The T exas Instruments MSP430 series is an ultralow-power microcontroller family consisting of several devices
featuring different sets of modules targeted to various applications. The microcontroller is designed to be battery
operated for an extended-application lifetime. With 16-bit RISC architecture, 16 bit integrated registers on the
CPU, and a constant generator, the MSP430 achieves maximum code efficiency. The digitally-controlled
oscillator provides fast wake-up from all low-power modes to active mode in less than 6 ms.
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then
process the data and display them or transmit them to a host system. Stand alone RF sensor front end is another
area of application. The I/O port inputs provide single slope A/D conversion capability on resistive sensors. The
MSP430x11x series is an ultralow-power mixed signal microcontroller with a built in 16-bit timer and fourteen
I/O pins. The MSP430x11x1 family adds a versatile analog comparator.
The flash memory provides added flexibility of in-system programming and data storage without significantly
increasing the current consumption of the device. The programming voltage is generated on-chip, thereby
alleviating the need for an additional supply , and even allowing for reprogramming of battery-operated systems.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
{
MTP = Multiple Time Programmable
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
P1.0/TACLK13I/OGeneral-purpose digital I/O pin/Timer_A, clock signal TACLK input
P1.1/TA014I/OGeneral-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output
P1.2/TA115I/OGeneral-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA216I/OGeneral-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK/TCK17I/OGeneral-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming
P1.5/TA0/TMS18I/OGeneral-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for
P1.6/TA1/TDI19I/OGeneral-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal
P1.7/TA2/TDO/TDI
P2.0/ACLK8I/OGeneral-purpose digital I/O pin/ACLK output
P2.1/INCLK9I/OGeneral-purpose digital I/O pin/Timer_A, clock signal at INCLK
P2.2/CAOUT/T A010I/OGeneral-purpose digital I/O pin/Timer_A, capture: CCI0B input/comparator_A, output
P2.3/CA0/T A111I/OGeneral-purpose digital I/O pin/Timer_A, compare: Out1 output/comparator_A, input
P2.4/CA1/T A212I/OGeneral-purpose digital I/O pin/Timer_A, compare: Out2 output/comparator_A, input
P2.5/R
osc
RST/NMI7IReset or nonmaskable interrupt input
TEST1ISelect of test mode for JTAG pins on Port1. Must be tied low with less than 30 kΩ (F11x1).
VCC2Supply voltage
V
SS
XIN6IInput terminal of crystal oscillator
XOUT5I/OOutput terminal of crystal oscillator
†
TDO or TDI is selected via JTAG instruction.
†
20I/OGeneral-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input
3I/OGeneral-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency
4Ground reference
and test
device programming and test
during programming
short-form description
processing unit
The processing unit is based on a consistent, and orthogonally-designed CPU and instruction set. This design
structure results in a RISC-like architecture, highly transparent to the application development, and noted for
its programming simplicity . All operations other than program-flow instructions are consequently performed as
register operations in conjunction with seven addressing modes for source, and four modes for destination
operands.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
short-form description (continued)
CPU
Program Counter
PC/R0
All sixteen registers are located inside the CPU,
Stack Pointer
SP/R1
providing reduced instruction execution time. This
reduces a register-register operation execution
Status Register
SR/CG1/R2
time to one cycle of the processor.
Constant Generator
CG2/R3
Four registers are reserved for special use as a
program counter, a stack pointer , a status register,
General-Purpose Register
R4
and a constant generator. The remaining twelve
registers are available as general-purpose
General-Purpose Register
R5
registers.
Peripherals are connected to the CPU using a
data address and control buses and can be
General-Purpose RegisterR14
handled easily with all instructions for memory
manipulation.
General-Purpose Register
R15
instruction set
The instructions set for this register-register architecture provides a powerful and easy-to-use assembly
language. The instruction set consists of 51 instructions with three formats and seven addressing modes.
T able 1 provides a summation and example of the three types of instruction formats; the addressing modes are
listed in Table 2.
Relative jump, un-/conditionale.g. JNEJump-on equal bit = 0
Most instructions can operate on both word and byte data. Byte operations are identified by the suffix B.
