 µV TLE2022MD TLE2022MFK TLE2022MJG TLE2022MP
The D packages are available taped and reeled. To oerder a taped and reeled part, add the suffix R (e.g., TLE2022CDR).
The DB and PW packages are only available left-end taped and reeled.
Chip forms are tested at 25°C only.
200 µV TLE2021AID
o
500 µV TLE2021ID
to
200 µV TLE2021AMD
VIOmax
T
A
AT 25°C
0°C
150 µV
o
500 µV 150 µV
o
500 µV
to
300 µV TLE2022AMD
SMALL
(D)
SMALL
(D)
OUTLINE
OUTLINE
TLE2022BCD
TLE2022CD TLE2022BID
TLE2022ID
SSOP
(DB)
TLE2022 AVAILABLE OPTIONS
SSOP
(DB)
— —
TLE2022CDBLE
CHIP
CARRIER
(FK)
TLE2021AMFK TLE2021AMJG TLE2021AMP
PACKAGED DEVICES
CHIP
CARRIER
(FK)
TLE2022AMFK
CERAMIC DIP
(JG)
CERAMIC
DIP
(JG)
TLE2022AMJG TLE2022AMP
PLASTIC DIP
(P)
TLE2021ACP TLE2021CP
TLE2021AIP TLE2021IP
PLASTIC
DIP
(P)
TLE2022CP
TLE2022IP
TSSOP
(PW)
TLE2021CPWLE TLE2021Y
TSSOP
(PW)
TLE2022CPWLE—TLE2022Y
— —
FORM
(Y)
FORM
(Y)
§
§
2
T
A
0°C to 70°C
–40°C to 85°C
–55°C to 125°C
Chip forms are tested at 25°C only.
VIOmax AT 25°C
500 µV TLE2024BCDW TLE2024BCN — 750 µV
1000 µV TLE2024CDW TLE2024CN TLE2024Y
500 µV TLE2024BIDW TLE2024BIN 750 µV
1000 µV TLE2024IDW TLE2024IN
500 µV TLE2024BMDW TLE2024BMFK TLE2024BMJ TLE2024BMN 750 µV TLE2024AMDW TLE2024AMFK TLE2024AMJ TLE2024AMN
1000 µV TLE2024MDW TLE2024MFK TLE2024MJ TLE2024MN
TLE2024 AVAILABLE OPTIONS
PACKAGED DEVICES
SMALL
OUTLINE
(DW)
TLE2024ACDW
TLE2024AIDW
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TLE2024ACN
TLE2024AIN
FORM
(Y)
description (continued)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
OFFSET N1
IN – IN +
V
/GND
CC –
NC – No internal connection
D, DB, JG, P, OR PW PACKAGE
1OUT
1IN – 1IN +
V
/GND
CC –
1 2 3 4
(TOP VIEW)
1 2 3 4
NC
8
V
7
CC +
OUT
6
OFFSET N2
5
V
8
CC +
2OUT
7
2IN –
6
2IN +
5
NC
IN –
NC
IN +
NC
NC
1IN –
NC
1IN +
NC
TLE2021
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NCNCNC
NC
3212019
4 5 6 7 8
910111213
NC
NC
GND
CC –
OFFSET N2
V/
FK PACKAGE
(TOP VIEW)
NC
1OUT
NCNCNC
3212019
4 5 6 7 8
910111213
NC
18
V
17
CC +
NC
16
OUT
15 14
NC
CC+
V
NC
18
2OUT
17
NC
16
2IN –
15 14
NC
NC – No internal connection
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
NC
NC
GND
CC –
V/
2IN +
3
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
DW PACKAGE
(TOP VIEW)
1OUT
1IN– 1IN+
V
CC+
2IN+ 2IN–
2OUT
NC – No internal connection
NC
1 2 3 4 5 6 7 8
16 15 14 13 12
10
4OUT 4IN– 4IN+ V 3IN+ 3IN–
11
3OUT NC
9
CC –
/GND
1IN+
NC
V
CC+
NC
2IN+
FK PACKAGE
(TOP VIEW)
1IN –
1OUT
NC
3 2 1 20 19
4 5 6 7 8
910111213
NC
2IN –
2OUT
4OUT
4IN –
18 17 16 15 14
3IN –
3OUT
4IN+ NC V
CC–
NC 3IN+
/GND
J OR N PACKAGE
(TOP VIEW)
1OUT
V
2OUT
1IN– 1IN+
CC+
2IN+ 2IN–
1 2 3 4 5 6 7
14 13 12 11 10
4OUT 4IN– 4IN+ V
/GND
CC–
3IN+ 3IN–
9
3OUT
8
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021Y chip information
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(5)(6)(7)
V
V
+
CC–
CC+
(7)
(6)
(4)
/GND
78
OFFSET N1
IN+
IN–
OFFSET N2
(1) (3)
(2)
(5)
OUT
(1)
(2) (3)
54
(4)
CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM
T
= 150°C
Jmax
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2022Y chip information
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
80
(8)
(1)
(2)
86
(6)(7)
(5) (4)
(3)
V
CC+
IN+
IN–
OUT
CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ±10%. ALL DIMENSIONS ARE IN MILS. PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(3)
(2)
(7)
(8)
+
V
CC–
(4)
(1)
OUT
(5)
+
(6)
IN+
IN–
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2024Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
V
CC+
(4)
+
+
+
+
(11)
CC–/GND
100
1IN+
1IN–
2OUT
2IN+
3IN–
4OUT
(3)
(2)
(7)
(10)
(9)
(14)
V
(1)
(5)
(6)
(8)
(12)
(13)
1OUT
2IN+
2IN–
3OUT
4IN+
4IN–
140
CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ±10%. ALL DIMENSIONS ARE IN MILS. PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
equivalent schematic (each amplifier)
V
CC+
IN – IN +
OFFSET N1 (see Note A)
OFFSET N2 (see Note A)
D1
R1
C1
D2
Q1
Q2
Q3
Q4
R2
R3
Q6
Q5
D3
D4
Q7
Q8
Q9
R4
R5
Q10
Q11
Q12
Q13
Q14
Q15
Q16
R6
Q17
Q18
V
Q19
C2
CC–
Q20
/GND
Q22
Q21
Q24
Q23 Q25
Q26
Q27
C4
R7
C3
Q28
Q29
Q30
Q31
Q33
Q32
Q35
Q34
Q39
Q36
Q38
OUT
Q40
Q37
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2021 TLE2022 TLE2024
Transistors 40 80 160 Resistors 7 14 28 Diodes 4 8 16 Capacitors 4 8 16
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
UNIT
Common-mode input voltage, V
V
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V Supply voltage, V Differential input voltage, V Input voltage range, V Input current, I
(each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
Output current, I
Total current into V Total current out of V
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
Storage temperature range, T Case temperature for 60 seconds, T
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package 260°C. . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
2. Dif ferential voltages are at IN+ with respect to IN–. Excessive current flows if a differential input voltage in excess of approximately ±600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
(see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC+
(see Note 1) –20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC–
I
(each output): TLE2021 ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
(see Note 2) ±0.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ID
(any input, see Note 1) ±V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2022 ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2024 ±40 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC+
80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC–
: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
I suffix –40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
CC+
, and V
CC–
.
