Texas Instruments MSP430FG4618, MSP430FG4617, MSP430FG4619, MSP430CG4618, MSP430FG4616 User Manual

...
Product Folder
Sample & Buy
Technical Documents
Tools & Software
Support & Community
Reference Design
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
MSP430FG461x, MSP430CG461x Mixed-Signal Microcontrollers
1 Device Overview
1.1 Features
1
• Low Supply-Voltage Range: 1.8 V to 3.6 V • Universal Serial Communication Interface
• Ultra-Low Power Consumption – Enhanced UART Supports Automatic Baud­– Active Mode: 400 µA at 1 MHz, 2.2 V – Standby Mode: 1.3 µA – Off Mode (RAM Retention): 0.22 µA
• Five Power-Saving Modes
• Wakeup From Standby Mode in Less Than 6 µs
• 16-Bit RISC Architecture, Extended Memory, 125ns Instruction Cycle Time
• Three-Channel Internal DMA
• 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold and Autoscan Feature Section 3 Summarizes the Available Family
• Three Configurable Operational Amplifiers
• Dual 12-Bit Digital-to-Analog Converters (DACs) With Synchronization
• 16-Bit Timer_A With Three Capture/Compare Registers
• 16-Bit Timer_B With Seven Capture/Compare­With-Shadow Registers
• On-Chip Comparator
• Supply Voltage Supervisor and Monitor With Programmable Level Detection
• Serial Communication Interface (USART1), Select Asynchronous UART or Synchronous SPI by Software
Rate Detection – IrDA Encoder and Decoder – Synchronous SPI – I2C
• Serial Onboard Programming, Programmable Code Protection by Security Fuse
• Brownout Detector
• Basic Timer With Real-Time Clock (RTC) Feature
• Integrated LCD Driver up to 160 Segments With Regulated Charge Pump
Members – MSP430FG4616, MSP430FG4616
92KB+256B of Flash or ROM 4KB of RAM
– MSP430FG4617, MSP430CG4617
92KB+256B of Flash or ROM 8KB of RAM
– MSP430FG4618, MSP430CG4618
116KB+256B of Flash or ROM 8KB of RAM
– MSP430FG4619, MSP430CG4619
120KB+256B of Flash or ROM 4KB of RAM
• For Complete Module Descriptions, see the MSP430x4xx Family User’s Guide (SLAU056)
1.2 Applications
Portable Medical Applications E-Meter Applications
1.3 Description
The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low­power modes to active mode in less than 6 µs.
The MSP430xG461x series are microcontroller configurations with two 16-bit timers, a high-performance 12-bit ADC, dual 12-bit DACs, three configurable operational amplifiers, one universal serial communication interface (USCI), one universal synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a segment liquid crystal display (LCD) driver with regulated charge pump.
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Oscillators
FLL+
RAM
4KB 8KB 8KB 4KB
Brownout
Protection
SVS/SVM
RST/NMI
DVCC 1/2 DVSS1 /2
MCLK
Watchdog
WDT+
15/16- Bit
Timer_ A3
3 CC
Registers
8MHz
CPUX
incl. 16
Registers
XOUT/ XT2 OUT
OA0, OA 1,
OA2
3 Op Amps
Basic Timer
and
Real-Time
Clock
JTAG
Interface
LCD_A
160
Segments
1,2,3 ,4 Mux
Ports
P1/P2
2x8 I/O
Interrupt
capability
USCI_A 0:
UART,
IrDA, SPI
USCI_B 0:
SPI, I2 C
Comparator
_A
Flash (FG) ROM (CG)
120KB 116KB
92KB 92KB
Hardware
Multiplier
MPY,
MPYS,
MAC,
MACS
Timer_B 7
7 CC
Registers,
Shadow
Reg
ADC12
12-Bit
12
Channels
DAC12
12-Bit
2 Channels Voltage out
USART 1
UART , SPI
DMA
Controller
3 Channels
Ports P3/P4 P5/P6
4x8 I/O
Ports
P7/P8
P9/P10
4x8, 2x16 I/O
AVCC AVSS P1.x/P2 .x
2x 8
P3.x/P4 .x P5.x/P6 .x
4x 8
P7.x/P8. x
P9.x/P10.x
4x 8/2x16
XIN /
XT2 IN
22
SMCLK
ACLK
MDB
MAB
Enhanced
Emulation
(FG only)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
PART NUMBER PACKAGE BODY SIZE
MSP430FG4619IPZ LQFP (100) 14 mm × 14 mm MSP430FG4619IZQW MicroStar Junior™ BGA (113) 7 mm × 7 mm
(1) For the most current part, package, and ordering information for all available devices, see the Package
Option Addendum in Section 8, or see the TI website at www.ti.com.