Examples:Instructions for word operationInstructions for byte operation
NOTE: s = source d = destination Rs/Rd = source register/destination register Rn = register number
4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
instruction set (continued)
Computed branches (BR) and subroutine calls (CALL) instructions use the same addressing modes as the other
instructions. These addressing modes provide
calls. The full use of this programming capability permits a program structure different from conventional 8- and
16-bit controllers. For example, numerous routines can easily be designed to deal with pointers and stacks
instead of using flag type programs for flow control.
indirect
operation modes and interrupts
The MSP430 operating modes support various advanced requirements for ultralow-power and ultralow energy
consumption. This is achieved by the intelligent management of the operations during the different module
operation modes and CPU states. The advanced requirements are fully supported during interrupt event
handling. An interrupt event awakens the system from each of the various operating modes and returns with
the
RETI
instruction to the mode that was selected before the interrupt event. The different requirements of the
CPU and modules, which are driven by system cost and current consumption objectives, necessitate the use
of different clock signals:
D
Auxiliary clock ACLK (from LFXT1CLK/crystal’s frequency), used by the peripheral modules
D
Main system clock MCLK, used by the CPU and system
D
Subsystem clock SMCLK, used by the peripheral modules
addressing, ideally suited for computed branches and
low-power consumption capabilities
The various operating modes are controlled by the software through controlling the operation of the internal
clock system. This clock system provides many combinations of hardware and software capabilities to run the
application with the lowest power consumption and with optimized system costs:
D
Use the internal clock (DCO) generator without any external components.
D
Select an external crystal or ceramic resonator for lowest frequency or cost.
D
Select and activate the proper clock signals (LFXT1CLK and/or DCOCLK) and clock pre-divider function.
D
Apply an external clock source.
Four of the control bits that influence the operation of the clock system and support fast turnon from low power
operating modes are located in the status register SR. The four bits that control the CPU and the system clock
generator are SCG1, SCG0, OscOff, and CPUOff:
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
5
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
status register R2
159870
Reserved For Future
Enhancements
rw-0rw-0rw-0rw-0rw-0rw-0rw-0rw-0rw-0rw-0
VSCG1SCG0OscOff
6543 21
CPUOffGIENZC
The bits CPUOff, SCG1, SCG0, and OscOff are the most important low-power control bits when the basic
function of the system clock generator is established. They are pushed onto the stack whenever an interrupt
is accepted and thereby saved so that the previous mode of operation can be retrieved after the interrupt
request. During execution of an interrupt handler routine, the bits can be manipulated via indirect access of the
data on the stack. That allows the program to resume execution in another power operating mode after the
return from interrupt (RETI).
SCG1:The clock signal SMCLK, used for peripherals, is enabled when bit SCG1 is reset or disabled if
the bit is set.
SCG0:The dc-generator is active when SCG0 is reset. The dc-generator can be deactivated only if the
SCG0 bit is set and the DCOCLK signal is not used for MCLK or SMCLK. The current consumed
by the dc-generator defines the basic frequency of the DCOCLK. It is a dc current.
The clock signal DCOCLK is deactivated if it is not used for MCLK or SMCLK or if the SCG0 bit
is set. There are two situations when the SCG0 bit cannot switch off the DCOCLK signal:
1. DCOCLK frequency is used for MCLK (CPUOff=0 and SELM.1=0).
2. DCOCLK frequency is used for SMCLK (SCG1=0 and SELS=0).
NOTE:
When the current is switched off (SCG0=1) the start of the DCOCLK is delayed slightly . The delay
is in the µs-range (see device parameters for details).
OscOff:The LFXT1 crystal oscillator is active when the OscOff bit is reset. The LFXT1 oscillator can only
be deactivated if the OscOff bit is set and it is not used for MCLK or SMCLK. The setup time to
start a crystal oscillation needs consideration when oscillator off option is used. Mask
programmable (ROM) devices can disable this feature so that the oscillator can never be switched
off by software.
CPUOff:The clock signal MCLK, used for the CPU, is active when the CPUOf f bit is reset or stopped if it
is set.
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the memory with an address range of
0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction
sequence.
3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0–5) are implemented on the 11x1 devices.
4. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.
Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.