CC
PACKAGE
D–8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW
DB–8 525 mW 4.2 mW/°C 336 mW
DW–16 1025 mW 8.2 mW/°C 656 mW 533 mW 205 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
J–14 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW JG–8 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW N–14 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW
P–8 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW
PW–8 525 mW 4.2 mW/°C 336 mW
TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
recommended operating conditions
Supply voltage, V
Operating free-air temperature, T
CC
p
VCC = ± 5 V 0 3.5 0 3.2 0 3.2
IC
V
= ±15 V –15 13.5 –15 13.2 –15 13.2
CC±
A
DISSIPATION RATING TABLE
TA = 70°C
POWER RATING
C SUFFIX I SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX
TA = 85°C
POWER RATING
±2 ±20 ±2 ±20 ±2 ±20 V
0 70 –40 85 –55 125 °C
TA = 125°C
POWER RATING
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
T l
R l
D
7 11
94
10
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IC
,
S
IIOInput offset current
nA
IIBInput bias current
nA
V
Common-mode input voltage range
R
V
VOHHigh-level output voltage
VpR
k
VOLLow-level output voltage
V
A
gg
O
,
V/µV
CMRR
Common-mode rejection ratio
IC ICR
,
dB
k
ygj
V
V
dB
ICCSupply current
A
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
A
p
α
SVR
I
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of
VIO
input offset voltage Input offset voltage long-term drift
(see Note 4)
p
p
ICR
Large-signal differential V
VD
voltage amplification
Supply-voltage rejection ratio (VCC/VIO)
pp
Supply-current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
p
p
V
= 0, R
= 50
S
= 10
L
= 1.4 V to 4 V,
RL = 10 k V
= V
RS = 50
= 5 V to 30
CC
VO = 2.5 V, No load
= 50
min,
25°C 120 600 100 300 80 200
Full range 850 600 300 Full range 2 2 2 µV/°C
25°C 0.005 0.005 0.005 µV/mo 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.9 3.9 3.9
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.85 0.85 0.85
25°C 0.3 1.5 0.3 1.5 0.3 1.5
Full range 0.3 0.3 0.3
25°C 85 110 85 110 85 110
Full range 80 80 80
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 170 230 170 230 170 230
Full range 230 230 230 Full range 5 5 5 µA
TLE2021C TLE2021AC TLE2021BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0
3.5
3.5
– 0.3
to
to
4
0
to
3.5
3.5
0
– 0.3
to
to
4
0
to
3.5
3.5
0
– 0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
Common-mode input voltage range
R
V
V
V
R
k
V
g
V
A
gg
O
,
V/µV
CMRR
Common-mode rejection ratio
IC ICR
,
dB
k
ygj
CC ±
dB
ICCSupply current
A
V
O
load
11
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
A
p
α
SVR
I
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of
VIO
input offset voltage Input offset voltage long-term drift
(see Note 4)
p
p
ICR
Maximum positive peak
OM+
output voltage swing Maximum negative peak
OM –
output voltage swing Large-signal differential V
VD
voltage amplification
Supply-voltage rejection ratio V (VCC/VIO)
pp
Supply-current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
p
VIC = 0, RS = 50
= 50
S
= 10
L
= ± 10 V,
RL = 10 k V
= V
RS = 50
to ± 15 V
= 0,No
min,
= ± 2.5 V
25°C 120 500 80 200 40 100
Full range 750 500 200 Full range 2 2 2 µV/°C
25°C 0.006 0.006 0.006 µV/mo 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.9 13.9 13.9
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.7 –13.7 –13.7
25°C 1 6.5 1 6.5 1 6.5
Full range 1 1 1
25°C 100 115 100 115 100 115
Full range 96 96 96
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 200 300 200 300 200 300
Full range 300 300 300 Full range 6 6 6 µA
TLE2021C TLE2021AC TLE2021BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
–15
13.5 –15
13.5
–15.3
to
to
14
to
–15
13.5 15
13.5
–15.3
to
to
to
14
–15
13.5 15
13.5
–15.3
to
to
to
14
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
12
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
α
VIO
Full range
222µV/°C
gg
V
R
25°C
0.005
0.005
0.005µV/mo
IIOInput offset current
nA
IIBInput bias current
nA
0to0.3to0to0.3to0to0.3
V
R
V
0to0to0
g
VOHHigh-level output voltage
VpR
k
VOLLow-level output voltage
V
A
gg
V
1.4 V to 4 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
777µA
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
A
p
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
ICR
VD
SVR
Full range is 0°C to 70°C.
NOTE 4: T ypical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
Common-mode input voltage range
p
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
Supply current change over
CC
operating temperature range
equation and assuming an activation energy of 0.96 eV .
CC ±
pp
/VIO)
= 0,
IC
= 50
S
= 10
L
=
O
=
IC
ICR
= 5 V to 30
CC
= 2.5 V,
= 50
S
,
=
L
,
= 50
S
25°C 600 400 250
Full range 800 550 400
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.9 3.9 3.9
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.85 0.85 0.85
25°C 0.3 1.5 0.4 1.5 0.5 1.5
Full range 0.3 0.4 0.5
25°C 85 100 87 102 90 105
Full range 80 82 85
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 450 600 450 600 450 600
Full range 600 600 600
TLE2022C TLE2022AC TLE2022BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
0 –0.3 0 –0.3 0 –0.3
to
3.5 4 3.5 4 3.5 4 0 0 0
to
3.5 3.5 3.5
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
Full range22
2µV/°C
gg
V
R
25°C
0.006
0.006
0.006µV/mo
IIOInput offset current
nA
IIBInput bias current
nA
15to15.3to15to15.3to15to15.3
V
R
50 Ω
V
15to15to15
g
V
V
R
10 k
V
g
V
A
gg
V
±10 V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
±2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range99
9µA
13
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
A
p
α
VIO
ICR
OM +
OM–
VD
SVR
Full range is 0°C to 70°C.
NOTE 4: T ypical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
equation and assuming an activation energy of 0.96 eV .
= 0,
IC
=
S
=
L
=
O
=
IC
CC±
= 0,
=
ICR
= 50
S
,
= 10
L
,
= 50
S
25°C 150 500 120 300 70 150
Full range 700 450 300
°
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.9 13.9 13.9
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.7 –13.7 –13.7
25°C 0.8 4 1 7 1.5 10
Full range 0.8 1 1.5
25°C 95 106 97 109 100 112
Full range 91 93 96
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 550 700 550 700 550 700
Full range 700 700 700
TLE2022C TLE2022AC TLE2022BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
–15 –15.3 –15 –15.3 –15 –15.3
to
13.5 14 13.5 14 13.5 14 –15 –15 –15
to
13.5 13.5 13.5
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
14
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
VOHHigh-level output voltage
V
R
k
VOLLow-level output voltage
V
A
gg
V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
50 Ω
dB
k
SVR
ygj
V
V
dB
ICCSupply current
A
V
O
No load
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC= 5 V (unless otherwise noted)
A
p
α
VIO
ICR
VD
I
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
p
p
Large-signal differential voltage amplification
Supply-voltage rejection ratio (VCC/VIO)
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
= 1.4 V to 4 V,
O
=
IC
ICR
= 5 V to 30
CC
= 2.5 V,
,
= 10
L
=
S
25°C 1100 850 600
Full range 1300 1050 800 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 45 70 40 70 35 70
Full range 90 90 90
25°C
Full range
25°C 3.9 4.2 3.9 4.2 4 4.3
Full range 3.7 3.7 3.8
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.95 0.95 0.95
25°C 0.2 1.5 0.3 1.5 0.4 1.5
Full range 0.1 0.1 0.1
25°C 80 90 82 92 85 95
Full range 80 82 85
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 800 1200 800 1200 800 1200
Full range 1200 1200 1200 Full range 15 15 15 µA
TLE2024C TLE2024AC TLE2024BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.005 0.005 0.005 µV/mo
0
3.5
3.5
–0.3
to
to
4
0
to
3.5
3.5
0
–0.3
to
to
4
0
to
3.5
3.5
0
–0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
V
V
R
k
V
g
V
A
gg
V
±10 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
± 2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
202020µA
15
TLE2024 electrical characteristics at specified free-air temperature, VCC= ±15 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM–
VD
SVR
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
,
=
O
=
IC
CC±
= 0,
ICR
=
=
L
,
= 50
S
25°C 1000 750 500
Full range 1200 950 700 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 50 70 45 70 40 70
Full range 90 90 90
25°C
Full range
25°C 13.8 14.1 13.9 14.2 14 14.3
Full range 13.7 13.8 13.9
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 0.4 2 0.8 4 1 7
Full range 0.4 0.8 1
25°C 92 102 94 105 97 108
Full range 88 90 93
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 1050 1400 1050 1400 1050 1400
Full range 1400 1400 1400
TLE2024C TLE2024AC TLE2024BC
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.006 0.006 0.006 µV/mo
–15
13.5 –15
13.5
–15.3
to
to
14
to
–15
13.5 –15
13.5
–15.3
to
to
14
to
–15
13.5 –15
13.5
–15.3
to
to
14
to
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
16
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
Common-mode input voltage range
R
V
VOHHigh-level output voltage
VpR
10 k
VOLLow-level output voltage
V
A
gg
O
,
V/µV
CMRR
Common-mode rejection ratio
IC ICR
,
dB
k
ygj
V
5 V to 30 V
dB
ICCSupply current
A
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, V
A
p
α
SVR
I
Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of
VIO
input offset voltage Input offset voltage long-term drift
(see Note 4)
p
p
ICR
Large-signal differential V
VD
voltage amplification
Supply-voltage rejection ratio (VCC/VIO)
pp
Supply-current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
p
p
VIC = 0, RS = 50
= 50
S
=
L
= 1.4 V to 4 V,
RL = 10 k V
= V
RS = 50
CC
VO = 2.5 V, No load
min,
=
25°C 120 600 100 300 80 200
Full range 950 600 300 Full range 2 2 2 µV/°C
25°C 0.005 0.005 0.005 µV/mo 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.9 3.9 3.9
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.9 0.9 0.9
25°C 0.3 1.5 0.3 1.5 0.3 1.5
Full range 0.25 0.25 0.25
25°C 85 110 85 110 85 110
Full range 80 80 80
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 170 230 170 230 170 230
Full range 230 230 230 Full range 6 6 6 µA
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0
to
3.5
–15
to
3.2
= 5 V (unless otherwise noted)
CC
TLE2021I TLE2021AI TLE2021BI
–0.3
to
4
3.5 15
3.2
0
–0.3
to
to
4
to
3.5
3.2
0
– 0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
gg
R
V
V
V
R
k
V
g
V
A
gg
O
,
V/µV
CMRR
Common-mode rejection ratio
IC ICR
,
dB
k
ygj
CC ±
dB
ICCSupply current
A
V
O
load
17
TLE2021 electrical characteristics at specified free-air temperature, VCC= ± 15 V (unless otherwise noted)
A
p
α
SVR
I
Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of
VIO
input offset voltage Input offset voltage long-term drift
(see Note 4)
p
p
Common-mode input voltage range
ICR
Maximum positive peak output
OM +
voltage swing Maximum negative peak output
OM –
voltage swing Large-signal differential V
VD
voltage amplification
Supply-voltage rejection ratio V (VCC/VIO)
pp
Supply-current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
=10 V,
RL = 10 k V
= V
RS = 50
to ± 15 V
= 0 V,No
min,
= ± 2. 5 V
25°C 120 500 80 200 40 100
Full range 850 500 200 Full range 2 2 2 µV/°C
25°C 0.006 0.006 0.006 µV/mo 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.9 13.9 13.9
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 1 6.5 1 6.5 1 6.5
Full range 0.75 0.75 0.75
25°C 100 115 100 115 100 115
Full range 96 96 96
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 200 300 200 300 200 300
Full range 300 300 300 Full range 7 7 7 µA
TLE2021I TLE2021AI TLE2021BI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
–15
13.5 –15
3.2
–15.3
to
to
14
to
–15
13.5 15
3.2
–15.3
to
to
14
to
–15
13.5 15
3.2
–15.3
to
to
14
to
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
18
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
Full range22
2µV/°C
gg
V
R
25°C
0.005
0.005
0.005µV/mo
IIOInput offset current
nA
IIBInput bias current
nA
0to0.3to0to0.3to0to0.3
V
R
V
0to0to0
g
VOHHigh-level output voltage
VpR
k
VOLLow-level output voltage
V
A
gg
V
1.4 V to 4 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
151515µA
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
A
p
α
VIO
ICR
VD
SVR
Full range is –40°C to 85°C.