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
1.4 Functional Block Diagram
Figure 1-1 shows the functional block diagram.
Device Information
(1)
(2)
2 Device Overview Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 1-1. Functional Block Diagram
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table of Contents
1 Device Overview ......................................... 1 5.30 12-Bit ADC, Timing Parameters .................... 37
1.1 Features .............................................. 1 5.31 12-Bit ADC, Linearity Parameters................... 37
1.2 Applications........................................... 1
1.3 Description............................................ 1
1.4 Functional Block Diagram............................ 2
2 Revision History ......................................... 4
3 Device Comparison ..................................... 5
4 Terminal Configuration and Functions.............. 6
4.1 Pin Diagrams ......................................... 6
4.2 Signal Descriptions................................... 8
5 Specifications........................................... 14
5.1 Absolute Maximum Ratings ........................ 14
5.2 ESD Ratings ........................................ 14
5.3 Recommended Operating Conditions............... 14
5.4 Supply Current Into AVCC+ DVCCExcluding
External Current .................................... 16
5.5 Thermal Characteristics............................. 17
5.6 Schmitt-Trigger Inputs – Ports P1 to P10, RST/NMI,
JTAG (TCK, TMS, TDI/TCLK,TDO/TDI) ............ 18
5.7 Inputs Px.x, TAx, TBX............................... 18
5.8 Leakage Current – Ports P1 to P10 ................ 18
5.9 Outputs – Ports P1 to P10 .......................... 18
5.10 Output Frequency................................... 19
5.11 Typical Characteristics – Outputs................... 20
5.12 Wake-up Timing From LPM3 ....................... 21
5.13 RAM................................................. 21
5.14 LCD_A............................................... 21
5.15 Comparator_A ...................................... 22
5.16 Typical Characteristics – Comparator_A............ 23
5.17 POR, BOR .......................................... 24
5.18 SVS (Supply Voltage Supervisor and Monitor) ..... 25
5.19 DCO................................................. 27
5.20 Crystal Oscillator, LFXT1 Oscillator ................ 29
5.21 Crystal Oscillator, XT2 Oscillator ................... 29
5.22 USCI (UART Mode)................................. 29
5.23 USCI (SPI Master Mode)............................ 30
5.24 USCI (SPI Slave Mode)............................. 30
5.25 USCI (I
5.26 USART1............................................. 33
5.27 12-Bit ADC, Power Supply and Input Range
5.28 12-Bit ADC, External Reference ................... 34
5.29 12-Bit ADC, Built-In Reference...................... 35
2
C Mode).................................... 33
Conditions .......................................... 34
5.32 12-Bit ADC, Temperature Sensor and Built-In V
MID
...................................................... 38
5.33 12-Bit DAC, Supply Specifications.................. 38
5.34 12-Bit DAC, Linearity Specifications ................ 39
5.35 12-Bit DAC, Output Specifications .................. 41
5.36 12-Bit DAC, Reference Input Specifications........ 41
5.37 12-Bit DAC, Dynamic Specifications................ 42
5.38 12-Bit DAC, Dynamic Specifications Continued .... 43
5.39 Operational Amplifier OA, Supply Specifications ... 44
5.40 Operational Amplifier OA, Input/Output
Specifications........................................ 44
5.41 Operational Amplifier OA, Dynamic Specifications . 45
5.42 Operational Amplifier OA, Typical Characteristics.. 45
5.43 Operational Amplifier OA Feedback Network,
Noninverting Amplifier Mode (OAFCx = 4).......... 46
5.44 Operational Amplifier OA Feedback Network,
Inverting Amplifier Mode (OAFCx = 6).............. 46
5.45 Flash Memory (FG461x Devices Only) ............. 47
5.46 JTAG Interface...................................... 47
5.47 JTAG Fuse ......................................... 47
6 Detailed Description................................... 48
6.1 CPU ................................................. 48
6.2 Instruction Set....................................... 49
6.3 Operating Modes.................................... 50
6.4 Interrupt Vector Addresses.......................... 51
6.5 Special Function Registers (SFRs) ................. 52
6.6 Memory Organization ............................... 54
6.7 Bootstrap Loader (BSL)............................. 55
6.8 Flash Memory....................................... 55
6.9 Peripherals .......................................... 55
6.10 Input/Output Schematics ............................ 65
7 Device and Documentation Support.............. 100
7.1 Device Support..................................... 100
7.2 Documentation Support............................ 103
7.3 Related Links ...................................... 103
7.4 Community Resources............................. 104
7.5 Trademarks ........................................ 104