WDTIFG (Note1)
KEYV (Note 1)
NMIIFG (Notes 1 and 4)
OFIFG (Notes 1 and 4)
ACCVIFG (Notes 1 and 4)
CCIFG1, CCIFG2, TAIFG
(Notes 1 and 2)
P2IFG.0 to P2IFG.7
(Notes 1 and 2)
P1IFG.0 to P1IFG.7
(Notes 1 and 2)
Reset0FFFEh15, highest
(non)-maskable,
(non)-maskable,
(non)-maskable
maskable0FFF0h8
maskable0FFE6h3
maskable0FFE4h2
0FFFCh14
0FFFAh13
0FFF8h12
0FFEEh7
0FFECh6
0FFEAh5
0FFE8h4
0FFE2h1
0FFE0h0, lowest
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
7
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
special function registers
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits
that are not allocated to a functional purpose are not physically present in the device. Simple software access
is provided with this arrangement.
interrupt enable 1 and 2
Address
0h
76540
rw-0rw-0rw-0
WDTIE: Watchdog timer enable signal
OFIE:Oscillator fault enable signal
NMIIE:Nonmaskable interrupt enable signal
ACCVIE:Access violation at flash memory
Address
01h
76540321
interrupt flag register 1 and 2
Address
02hNMIIFG
76540
WDTIFG:Set on overflow or security key violation or
Reset on V
power-on or reset condition at RST/NMI-pin
CC
OFIFG:Flag set on oscillator fault
NMIIFG:Set via RST/NMI-pin
Address
03h
76540321
321
NMIIEACCVIE
321
rw-0rw-1rw-0
OFIEWDTIE
rw-0
OFIFGWDTIFG
8
Legendrw:
rw-0:
Bit can be read and written.
Bit can be read and written. It is reset by PUC
SFR bit is not present in device.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
memory organization
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
FFFFh
FFE0h
FFDFh
F800h
027Fh
0200h
01FFh
0100h
00FFh
0010h
000Fh
0000h
MSP430C111 1
Int. Vector
2 KB ROM
128B RAM
16b Per.
8b Per.
SFR
FFFFh
FFE0h
FFDFh
F000h
02FFh
0200h
01FFh
0100h
00FFh
0010h
000Fh
0000h
MSP430C1121
Int. Vector
4 KB
ROM
256B RAM
16b Per.
8b Per.
SFR
FFFFh
FFE0h
FFDFh
FC00h
10FFh
1080h
0FFFh
0C00h
027Fh
0200h
01FFh
0100h
00FFh
0010h
000Fh
0000h
MSP430F1101
Int. Vector
1 KB Flash
Segment0,1
128B Flash
SegmentA
1 KB
Boot ROM
128B RAM
16b Per.
8b Per.
SFR
FFFFh
FFE0h
FFDFh
F000h
10FFh
1000h
0FFFh
0C00h
02FFh
0200h
01FFh
0100h
00FFh
0010h
000Fh
0000h
MSP430F1121
Int. Vector
4 KB
Flash
Segment0–7
2 × 128B
Flash
SegmentA,B
1 KB
Boot ROM
256B RAM
16b Per.
8b Per.
SFR
Main
Memory
Information
Memory
boot ROM containing bootstrap loader
The intention of the bootstrap loader is to download data into the flash memory module. V arious write, read, and
erase operations are needed for a proper download environment. The bootstrap loader is only available on F
devices.
functions of the bootstrap loader:
Definition of read:apply and transmit data of peripheral registers or memory to pin P1.1 (BSLTX)
write:read data from pin P2.2 (BSLRX) and write them into flash memory
unprotected functions
Mass erase, erase of the main memory (Segment0 to Segment7)
Access to the MSP430 via the bootstrap loader is protected. It must be enabled before any protected function
can be performed. The 256 bits in 0FFE0h to 0FFFFh provide the access key.
protected functions
All protected functions can be executed only if the access is enabled.
D
Write/program byte into flash memory; Parameters passed are start address and number of bytes (the
segment-write feature of the flash memory is not supported and not useful with the UART protocol).
D
Segment erase of Segment0 to Segment7 in the main memory and segment erase of SegmentA and
SegmentB in the information memory.
D
Read all data in main memory and information memory.
D
Read and write to all byte peripheral modules and RAM.
D
Modify PC and start program execution immediately.
NOTE:
Unauthorized readout of code and data is prevented by the user’s definition of the data in the
interrupt memory locations.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
boot ROM containing bootstrap loader (continued)
features of the bootstrap loader are:
D
UART communication protocol, fixed to 9600 baud
D
Port pin P1.1 for transmit, P2.2 for receive
D
TI standard serial protocol definition
D
Implemented in flash memory version only
D
Program execution starts with the user vector at 0FFFEh or with the bootstrap loader (start vector is at
address 0C00h)
hardware resources used for serial input/output:
D
Pins P1.1 and P2.2 for serial data transmission
D
Test and RST/NMI to start program execution at the reset or bootstrap loader vector
D
Basic clock module:Rsel=5, DCO=4, MOD=0, DCOCLK for MCLK and SMCLK, clock divider for MCLK
and SMCLK at default: dividing by 1
D
Timer_A: Timer_A operates in continuous mode with MCLK source selected, input divider set to 1,
using CCR0, and polling of CCIFG0.