NOTE 4: T ypical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
p
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
= 0,
IC
= 50
S
= 10
L
=
O
=
IC
ICR
= 5 V to 30
CC
= 2.5 V,
= 50
S
,
=
L
,
S
= 50
25°C 600 400 250
Full range 800 550 400
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.9 3.9 3.9
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.9 0.9 0.9
25°C 0.3 1.5 0.4 1.5 0.5 1.5
Full range 0.2 0.2 0.2
25°C 85 100 87 102 90 105
Full range 80 82 85
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 450 600 450 600 450 600
Full range 600 600 600
TLE2022I TLE2022AI TLE2022BI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
0 –0.3 0 –0.3 0 –0.3
to
3.5 4 3.5 4 3.5 4 0 0 0
to
3.2 3.2 3.2
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
Full range22
2µV/°C
gg
V
0
R
50 Ω
25°C
0.006
0.006
0.006µV/mo
I
Input offset current
nA
IIBInput bias current
nA
V
R
50 Ω
V
gg
g
V
V
R
10 k
V
g
V
A
gg
V
± 10 V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
±2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
303030µA
19
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
A
p
α
VIO
IO
ICR
OM +
OM –
VD
SVR
Full range is –40°C to 85°C.
NOTE 4: T ypical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
Supply current change over
CC
operating temperature range
equation and assuming an activation energy of 0.96 eV .
CC±
pp
/VIO)
IC
S
L
O
IC
CC
=
=
=
=
=
=
= 0,
,
ICR
=
S
,
= 10
L
,
= 50
S
25°C 150 500 120 300 70 150
Full range 700 450 300
°
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.9 13.9 13.9
25°C – 13.7 – 14.1 – 13.7 – 14.1 – 13.7 – 14.1
Full range – 13.6 – 13.6 – 13.6
25°C 0.8 4 1 7 1.5 10
Full range 0.8 1 1.5
25°C 95 106 97 109 100 112
Full range 91 93 96
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 550 700 550 700 550 700
Full range 700 700 700
TLE2022I TLE2022AI TLE2022BI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
–15 –15.3 –15 –15.3 –15 –15.3
to to to to to to
13.5 14 13.5 14 13.5 14 –15 –15 –15
to to to
13.2 13.2 13.2
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
20
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
V
V
R
k
V
g
V
A
gg
V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
50 Ω
dB
k
SVR
ygj
V
±15 V
dB
ICCSupply current
A
V
O
No load
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC= 5 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM–
VD
I
Full range is –40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
= 1.4 V to 4 V,
O
=
IC
ICR
= ±2.5 V to
CC±
= 0,
,
= 10
L
=
S
25°C 1100 850 600
Full range 1300 1050 800 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 45 70 40 70 35 70
Full range 90 90 90
25°C
Full range
25°C 3.9 4.2 3.9 4.2 4 4.3
Full range 3.7 3.7 3.8
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.95 0.95 0.95
25°C 0.2 1.5 0.3 1.5 0.4 1.5
Full range 0.1 0.1 0.1
25°C 80 90 82 92 85 95
Full range 80 82 85
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 800 1200 800 1200 800 1200
Full range 1200 1200 1200 Full range 30 30 30 µA
TLE2024I TLE2024AI TLE2024BI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.005 0.005 0.005 µV/mo
0
3.5
3.2
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
V
V
R
k
V
g
V
A
gg
V
±10 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
± 2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
505050µA
21
TLE2024 electrical characteristics at specified free-air temperature, VCC= ±15 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM–
VD
SVR
Full range is –40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
,
=
O
=
IC
CC±
= 0,
ICR
=
=
L
,
= 50
S
25°C 1000 750 500
Full range 1200 950 700 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 50 70 45 70 40 70
Full range 90 90 90
25°C
Full range
25°C 13.8 14.1 13.9 14.2 14 14.3
Full range 13.7 13.7 13.8
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 0.4 2 0.8 4 1 7
Full range 0.4 0.8 1
25°C 92 102 94 105 97 108
Full range 88 90 93
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 1050 1400 1050 1400 1050 1400
Full range 1400 1400 1400
TLE2024I TLE2024AI TLE2024BI
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.006 0.006 0.006 µV/mo
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5 –15
13.2
–15.3
to
to
14
to
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
22
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
R
V
VOHHigh-level output voltage
VpR
10 k
VOLLow-level output voltage
V
A
gg
V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
5 V to 30 V
dB
ICCSupply current
A
V
O
No load
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
A
p
α
SVR
I
Full range is –55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of
VIO
input offset voltage Input offset voltage long-term
drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
p
Large-signal differential
VD
voltage amplification
Supply-voltage rejection ratio (V
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV .
CC±
pp
/VIO)
VIC = 0, RS = 50
= 50
S
=
L
= 1.4 V to 4 V,
O
=
IC
ICR
=
CC
= 2.5 V,
,
= 10
L
= 50
S
25°C 120 600 100 300 80 200
Full range 1100 600 300 Full range 2 2 2 µV/°C
25°C 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.8 3.8 3.8
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.95 0.95 0.95
25°C 0.3 1.5 0.3 1.5 0.3 1.5
Full range 0.1 0.1 0.1
25°C 85 110 85 110 85 110
Full range 80 80 80
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 170 230 170 230 170 230
Full range 230 230 230 Full range 9 9 9 µA
TLE2021M TLE2021AM TLE2021BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.005 0.005 0.005 µV/mo
0
3.5
3.2
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
R
V
V
V
R
k
V
g
V
A
gg
V
±10 V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
±15 V
dB
ICCSupply current
A
V
O
No load
23
TLE2021 electrical characteristics at specified free-air temperature, VCC= ±15 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM –
VD
SVR
I
Full range is –55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
=
O
IC
CC±
= 0,
=
ICR
= ± 2.5 V to
,
= 10
L
,
= 50
S
25°C 120 500 80 200 40 100
Full range 1000 500 200 Full range 2 2 2 µV/°C
25°C 25°C 0.2 6 0.2 6 0.2 6
Full range 10 10 10
25°C 25 70 25 70 25 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.8 13.8 13.8
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 1 6.5 1 6.5 1 6.5
Full range 0.5 0.5 0.5
25°C 100 115 100 115 100 115
Full range 96 96 96
25°C 105 120 105 120 105 120
Full range 100 100 100
25°C 200 300 200 300 200 300
Full range 300 300 300 Full range 10 10 10 µA
TLE2021M TLE2021AM TLE2021BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.006 0.006 0.006 µV/mo
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5
13.2
–15.3
to
to
14
0
to
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
24
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
Full range
222µV/°C
gg
V
R
25°C
0.005
0.005
0.005µV/mo
IIOInput offset current
nA
IIBInput bias current
nA
V
R
V
gg
g
VOHHigh-level output voltage
VpR
k
VOLLow-level output voltage
V
A
gg
V
1.4 V to 4 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
V
dB
ICCSupply current
A
V
2.5 V
No load
I
yg
Full range
373737µA
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
A
p
α
VIO
ICR
VD
SVR
Full range is –55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
p
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
CC±
pp
/VIO)
= 0,
IC
= 50
S
= 10
L
=
O
=
IC
ICR
= 5 V to 30
CC
=
O
= 50
S
,
=
L
,
,
S
= 50
25°C 600 400 250
Full range 800 550 400
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 4 4.3 4 4.3 4 4.3
Full range 3.8 3.8 3.8
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.95 0.95 0.95
25°C 0.3 1.5 0.4 1.5 0.5 1.5
Full range 0.1 0.1 0.1
25°C 85 100 87 102 90 105
Full range 80 82 85
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 450 600 450 600 450 600
Full range 600 600 600
TLE2022M TLE2022AM TLE2022BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
0 –0.3 0 –0.3 0 –0.3
to to to to to to
3.5 4 3.5 4 3.5 4 0 0 0
to to to
3.2 3.2 3.2
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
α
VIO
Full range22
2µV/°C
gg
V
0
R
50 Ω
25°C
0.006
0.006
0.006µV/mo
I
Input offset current
nA
IIBInput bias current
nA
V
R
50 Ω
V
gg
g
V
V
R
10 k
V
g
V
A
gg
V
±10 V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
±2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
606060µA
25
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
A
p
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
IO
ICR
OM +
OM–
VD
SVR
Full range is 0°C to 70°C.