D
WDT:Watchdog timer is halted
D
Interrupt: GIE=0, NMIIE=0, OFIFG=0, ACCVIFG=0
D
Memory allocation and stack pointer:
If the stack pointer points to RAM addresses above 0220h, 6 bytes of the stack are allocated
plus RAM addresses 0200h to 0219h. Otherwise the stack pointer is set to 0220h and allocates
RAM from 0200h to 021Fh.
NOTE:
When writing RAM data via bootstrap loader, take care that the stack is outside the range
of the data being written.
Program execution begins with the user’s reset vector at FFFEh (standard method) if TEST is held low while
RST
/NMI goes from low to high:
V
CC
RST/NMI PIN
TEST PIN
User Program Starts
Reset Condition
10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
boot ROM containing bootstrap loader (continued)
Program execution begins with the bootstrap vector at 0C00h (boot ROM) if a minimum of two positive edges
have been applied to TEST while RST/NMI is low, and TEST is high when RST/NMI goes from low to high. The
TEST signal is normally used internally to switch pins P1.4, P1.5, P1.6, and P1.7 between their application
function and the JTAG function. If the second rising edge at TEST is applied while RST
internal TEST signal is held low and the pins remain in the application mode:
V
CC
RST/NMI PIN
TEST PIN
Bootstrap loader Starts
TEST
(Internal)
/NMI is held low, the
Test mode can be entered again after TEST is taken low and then back high.
The bootstrap loader will not be started (via the vector in address 0C00h), if:
D
There were less than two positive edges at TEST while RST/NMI is low
D
TEST is low if RST/NMI goes from low to high
D
JTAG has control over the MSP430 resources
D
Supply voltage VCC drops and a POR is executed
WARNING:
The bootstrap loader starts correctly only if the RST
to the NMI function, unpredictable program execution may result. However, a
bootstrap-load may be started using software and the bootstrap vector, for example the
instruction BR &0C00h.
/NMI pin is in reset mode. If it is switched
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
11
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
flash memory
The flash memory consists of 512-byte segments
in the main memory and 128-byte segments in the
information memory. See device memory maps
for specific device information.
Segment0 to Segment7 can be erased
individually, or altogether as a group.
SegmentA and SegmentB can be erased
individually, or as a group with segments 0–7.
The memory in SegmentA and SegmentB is also
called
Information Memory.
VPP is generated internally. VCC current
increases during programming.
During program/erase cycles, VCC must not drop
below the minimum specified for program/erase
operation.
Program and erase timings are controlled by the
flash timing generator—no software intervention
is needed. The input frequency of the flash timing
generator should be in the proper range and must
be applied until the write/program or erase
operation is completed.
0FFFFh
0FE00h
0FDFFh
0FC00h
0FBFFh
0FA00h
0F9FFh
0F800h
0F7FFh
0F600h
0F5FFh
0F400h
0F3FFh
0F200h
0F1FFh
0F000h
010FFh
01080h
0107Fh
01000h
NOTE: All segments not implemented on all devices.
Segment0 w/
Interrupt Vectors
Segment1
Segment2
Segment3
Segment4
Segment5
Segment6
Segment7
SegmentA
SegmentB
Flash Main Memory
Memory
Information
During program or erase, no code can be executed from flash memory and all interrupts must be disabled by
setting the GIE, NMIE, ACCVIE, and OFIE bits to zero. If a user program requires execution concurrent with
a flash program or erase operation, the program must be executed from memory other than the flash memory
(e.g., boot ROM, RAM). In the event a flash program or erase operation is initiated while the program counter
is pointing to the flash memory, the CPU will execute JMP $ instructions until the flash program or erase
operation is completed. Normal execution of the previously running software then resumes.
Unprogrammed, new devices may have some bytes programmed in the information memory (needed for test
during manufacturing). The user should perform an erase of the information memory prior to first use.
flash memory control register FCTL1
All control bits are reset during PUC. PUC is active after V
is applied, a reset condition is applied to the
CC
RST/NMI pin, the watchdog timer expires, a watchdog access violation occurs, or an improper flash operation
has been performed. A more detailed description of the control-bit functions is found in the flash memory module
description (refer to
MSP430x1xx User’s Guide
, literature number SLAU049). Any write to control register
FCTL1 during erase, mass erase, or write (programming) will end in an access violation with ACCVIFG=1.