NOTE 4: T ypical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
Supply current change over
CC
operating temperature range
equation and assuming an activation energy of 0.96 eV .
CC±
pp
/VIO)
=
IC
=
S
=
L
=
O
=
IC
CC±
= 0,
=
,
ICR
=
S
,
= 10
L
,
= 50
S
25°C 150 500 120 300 70 150
Full range 700 450 300
°
25°C 0.5 6 0.4 6 0.3 6
Full range 10 10 10
25°C 35 70 33 70 30 70
Full range 90 90 90
25°C
Full range
25°C 14 14.3 14 14.3 14 14.3
Full range 13.9 13.9 13.9
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 0.8 4 1 7 1.5 10
Full range 0.8 1 1.5
25°C 95 106 97 109 100 112
Full range 91 93 96
25°C 100 115 103 118 105 120
Full range 95 98 100
25°C 550 700 550 700 550 700
Full range 700 700 700
TLE2022M TLE2022AM TLE2022BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
µ
°
–15 –15.3 –15 –15.3 –15 –15.3
to to to to to to
13.5 14 13.5 14 13.5 14 –15 –15 –15
to to to
13.2 13.2 13.2
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
26
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
V
V
R
k
V
g
V
A
gg
V
R
k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
50 Ω
dB
k
SVR
ygj
V
±15 V
dB
ICCSupply current
A
V
O
No load
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC= 5 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM–
VD
I
Full range is –55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
= 1.4 V to 4 V,
O
=
IC
ICR
= ±2.5 V to
CC±
= 0,
,
= 10
L
=
S
25°C 1100 850 600
Full range 1300 1050 800 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 45 70 40 70 35 70
Full range 90 90 90
25°C
Full range
25°C 3.9 4.2 3.9 4.2 4 4.3
Full range 3.7 3.7 3.8
25°C 0.7 0.8 0.7 0.8 0.7 0.8
Full range 0.95 0.95 0.95
25°C 0.2 1.5 0.3 1.5 0.4 1.5
Full range 0.1 0.1 0.1
25°C 80 90 82 92 85 95
Full range 80 82 85
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 800 1200 800 1200 800 1200
Full range 1200 1200 1200 Full range 50 50 50 µA
TLE2024M TLE2024AM TLE2024BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.005 0.005 0.005 µV/mo
0
3.5
3.2
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
3.5
3.2
0
–0.3
to
to
4
0
to
µ
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
e ease
ate:
– –
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
IIOInput offset current
nA
IIBInput bias current
nA
V
g
R
V
V
V
R
k
V
g
V
A
gg
V
±10 V
R
10 k
V/µV
CMRR
Common-mode rejection ratio
V
V
min
R
dB
k
ygj
V
± 2.5 V to ±15 V
dB
ICCSupply current
A
V
O
No load
I
yg
Full range
858585µA
27
TLE2024 electrical characteristics at specified free-air temperature, VCC= ±15 V (unless otherwise noted)
A
p
α
VIO
ICR
OM+
OM–
VD
SVR
Full range is –55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
p
p
Common-mode input voltage range
Maximum positive peak output voltage swing
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Supply-voltage rejection ratio (V
/VIO)
CC±
pp
Supply current change over
CC
operating temperature range
and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 50
S
= 10
L
,
=
O
=
IC
CC±
= 0,
ICR
=
=
L
,
= 50
S
25°C 1000 750 500
Full range 1200 950 700 Full range 2 2 2 µV/°C
25°C 25°C 0.6 6 0.5 6 0.4 6
Full range 10 10 10
25°C 50 70 45 70 40 70
Full range 90 90 90
25°C
Full range
25°C 13.8 14.1 13.9 14.2 14 14.3
Full range 13.7 13.7 13.8
25°C –13.7 –14.1 –13.7 –14.1 –13.7 –14.1
Full range –13.6 –13.6 –13.6
25°C 0.4 2 0.8 4 1 7
Full range 0.4 0.8 1
25°C 92 102 94 105 97 108
Full range 88 90 93
25°C 98 112 100 115 103 117
Full range 93 95 98
25°C 1050 1400 1050 1400 1050 1400
Full range 1400 1400 1400
TLE2024M TLE2024AM TLE2024BM
MIN TYP MAX MIN TYP MAX MIN TYP MAX
0.006 0.006 0.006 µV/mo
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5 –15
13.2
–15.3
to
to
14
to
–15
13.5 –15
13.2
–15.3
to
to
14
to
µ
µ
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TLE202x, TLE202xA, TLE202xB, TLE202xY
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
28
PARAMETER
TEST CONDITIONS
T
UNIT
V
qg
nV/H
V
q
V
PARAMETER
TEST CONDITIONS
T
UNIT
SR
Slew rate at unity gain
V
1V to 3 V
See Figure 1
V/µs
V
qg
nV/H
V
q
V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
A
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 25°C 0.5 0.5 0.5 V/µs
n
N(PP)
I
n
B
1
φ
m
Equivalent input noise voltage (see Figure 2)
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.09 0.09 0.9 pA/Hz Unity-gain bandwidth See Figure 3 25°C 1.2 1.2 1.2 MHz Phase margin at unity gain See Figure 3 25°C 42° 42° 42°
f = 10 Hz 25°C 21 50 21 50 21 f = 1 kHz f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz
25°C 17 30 17 30 17
25°C 0.47 0.47 0.47
TLE2021 operating characteristics at specified free-air temperature, V
A
=
O
n
N(PP)
I
n
B
1
φ
m
Full range is 0°C to 70°C for the C-suffix devices, –40°C to 85°C for the I-suf fix devices, and –55°C to 125°C for the M-suffix devices.
Equivalent input noise voltage (see Figure 2)
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.09 0.09 0.09 pA/Hz Unity-gain bandwidth See Figure 3 25°C 2 2 2 MHz Phase margin at unity gain See Figure 3 25°C 46° 46° 46°
f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz
,
25°C 0.45 0.65 0.45 0.65 0.45 0.65
Full range 0.45 0.42 0.45
25°C 15 30 15 30 15
25°C 0.47 0.47 0.47
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
= ±15 V
CC
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
z
µ
e ease
ate:
– –
z
µ
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
UNIT
V
qg V/H
V
Peak-to-peak equivalent input noise voltage
V
PARAMETER
TEST CONDITIONS
T
UNIT
SR
Slew rate at unity gain
V
±10 V
See Figure 1
V/µs
V
q V/H
V
q
V
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 0.5 0.5 V/µs
n
N(PP)
I
n
B
1
φ
m
Equivalent input noise voltage (see Figure 2)
p
Equivalent input noise current 0.1 0.1 0.1 Unity-gain bandwidth See Figure 3 1.7 1.7 1.7 MHz Phase margin at unity gain See Figure 3 47° 47° 47°
p
f = 10 Hz 21 50 21 50 21 f = 1 kHz f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47
17 30 17 30 17
n
pA/Hz
z
µ
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
TLE2022 operating characteristics at specified free-air temperature, VCC = ±15 V
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
n
N(PP)
I
n
B
1
φ
m
Full range is 0°C to 70°C.
Equivalent input noise voltage (see Figure 2)
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.1 0.1 0.1 pA/Hz Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz Phase margin at unity gain See Figure 3 25°C 52° 52° 52°
A
=
O
f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz
,
25°C 0.45 0.65 0.45 0.65 0.45 0.65
Full range 0.45 0.42 0.4
25°C 15 30 15 30 15
25°C 0.47 0.47 0.47
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
n
z
TLE202x, TLE202xA, TLE202xB, TLE202xY
µ
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
T l
R l
D
7 11
94
30
PARAMETER
TEST CONDITIONS
UNIT
VnEquivalent input noise voltage (see Figure 2)
V/H
V
Peak-to-peak equivalent input noise voltage
V
PARAMETER
TEST CONDITIONS
T
UNIT
SR
Slew rate at unity gain
V
±10 V
See Figure 1
V/µs
V
qg V/H
V
q
V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 0.5 0.5 V/µs
p
N(PP)
I
n
B
1
φ
m
p
Equivalent input noise current 0.1 0.1 0.1 pA/Hz Unity-gain bandwidth See Figure 3 1.7 1.7 1.7 MHz Phase margin at unity gain See Figure 3 47° 47° 47°
p
TLE2024 operating characteristics at specified free-air temperature, V
n
N(PP)
I
n
B
1
φ
m
Full range is 0°C to 70°C.
Equivalent input noise voltage (see Figure 2)
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.1 0.1 0.1 pA/Hz Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz Phase margin at unity gain See Figure 3 25°C 52° 52° 52°
f = 10 Hz 25°C 19 50 19 50 19 f = 1 kHz f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz
f = 10 Hz 21 50 21 50 21 f = 1 kHz 17 30 17 30 17 f = 0.1 to 1 Hz 0.16 0.16 0.16 f = 0.1 to 10 Hz 0.47 0.47 0.47
= ±15 V (unless otherwise noted)
CC
A
=
O
,
25°C 0.45 0.7 0.45 0.7 0.45 0.7
Full range 0.45 0.42 0.4
25°C 15 30 15 30 15
25°C 0.47 0.47 0.47
C SUFFIX I SUFFIX M SUFFIX
MIN TYP MAX MIN TYP MAX MIN TYP MAX
n
n
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERA TIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
emp ate
z
µ
e ease
ate:
– –
z
µ
TLE202x, TLE202xA, TLE202xB, TLE202xY
PARAMETER
TEST CONDITIONS
UNIT
V
R
R
k
PARAMETER
TEST CONDITIONS
UNIT
VnEquivalent input noise voltage
V/H
V
Peak-to-peak equivalent input noise voltage
V
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2021Y electrical characteristics at VCC= 5 V, TA = 25°C (unless otherwise noted)
TLE2021Y
MIN TYP MAX
V
I
IO
I
IB
V
V V A CMRR Common-mode rejection ratio VIC = V k I
CC
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
Input offset voltage 150 µV
IO
Input offset voltage long-term drift (see Note 4) Input offset current Input bias current 35 nA
Common-mode input voltage range RS = 50
ICR
Maximum high-level output voltage
OH
Maximum low-level output voltage
OL
Large-signal differential voltage amplification VO = 1.4 to 4 V, RL = 10 k 1.5 V/µV
VD
Supply-voltage rejection ratio (V
SVR
Supply current VO = 2.5 V, No load 400 µA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
/VIO) VCC = 5 V to 30 V 115 dB
CC±
IC
= 10
L
= 0,
= 50
S
min, RS = 50 100 dB
ICR
0.005 µV/mo
0.5 nA
– 0.3
to
4.3 V
0.7 V
4
V
TLE2021Y operating characteristics at VCC= 5 V, TA = 25°C
TLE2021Y
MIN TYP MAX
SR Slew rate at unity gain VO = 1 V to 3 V 0.5 V/µs
f = 10 Hz 21 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47
n
pA/Hz
N(PP)
I
n
B
1
φ
m
p
p
Equivalent input noise current 0.1 Unity-gain bandwidth 1.7 MHz Phase margin at unity gain 47°
p
z
µ
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
31
TLE202x, TLE202xA, TLE202xB, TLE202xY
PARAMETER
TEST CONDITIONS
UNIT
V
R
R
10 k
PARAMETER
TEST CONDITIONS
UNIT
VnEquivalent input noise voltage (see Figure 2)
V/H
V
Peak-to-peak equivalent input noise voltage
V
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2022Y electrical characteristics, VCC= 5 V, TA = 25°C (unless otherwise noted)
TLE2022Y
MIN TYP MAX
V
I
IO
I
IB
V
V V A CMRR Common-mode rejection ratio VIC = V k
SVR
I
CC
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
Input offset voltage 150 600 µV
IO
Input offset voltage long-term drift (see Note 4) Input offset current Input bias current 35 nA
Common-mode input voltage range RS = 50
ICR
Maximum high-level output voltage
OH
Maximum low-level output voltage
OL
Large-signal differential voltage amplification VO = 1.4 to 4 V, RL= 10 k 1.5 V/µV
VD
Supply-voltage rejection ratio (V Supply current VO = 2.5 V, No load 450 µA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
/VIO) VCC = 5 V to 30 V 115 dB
CC±
IC
L
= 0,
=
= 50
S
min, RS = 50 100 dB
ICR
0.005 µV/mo
0.5 nA
– 0.3
to
4.3 V
0.7 V
V
4
TLE2022Y operating characteristics, VCC= 5 V, TA = 25°C
TLE2022Y
MIN TYP MAX
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/µs
f = 10 Hz 21 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47
n
pA/Hz
N(PP)
I
n
B
1
φ
m
p
p
Equivalent input noise current 0.1 Unity-gain bandwidth See Figure 3 1.7 MHz Phase margin at unity gain See Figure 3 47°
p
z
µ
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
PARAMETER
TEST CONDITIONS
UNIT
R
k
PARAMETER
TEST CONDITIONS
UNIT
VnEquivalent input noise voltage (see Figure 2)
V/H
V
Peak-to-peak equivalent input noise voltage
V
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2024Y electrical characteristics, VCC= 5 V, TA = 25°C (unless otherwise noted)
TLE2024Y
MIN TYP MAX
Input offset voltage long-term drift (see Note 4) 0.005 µV/mo
I
IO
I
IB
V
ICR
V
OH
V
OL
A
VD CMRR Common-mode rejection ratio VIC = V k
SVR I
CC
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
Input offset current Input bias current 45 nA
Common-mode input voltage range RS = 50
High-level output voltage Low-level output voltage Large-signal differential
voltage amplification
Supply-voltage rejection ratio (VCC/VIO)
Supply current VO = 2.5 V, No load 800 µA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
VIC = 0, RS = 50
= 10
L
VO = 1.4 V to 4 V, RL = 10 k 1.5 V/µV
min, RS = 50 90 dB
ICR
VCC = 5 V to 30 V 112 dB
0.6 nA
–0.3
to
4
4.2 V
0.7 V
V
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C
TLE2024Y
MIN TYP MAX
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/µs
f = 10 Hz 21 f = 1 kHz 17 f = 0.1 to 1 Hz 0.16 f = 0.1 to 10 Hz 0.47
n
N(PP)
I
n
B
1
φ
m
p
p
Equivalent input noise current 0.1 pA/Hz Unity-gain bandwidth See Figure 3 1.7 MHz Phase margin at unity gain See Figure 3 47°
p
z
µ
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
33
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
20 k
5 V
V
NOTE A: CL includes fixture capacitance.
2.5 V
+
I
30 pF
(see Note A)
(a) SINGLE SUPPLY
20
20
(a) SINGLE SUPPLY
2 k
5 V
+
V
O
20 k
V
I
Figure 1. Slew-Rate Test Circuit
V
O
20
20 k
15 V –
+
–15 V
30 pF
(see Note A)
(b) SPLIT SUPPLY
–15 V
20
2 k
15 V
+
V
20 k
O
V
O
Figure 2. Noise-Voltage Test Circuit
10 k
100
V
I
2.5 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
5 V
+
30 pF
(see Note A)
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
10 k
(b) SPLIT SUPPLY
10 k
15 V
V
I
V
O
100
+
–15 V
30 pF
(see Note A)
(b) SPLIT SUPPLY
10 k
V
O
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
SLOS191 – FEBRUARY 1997
5 V
0.1 µF
V
I
NOTE A: CL includes fixture capacitance.
10 k
+
10 k
30 pF
(see Note A)
(a) SINGLE SUPPLY
V
10 k
O
V
15 V
+
I
– 15 V
30 pF
(see Note A)
(b) SPLIT SUPPLY
V
10 k
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
O
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
35
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
Table of Graphs
V
IO
I
IB
I
I
V
OM
V
OH
V
OL
V
O(PP)
A
VD
I
OS
I
CC
CMRR Common-mode rejection ratio vs Frequency 44, 45, 46 SR Slew rate vs Free-air temperature 47, 48, 49
V
N(PP)
V
n
B
1
φ
m
Input offset voltage Distribution 5, 6, 7 Input bias current Input current vs Differential input voltage 14 Maximum peak output voltage
High-level output voltage
Low-level output voltage Maximum peak-to-peak output voltage vs Frequency 24, 25 Large-signal differential voltage amplification
Short-circuit output current
Supply current
Voltage-follower small-signal pulse response vs Time 50, 51 Voltage-follower large-signal pulse response vs Time 52 – 57
Peak-to-peak equivalent input noise voltage Equivalent input noise voltage vs Frequency 60 Unity-gain bandwidth
Phase margin
Phase shift vs Frequency 26
vs Common-mode input voltage vs Free-air temperature
vs Output current vs Free-air temperature
vs High-level output current vs Free-air temperature
vs Low-level output current vs Free-air temperature
vs Frequency vs Free-air temperature
vs Supply voltage vs Free-air temperature
vs Supply voltage vs Free-air temperature
0.1 to 1 Hz
0.1 to 10 Hz
vs Supply voltage vs Free-air temperature
vs Supply voltage vs Load capacitance vs Free-air temperature
FIGURE
8, 9, 10
11, 12, 13
15, 16, 17
18
19, 20
21 22
23
26
27, 28, 29
30 – 33 34 – 37
38, 39, 40 41, 42, 43
58 59
61, 62 63, 64
65, 66 67, 68 69, 70
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
DISTRIBUTION OF TLE2021
20
231 Units Tested From 1 Wafer Lot V
= ±15 V
CC±
TA = 25°C
16
P Package
12
8
Percentage of Units – %
4
0
–450 –150 150 450
–600
VIO – Input Offset Voltage – µV
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
16
796 Amplifiers Tested From 1 Wafer Lot V
= ±15 V
CC±
TA = 25°C N Package
12