Special conditions apply for segment-write mode. Refer to
MSP430x1xx User’s Guide
, literature number
SLAU049 for details.
12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
flash memory control register FCTL1 (continued)
Read access is possible at any time without restrictions.
The control bits of control register FCTL1 are:
FCTL1
0128h
FCTL1 read:
FCTL1 write:
096h
0A5h
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
7
815
SEG
WRT
rw–0
WRT
rw–0
res.r0res.r0res.
MEras Eraseres.
r0
0
r0rw-0rw–0
Erase0128h, bit1,
Erase a segment
0:1:No segment erase will be started.
Erase of one segment is enabled. The segment to be erased is defined by a
dummy
write into any address within the segment. The erase bit is
automatically reset when the erase operation is completed.
MEras0128h, bit2,
Mass Erase, main memory segments are erased together.
0:1:No segment erase will be started.
Erase of main memory segments is enabled. Erase starts when a dummy
write to any address in main memory is executed. The MEras bit is
automatically reset when the erase operation is completed.
WRT0128h, bit6,Bit WRT must be set for a successful write execution.
If bit WRT is reset and write access to the flash memory is attempted, an
access violation occurs and ACVIFG is set.
SEGWRT 0128h, bit7,
Bit SEGWRT may be used to reduce total programming time.
Refer to
MSP430x1xx User’s Guide
, literature number SLAU049 for details.
0:1:No segment-write acceleration is selected.
Segment-write is used. This bit needs to be reset and set between segment
borders.
Table 3. Allowed Combinations of Control Bits Allowed for Flash Memory Access
FUNCTION PERFORMEDSEGWRTWRTMEras EraseBUSYWAITLock
Write word or byte0100000
Write word or byte in same segment, segment write mode11000 → 10 → 10
Erase one segment by writing to any address in the target segment0001000
Erase all segments (0 to 7) but not the information memory
(segments A and B)
Erase all segments (0 to 7 and A and B) by writing to any address in
the flash memory module
NOTE: The table shows all valid combinations. Any other combination will result in an access violation.
0010000
0011000
flash memory, timing generator, control register FCTL2
The timing generator (Figure 1) generates all the timing signals necessary for write, erase, and mass erase from
the selected clock source. One of three different clock sources may be selected by control bits SSEL0 and
SSEL1 in control register FCTL2. The selected clock source should be divided to meet the frequency
requirements specified in the recommended operating conditions.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
13
MSP430x11x1
MIXED SIGNAL MICROCONTROLLER
SLAS241C – SEPTEMBER 1999 – REVISED JUNE 2000
flash memory, timing generator, control register FCTL2 (continued)
The flash timing generator is reset with PUC. It is also reset if the emergency exit bit EMEX is set.
Control register FCTL2 may not be written to if the BUSY bit is set; otherwise, an access violation will occur
(ACCVIFG=1).
Read access is possible at any time without restrictions.
SSEL1
SSEL0
Write ’1’ to
Reset
Flash Timing
Generator
ACLK
MCLK
SMCLK
SMCLK
0
1
2
3
FN5.......... FN0
Divider,
1 .. 64
f
X
PUCEMEX
BUSYWAIT
Figure 1. Flash Memory Timing Generator Diagram
8
FCTL2
012Ah
FCTL2 read:
FCTL2 write:
15
096h
0A5h
SSEL1
rw–0
7
SSEL0
rw–1
FN5FN4FN3
rw-0rw-0rw-0
FN2FN1FN0
The control bits are:
FN0–FN5012Ah, bit0–5These six bits define the division rate of the clock signal. The division
rate is 1 to 64, according to the digital value of FN5 to FN0 plus one.
0
rw-0rw-1rw–0
SSEL0, SSEL1012Ah, bit6,7Clock source select
0: ACLK
1: MCLK
2: SMCLK
3: SMCLK
The flash timing generator is reset with PUC. It is also reset if the EMEX bit is set.
flash memory control register FCTL3
There are no restrictions to modify this control register.
7
8
res.
res.r0EMEXLockWAIT
r0
14
FCTL3
012Ch
FCTL3 read:
FCTL3 write:
15
096h
0A5h
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
0
ACCV
KEYV BUSY
IFG
rw-1rw-1rw-0
r(w)-0rw-(0)rw–0
Loading...
+ 31 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.