INPUT OFFSET VOLTAGE
3000–300
Figure 5
600
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
20
398 Amplifiers Tested From 1 Wafer Lot V
= ±15 V
CC±
TA = 25°C
16
P Package
12
8
Percentage of Units – %
4
0 –600
–400 –200 0
VIO – Input Offset Voltage – µV
COMMON-MODE INPUT VOLTAGE
–40
–35
–30
200
Figure 6
TLE2021
INPUT BIAS CURRENT
vs
V
CC±
TA = 25°C
400 600
= ±15 V
8
Percentage of Units – %
4
0
–1
–0.5 0 0.5
VIO – Input Offset Voltage – mV
Figure 7
–25
–20
–15
IB
–10
I
IIB – Input Bias Current – nA
–5
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0
–15
1050–5–10
VIC – Common-Mode Input Voltage – V
Figure 8
15
37
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
COMMON-MODE INPUT VOLTAGE
–50
–45
–40
–35
–30
IB
I
IIB – Input Bias Current – nA
–25
–20
–15
–10 –5 0 5 10
VIC – Common-Mode Input Voltage – V
Figure 9
TLE2022
vs
V
= ±15 V
CC±
TA = 25°C
15
INPUT BIAS CURRENT
COMMON-MODE INPUT VOLTAGE
–60
–50
–40
–30
IB
IIB – Input Bias Current – nA
I
–20
–15
–10 –5 0510 VIC – Common-Mode Input Voltage – V
Figure 10
TLE2024
vs
V
= ±15 V
CC±
TA = 25°C
15
INPUT BIAS CURRENT
FREE–AIR TEMPERATURE
–35
–30
–25
–20
–15
–10
IB
I
IIB – Input Bias Current – nA
–5
0
–75
TA – Free-Air Temperature – ° C
Figure 11
TLE2021
vs
V
CC±
VO = 0 VIC = 0
= ±15 V
1007550250–25–50
125
INPUT BIAS CURRENT
FREE-AIR TEMPERATURE
–50
–45
–40
–35
–30
IB
IIB – Input Bias Current – nA
I
–25
–20
–75
TA – Free-Air Temperature – ° C
Figure 12
TLE2022
vs
V
CC±
VO = 0 VIC = 0
= ±15 V
125–50 –25 0 25 50 75 100
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
38
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
INPUT BIAS CURRENT
FREE-AIR TEMPERATURE
–60
–50
–40
IB
–30
I
IIB – Input Bias Current – nA
–20
–75
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
Figure 13
TLE2024
vs
V
CC±
VO = 0 VIC = 0
= ±15 V
125
DIFFERENTIAL INPUT VOLTAGE
1
V
= ±15 V
CC±
0
VIC = 0 TA = 25°C
0
|VID| – Differential Input Voltage – V
0.9
0.8
0.7
0.6
0.5
0.4
I
0.3
II – Input Current – mA
I
0.2
0.1
INPUT CURRENT
vs
Figure 14
0.90.80.70.60.50.40.30.20.1
1
16
14
12
10
8
6
4
2
OM
VOM – Maximum Peak Output Voltage – V
V
0
0
MAXIMUM PEAK OUTPUT VOLTAGE
TLE2021
vs
OUTPUT CURRENT
V
= ±15 V
CC±
TA = 25°C
V
OM+
V
OM–
2 4 6 8
IO – Output Current – mA
Figure 15
10
16
14
12
10
8
6
4
OM
2
VOM| – Maximum Peak Output Voltage – V
|V
0
0
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
V
= ±15 V
CC±
TA = 25°C
V
OM+
V
OM–
246
|IO| – Output Current – mA
81012
Figure 16
14
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
39
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
16
14
12
10
8
6
4
OM
2
V
VOM – Maximum Peak Output Voltage – V
0
0
5
4
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
V
= ±5 V
CC±
TA = 25°C
V
V
OM–
246
IO – Output Current – mA
81012
OM+
Figure 17
TLE2021
HIGH–LEVEL OUTPUT VOLTAGE
vs
HIGH–LEVEL OUTPUT CURRENT
VCC = 5 V TA = 25°C
14
15
14.5
14
13.5
13
12.5
OM
VOM| – Maximum Peak Output Voltage – V
|V
12
–75
5
4
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
V
OM+
V
OM–
V
= ±15 V
CC±
RL = 10 k TA = 25°C
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
Figure 18
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VCC = 5 V TA = 25°C
125
3
2
1
OH
V
VOH – High-Level Output Voltage – V
0
0
–1 –2 –3 –4 –5 –6
IOH – High-Level Output Current – mA
–7
Figure 19
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
40
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
2
1
OH
V
VOH – High-Level Output Voltage – V
0
0
–2 –4 –6 –8
IOH – High-Level Output Current – mA
Figure 20
–10
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
5
4.8
4.6
4.4
4.2
OH
V
VOH – High-Level Output Voltage – V
4
–75
1
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VCC = 5 V
No Load
RL = 10 k
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
Figure 21
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
125
5
4
3
2
1
OL
V
VOL – Low-Level Output Voltage – V
0
5
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VCC = 5 V TA = 25°C
0
0.5 1 1.5 2 2.5 IOL – Low-Level Output Current – mA
Figure 22
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
3
IOL = 1 mA
0.75
IOL = 0
0.5
0.25
OL
V
VOL – Low-Level Output Voltage – V
0
–75
V
= ±5 V
CC±
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
125
Figure 23
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
4
3
2
1
O(PP)
VOPP – Maximum Peak-to-Peak Output V oltage – V
0
V
100
VCC =5 V RL = 10 k
TA = 25°C
1 k 10 k 100 k
f – Frequency – Hz
Figure 24
1 M
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
41
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
30
25
20
15
10
V
5
O(PP)
VOPP – Maximum Peak-to-Peak Output V oltage – V
0
V
100
= ± 15 V
CC ±
RL = 10 k TA = 25°C
1 k 10 k 100 k
f – Frequency – Hz
1 M
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
120
100
80
A
VD
60
40
20
– Large-Signal Differential
Voltage Amplification – dB
VD
A
–20
0
10
RL = 10 k CL = 30 pF TA = 25°C
f – Frequency – Hz
Figure 25
vs
FREQUENCY
Phase Shift
V
= ±15 V
CC±
VCC = 5 V
60°
80°
100°
120°
140°
Phase Shift
160°
180°
10 M
200°
1 M100 k10 k1 k100
42
Figure 26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
FREE–AIR TEMPERATURE
10
RL = 10 k
Vµ
8
V/
6
4
– Large-Signal Differential
Voltage Amplification –
VD
A
2
0
–75
TA – Free-Air Temperature – ° C
Figure 27
TLE2021
vs
V
= ±15 V
CC±
VCC = 5 V
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
6
RL = 10 k
5
V
= ±15 V
4
3
2
VD
Voltage Amplification – V/µV
A
AVD – Large-Signal Differential
1
1007550250–25–50
125
0
–75
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
CC±
VCC = 5 V
125
Figure 28
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
SHORT-CIRCUIT OUTPUT CURRENT
FREE-AIR TEMPERATURE
10
Vµ
8
V/
6
4
Voltage Amplification –
VD
2
A – Large-Signal Differential
0
–75
TA – Free-Air Temperature – ° C
V
CC±
V
= ±5 V
CC±
RL = 10 k
= ±15 V
1007550250–25–50
125
10
VO = 0
8
TA = 25°C
6
4
2
0
–2
–4
–6
OS
IOS – Short-Circuit Output Current – mA
I
–8
–10
0
|V
CC±
Figure 29
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2021
vs
SUPPLY VOLTAGE
VID = –100 mV
VID = 100 mV
| – Supply Voltage – V
Figure 30
1412108642
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
43
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
15
V
= 0
O
TA = 25°C
10
5
0
–5
–10
OS
I
IOS – Short-Circuit Output Current – mA
–15
0
2 4 6 8101214
|V
| – Supply Voltage – V
CC±
VID = –100 mV
VID = 100 mV
Figure 31
16
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
TA = 25°C
8
4
0
–4
–8
OS
IOS – Short-Circuit Output Current – mA
I
–12
0
VCC – Supply Voltage – V
VID = –100 mV VO = V
VID = 100 mV VO = 0
Figure 32
CC
252015105
30
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
15
TA = 25°C
10
5
0
–5
–10
OS
I
IOS – Short-Circuit Output CUrrent – mA
–15
0
VCC – Supply Voltage – V
VID = –100 mV VO = V
CC
VID = 100 mV VO = 0
252015105
30
–2
–4
OS
–6
I
IOS – Short-Circuit Output Current – mA
–8
SHORT-CIRCUIT OUTPUT CURRENT
FREE-AIR TEMPERATURE
8
VCC =5 V
6
4
2
0
–75
–50 –25 02550 75 100
TA – Free-Air Temperature – ° C
Figure 33
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2021
vs
VID = –100 mV
VO = 5 V
VID = 100 mV VO = 0
Figure 34
125
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
6
VCC = 5 V
4
2
0
–2
–4
–6
OS
I
–8
IOS – Short-Circuit Output Current – mA
–10
–75
–50 –25 0255075100
TA – Free-Air Temperature –°C
VID = –100 mV
VO = 5 V
VID = 100 mV VO = 0
Figure 35
SHORT-CIRCUIT OUTPUT CURRENT
TLE2021
vs
FREE-AIR TEMPERATURE
12
V
= ±15 V
CC±
VO = 0
8
VID = –100 mV
VID = 100 mV
125
125
4
0
–4
–8
OS
I
IOS – Short-Circuit Output Current – mA
–12
–75
–50 –25
TA – Free-Air Temperature – ° C
0 25 50 75 100
Figure 36
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
15
V
= ±15 V
CC±
10
–5
–10
OS
I
IOS – Short-Circuit Output Current – mA
–15
VO = 0
5
0
VID = 100 mV
–75
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
Figure 37
VID = –100 mV
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TLE2021
125
250
200
Aµ
150
100
CC
ICC – Supply Current – ua
I
50
0
VO = 0 No Load
TA = 125°C
TA = 25°C
TA = –55°C
0
2 4 6 8 10 12 14
|V
| – Supply Voltage – V
CC±
16
Figure 38
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
45
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
SUPPLY VOLTAGE
500
VO = 0 No Load
400
Aµ
300
200
CC
ICC – Supply Current – ua
I
100
0
0
TA = 25°C
TA = 125°C
2 4 6 8 10 12 14
|V
CC±
TLE2022
vs
TA = –55°C
| – Supply Voltage – V
Figure 39
16
– Supply Current – µAI
CC
1000
800
600
400
200
0
0
VO = 0
No Load
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TA = 125°C
TA = 25°C
TA = –55°C
|V
| – Supply Voltage – V
CC±
Figure 40
162 4 6 8 10 12 14
TLE2021
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
225
200
175
Aµ
150
125
100
75
CC
ICC – Supply Current – ua
I
50
VO = 0
25
No Load
0
–50 –25 0 25 50 75 100
–75
TA – Free-Air Temperature – ° C
V
V
CC±
CC±
= ±15 V
= ± 2.5 V
125
500
400
Aµ
300
200
CC
ICC – Supply Current – ua
I
100
No Load
0
–75
FREE-AIR TEMPERATURE
VO = 0
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
Figure 41
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE2022
SUPPLY CURRENT
vs
V
CC±
V
= ±2.5 V
CC±
Figure 42
= ±15 V
125
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TLE2024
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
1000
V
800
V
600
400
– Supply Current – µAI
CC
200
VO = 0 No Load
0
–75 125–50 –25 0 25 50 75 100
CC±
TA – Free-Air Temperature – ° C
CC±
= ±2.5 V
Figure 43
= ±15 V
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
100
V
CC±
80
VCC = 5 V
60
40
20
CMRR – Common-Mode Rejection Ratio – dB
0
10
TA = 25°C
f – Frequency – Hz
Figure 44
= ±15 V
1 M100 k10 k1 k100
10 M
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
TA = 25°C
100
V
= ±15 V
CC±
80
VCC = 5 V
60
40
20
CMRR – Common-Mode Rehection Ratio – dB
0
10
100 1 k 10 k 100 k 1 M
f – Frequency – Hz
Figure 45
10 M
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
V
= ±15 V
CC±
100
VCC = 5 V
80
60
40
20
CMRR – Common-Mode Rejection Ratio – dB
0
10
TA = 25°C
100 1 k 10 k 100 k 1 M
f – Frequency – Hz
Figure 46
10 M
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
47
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
FREE-AIR TEMPERATURE
1
0.8
sµ
0.6
0.4
SR – Slew Rate – V/us
0.2 RL = 20 k
CL = 30 pF See Figure 1
0
–75
TA – Free-Air Temperature – ° C
TLE2021
SLEW RATE
V
= ±15 V
CC±
VCC = 5 V
Figure 47
vs
TLE2022
SLEW RATE
vs
FREE-AIR TEMPERATURE
1
0.8 V
= ±15 V
sµ
0.6
0.4
SR – Slew Rate – V/ us
0.2
RL = 20 k CL = 30 pF See Figure 1
0
–75
1007550250–25–50
125
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
CC±
VCC = 5 V
125
Figure 48
FREE-AIR TEMPERATURE
1
0.8
sµ V/
0.6
0.4
SR – Slew Rate – V/s
0.2 RL = 20 k
CL = 30 pF See Figure 1
0
–75
–50 –25 0 25 50 75 100
TLE2024
SLEW RATE
vs
V
= ±15 V
CC±
VCC = 5 V
TA – Free-Air Temperature – ° C
Figure 49
125
O
V
VO – Output Voltage – mV
100
–50
–100
50
0
V
= ±15 V
CC±
RL = 10 k CL = 30 pF TA = 25°C See Figure 4
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
t – Time – µs
40200
Figure 50
60
80
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
2.6
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4
4
3
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VCC = 5 V RL = 10 k CL = 30 pF TA = 25°C See Figure 4
6040200
t – Time – µs
Figure 51
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VCC = 5 V RL = 10 k CL = 30 pF TA = 25°C See Figure 1
80
4
3
2
O
V
VO – Output Voltage – V
1
0
4
V RL = 10 k CL = 30 pF TA = 25°C See Figure 1
3
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VCC = 5 V RL = 10 k CL = 30 pF TA = 25°C See Figure 1
0 20 40 60
t – Time – µs
Figure 52
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
= 5 V
CC±
80
2
O
V
VO – Output Voltage – V
1
0
0 20 40 60
t – Time – µs
Figure 53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
80
2
O
V
VO – Output Voltage – V
1
0
0
20 40 60
t – Time – µs
Figure 54
80
49
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
15
10
5
0
–5
O
V
VO – Output Voltage – V
–10
–15
15
10
5
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
V
= ±15 V
CC±
RL = 10 k CL = 30 pF TA = 25°C See Figure 1
0
20 40 60
t – Time – µs
Figure 55
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
V
= ±15 V
CC±
RL = 10 k CL = 30 pF TA = 25°C See Figure 1
80
15
10
5
0
–5
O
V
VO – Output Voltage – V
–10
–15
Vµ
0.5
0.4
0.3
0.2
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
V
= ±15 V
CC±
RL = 10 k CL = 30 pF TA = 25°C See Figure 1
0 20 40 60
t – Time – µs
Figure 56
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
V
= ±15 V
CC±
TA = 25°C
80
O
V
VO – Output Voltage – V
50
–5
–10
–15
0.1
0
0
20 40 60
t – Time – µs
80
Figure 57
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0
– 0.1
– 0.2
– 0.3
– 0.4
– 0.5
VNPP – Peak-to-Peak Equivalent Input Noise V oltage – uV
N(PP)
V
0
1 2 3 4 5 6 7 8 9
t – Time – s
Figure 58
10
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
Vµ
0.5
0.4
0.3
0.2
0.1
0
– 0.1
– 0.2
– 0.3
– 0.4
– 0.5
VNPP – Peak-to-Peak Equivalent Input Noise V oltage – uV
N(PP)
V
4
3
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
V
= ±15 V
CC±
TA = 25°C
t – Time – s
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
RL = 10 k CL = 30 pF TA = 25°C
See Figure 3
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
200
nV/ Hz
160
120
80
40
n
Vn – Equivalent Input Noise Voltage – nVHz
V
987654321100
0
1
10 100 1 k
f – Frequency – Hz
V
= ±15 V
CC±
RS = 20 TA = 25°C See Figure 2
10 k
Figure 60
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
4
RL = 10 k CL = 30 pF TA = 25°C See Figure 3
3
2
1
1
B1 – Unity-Gain Bandwidth – MHz
B
0
0
2 4 6 8 10 12 14
|V
| – Supply Voltage – V
CC±
Figure 61
2
1
1
B
B1 – Unity-Gain Bandwidth – MHz
0
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0
|V
| – Supply Voltage – V
CC±
Figure 62
1412108642
16
51
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
4
RL = 10 k CL = 30 pF See Figure 3
3
2
1
1
B1 – Unity-Gain Bandwidth – MHz
B
0
–75
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – ° C
VCC = 5 V
Figure 63
V
CC±
= ±15 V
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
TLE2022 AND TLE2024
4
RL = 10 k CL = 30 pF See Figure 3
3
V
= ±15 V
CC±
2
VCC = 5 V
1
1
B
B1 – Unity-Gain Bandwidth – MHz
125
0
–75
TA – Free-Air Temperature – ° C
1007550250–25–50
125
Figure 64
50°
48°
46°
44°
m
m – Phase Margin
φ
42°
40°
RL = 10 k CL = 30 pF TA = 25°C See Figure 3
0
2 4 6 8 10 12 14
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
|V
| – Supply Voltage – V
CC±
Figure 65
16
55°
RL = 10 k CL = 30 pF
53°
51°
49°
m
m – Phase Margin
φ
47°
45°
TA = 25°C See Figure 3
0
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
|V
| – Supply Voltage – V
CC±
Figure 66
1412108642
16
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
TYPICAL CHARACTERISTICS
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
60°
50°
40°
30°
m
m – Phase Margin
20°
φ
10°
0
VCC = 5 V
0
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
RL = 10 k TA = 30 pF See Figure 3
V
= ±15 V
CC±
20 40 60 80
CL – Load Capacitance – pF
Figure 67
100
70°
60°
50°
VCC = 5 V
40°
30°
m
m – Phase Margin
φ
20°
10°
0°
0
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
RL = 10 k TA = 25°C
V
= ±15 V
CC±
CL – Load Capacitance – pF
See Figure 3
Figure 68
80604020
100
50°
48°
46°
44°
42°
m
m – Phase Margin
φ
40°
38°
36°
RL = 10 k CL = 30 pF See Figure 3
–75
–50 –25 0 25 50 75 100
TLE2021
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
V
CC±
VCC = 5 V
TA – Free-Air Temperature – ° C
Figure 69
= ±15 V
125
54°
52°
50°
48°
46°
m
m – Phase Margin
φ
44°
RL = 10 k
42°
40°
CL = 30 pF See Figure 3
–75
TLE2022 AND TLE2024
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
V
= ±15 V
CC±
VCC = 5 V
TA – Free-Air Temperature – ° C
Figure 70
125
1007550250–25–50
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
53
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF 1 mA
R
F
V
CC+
V
O
V
I
+
V
CC–
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected.
IN –
IN +
OFFSET N1
Figure 72. Input Offset Voltage Null Circuit
+
5 k
OFFSET N2
VCC – (split supply)
1 k GND (single supply)
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
macromodel information
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
APPLICATION INFORMATION
Macromodel information provided was derived using Microsim with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in73, Figure 74, and Figure 75 were
Parts
, the model generation software used
generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”,
V
IN–
IN+
of Solid-State Circuits
CC+
rp
, SC-9, 353 (1974).
rss iss
2
dp
1
10
j1 j2
11
C1
3
+
12
vc
dc
r2
53
egnd
9
+
vb
6
gcm
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
99
+
fb
C2
ga
7
vlim
ro2
hlim
8
90
+
+
dip
din
91
+
IEEE Journal
92
vinvip
+
V
CC–
PSpice
and
rd1
4
Parts
are trademarks of MicroSim Corporation.
rd2
+–
ve
de
54
Figure 73. Boyle Subcircuit
ro1
5
OUT
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
55
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
.SUBCKT TLE2021 1 2 3 4 5 *
c1 11 12 6.244E–12 c2 6 7 13.4E–12 c3 87 0 10.64E–9 cpsr 85 86 15.9E–9 dcm+ 81 82 dx dcm– 83 81 dx dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx ecmr 84 99 (2 99) 1 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 epsr 85 0 poly(1) (3,4) –60E–6 2.0E–6 ense 89 2 poly(1) (88,0) 120E–6 1 fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6 + –50E7 50E7 50E7 –50E7 547E6 ga 6 0 11 12 188.5E–6 gcm 0 6 10 99 335.2E–12 gpsr 85 86 (85,86) 100E–6 grc1 4 11 (4,11) 1.885E–4 grc2 4 12 (4,12) 1.885E–4 gre1 13 10 (13,10) 6.82E–4 gre2 14 10 (14,10) 6.82E–4 hlim 90 0 vlim 1k
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5 *
c1 11 12 6.814E–12 c2 6 7 20.00E–12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 –50E6 50E6 50E6 –50E6
ga 6 0 11 12 377.9E–6 gcm 0 6 10 99 7.84E–10 iee 3 10 DC 18.07E–6 hlim 90 0 vlim 1k q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3
hcmr 80 1 poly(2) vcm+ vcm– 0 1E2 1E2 irp 3 4 185E–6 iee 3 10 dc 15.67E–6 iio 2 0 2E–9 i1 88 0 1E–21 q1 11 89 13 qx q2 12 80 14 qx R2 6 9 100.0E3 rcm 84 81 1K ree 10 99 14.76E6 rn1 87 0 2.55E8 rn2 87 88 11.67E3 ro1 8 5 62 ro2 7 99 63 vcm+ 82 99 13.3 vcm– 83 99 –14.6 vb 9 0 dc 0 vc 3 53 dc 1.300 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 3.600 vln 0 92 dc 3.600
vpsr 0 86 dc 0 .model dx d(is=800.0E–18) .model qx pnp(is=800.0E–18 bf=270) .ends
rc1 4 11 2.842E3
rc2 4 12 2.842E3
ge1 13 10 (10,13) 31.299E–3
ge2 14 10 (10,14) 31.299E–3
ree 10 99 11.07E6
ro1 8 5 250
ro2 7 99 250
rp 3 4 137.2E3
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3
vln 0 92 dc 3 .model dx d(is=800.0E–18) .model qx pnp(is=800.0E–18 bf=257.1) .ends
56
Figure 75. Boyle Macromodel for the TLE2022
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
14
1
0.069 (1,75) MAX
0.050 (1,27)
A
0.020 (0,51)
0.014 (0,35)
0.010 (0,25)
0.004 (0,10)
8
7
0.010 (0,25)
0.157 (4,00)
0.150 (3,81)
M
0.244 (6,20)
0.228 (5,80)
Seating Plane
0.004 (0,10)
PINS **
DIM
A MAX
A MIN
0.008 (0,20) NOM
Gage Plane
0°–8°
8
0.197
(5,00)
0.189
(4,80)
14
0.344
(8,75)
0.337
(8,55)
0.010 (0,25)
0.044 (1,12)
0.016 (0,40)
4040047/B 03/95
16
0.394
(10,00)
0.386 (9,80)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Four center pins are connected to die mount pad.
E. Falls within JEDEC MS-012
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
57
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
28 PIN SHOWN
0,65
28
1
2,00 MAX
0,38 0,22
15
14
A
0,05 MIN
0,15
M
5,60 5,00
Seating Plane
8,20 7,40
0,10
0,15 NOM
Gage Plane
0°–8°
0,25
1,03 0,63
PINS **
DIM
A MAX
A MIN
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150
8
3,30
2,70
14
6,50
6,50
5,905,90
2016
7,50
6,90
24
8,50
28
10,50
9,907,90
30
10,50
9,90
38
12,90
12,30
4040065 / C 10/95
58
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN
16
1
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
A
0.010 (0,25)
9
8
0.299 (7,59)
0.293 (7,45)
M
0.419 (10,65)
0.400 (10,15)
PINS **
DIM
A MAX
A MIN
0.010 (0,25) NOM
0°–8°
16
0.410
(10,41)
0.400
(10,16)
Gage Plane
20
0.510
(12,95)
0.500
(12,70)
24
0.610
(15,49)
0.600
(15,24)
0.010 (0,25)
0.050 (1,27)
0.016 (0,40)
28
0.710
(18,03)
0.700
(17,78)
0.104 (2,65) MAX
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013
0.012 (0,30)
0.004 (0,10)
Seating Plane
0.004 (0,10)
4040000/B 03/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
59
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
A SQ
B SQ
24
19
20
21
22
23
25
12826 27
121314151618 17
0.020 (0,51)
0.010 (0,25)
MIN
0.342
(8,69)
0.442
0.640
0.739
0.938
1.141
A
0.358 (9,09)
0.458
(11,63)
0.660
(16,76)
0.761
(19,32)(18,78)
0.962
(24,43)
1.165
(29,59)
(10,31)
(12,58)
(12,58)
NO. OF
TERMINALS
**
11
10
9
8
7
6
5
432
20
28
44
52
68
84
0.020 (0,51)
0.010 (0,25)
(11,23)
(16,26)
(23,83)
(28,99)
MINMAX
0.307 (7,80)
0.406
0.495
0.495
0.850 (21,6)
1.047 (26,6)
0.080 (2,03)
0.064 (1,63)
B
MAX
0.358 (9,09)
0.458
(11,63)
0.560
(14,22)
0.560
(14,22)
0.858 (21,8)
1.063 (27,0)
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
60
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated.
E. Falls within JEDEC MS-004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
4040140/D 10/96
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
14
1
B
0.100 (2,54)
0.070 (1,78)
0.065 (1,65)
0.045 (1,14)
8
C
7
0.020 (0,51) MIN
0.200 (5,08) MAX
PINS **
DIM
A MAX
A MIN
B MAX
B MIN
C MAX
C MIN
Seating Plane
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.280 (7,11)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.300
(7,62)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.910
(23,10)
0.300
(7,62)
0.245
(6,22)
A
20181614
0.310
(7,87)
0.290 (7,37)
0.975
(24,77)
0.930
(23,62)
0.300 (7,62)
0.245 (6,22)
22
0.410
(10,41)
0.390
(9,91)
1.100
(28,00)
0.388
(9,65)
0.130 (3,30) MIN
0.100 (2,54)
0.023 (0,58)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
0°–15°
0.014 (0,36)
0.008 (0,20) 4040083/B 04/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
61
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
58
0.280 (7,11)
0.245 (6,22)
14
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.020 (0,51) MIN
0.290 (7,37)
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
E. Falls within MIL-STD-1835 GDIP1-T8
0.023 (0,58)
0.015 (0,38)
0.200 (5,08) MAX Seating Plane
0.130 (3,30) MIN
0°–15°
0.015 (0,38)
0.008 (0,20)
4040107/B 04/95
62
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
16
1
0.035 (0,89) MAX
PINS **
DIM
A
9
0.260 (6,60)
0.240 (6,10)
8
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
A MAX
A MIN
Seating Plane
14
0.775
(19,69)
0.745
(18,92)
16
0.775
(19,69)
0.745
(18,92)
18
0.920
(23.37)
0.850
(21.59)
20
0.975
(24,77)
0.940
(23,88)
0.310 (7,87)
0.290 (7,37)
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
0.010 (0,25)
M
0.125 (3,18) MIN
0°–15°
0.010 (0,25) NOM
14/18 PIN ONL Y
4040049/C 08/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
63
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
58
0.260 (6,60)
0.240 (6,10)
41
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
0.010 (0,25)
M
0.310 (7,87)
0.290 (7,37)
Seating Plane
0°–15°
0.010 (0,25) NOM
4040082/B 03/95
64
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191 – FEBRUARY 1997
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,65
14
1
1,20 MAX
A
7
0,10 MIN
0,32 0,19
8
6,70
4,50 4,30
6,10
M
0,13
Seating Plane
0,10
0,15 NOM
Gage Plane
0,25
0°–8°
0,75 0,50
PINS **
DIM
A MAX
A MIN
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
8
3,10
2,90
14
5,10
4,90
16
5,10
20
6,60
6,404,90
24
7,90
7,70
28
9,80
9,60
4040064/D 10/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
65
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...