7.6 Electrostatic Discharge Caution ................... 104
7.7 Export Control Notice.............................. 104
7.8 Glossary............................................ 104
8 Mechanical, Packaging, and Orderable
Information............................................. 105
Copyright © 2006–2015, Texas Instruments Incorporated Table of Contents 3
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from March 2, 2011 to June 19, 2015 Page
Document format and organization changes throughout, including the addition of section numbering ................... 1
Added Device Information table .................................................................................................... 2
Moved functional block diagram to Section 1.4................................................................................... 2
Added Section 3, Device Comparison............................................................................................. 5
Added signal names to ZQW pinout figure........................................................................................ 7
Changed table note that starts "Segments S0 through S3 are disabled when..."............................................ 8
Added row for unassigned ball locations on ZQW package................................................................... 13
Added Section 5 and moved all electrical specifications to it ................................................................. 14
Added Section 5.2, ESD Ratings.................................................................................................. 14
In Recommended Operating Conditions, added test conditions for TYP values ........................................... 14
Added Section 5.5, Thermal Characteristics .................................................................................... 17
Changed table note that starts "Segments S0 through S3 are disabled when..." .......................................... 21
Changed the value of DAC12_xDAT from 7F7h to F7Fh in Figure 5-33 .................................................... 43
Added Table 6-19 and moved P4.6 and P4.7 from Table 6-18 to insert correct LCDS32 control bit name ............ 75
Added Table 6-29 and moved P7.2 and P7.3 from Table 6-28 to insert correct LCDS28 control bit name ............ 88
Added Table 6-31 and moved P7.6 and P7.7 from Table 6-30 to insert correct LCDS24 control bit name ............ 89
Added Table 6-33 and moved P8.2 to P8.5 from Table 6-32 to insert correct LCDS20 control bit name............... 90
Added Table 6-36 and moved P9.2 to P9.5 from Table 6-35 to insert correct LCDS12 control bit name............... 92
Corrected LCD segment numbers in PIN NAME column of Table 6-36..................................................... 92
Added Table 6-37 and moved P9.6 and P9.7 from Table 6-35 to insert correct LCDS8 control bit name.............. 93
Corrected LCD segment numbers in PIN NAME column of Table 6-37..................................................... 93
Corrected LCD segment numbers in PIN NAME and FUNCTION columns of Table 6-38................................ 94
Added Table 6-39 and moved P10.2 to P10.5 from Table 6-38 to insert correct LCDS4 control bit name ............. 94
Added Section 7 and moved Trademarks and ESD Caution sections to it ................................................ 100
Added Section 8 ................................................................................................................... 105
4 Revision History Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
3 Device Comparison
Table 3-1 summarizes the available family members.
Table 3-1. Device Comparison
(1)(2)
FLASH ROM RAM ADC12 DAC12 COMP_A
DEVICE EEM Timer_A Timer_B OP AMP USART USCI I/O PACKAGE
(KB) (KB) (KB) (Channels) (Channels) (Channels)
PZ 100
MSP430FG4619 120 4 1 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430FG4618 116 8 1 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430FG4617 92 8 1 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430FG4616 92 4 1 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430CG4619 120 4 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430CG4618 116 8 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430CG4617 92 8 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
PZ 100
MSP430CG4616 92 4 TA3 TB7 12 3 2 2 1 A0, B0 80
ZQW 113
(1) For the most currentdevice, package,and ordering information for all available devices, see thePackage Option Addendum in Section 8, orsee theTI website at www.ti.com. (2) Package drawings, thermal data,and symbolizationare available at www.ti.com/packaging.
Copyright © 2006–2015, Texas Instruments Incorporated Device Comparison 5
Submit Documentation Feedback
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MSP430CG4618 MSP430CG4617 MSP430CG4616
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
10 0
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
P1 .7 /C A1
P6 .1 /A 1/ OA 0 O
P6 .0 /A 0/ OA 0 I0
RS T /N M I
XT 2 IN
XT 2 OU T
P1 .3 /T BO U T H/ SV S O UT
P1 .4 /T BC L K/SMC L K
P1 .5 /TA CLK /A CLK
P1 .6 /C A0
P2 .3 /T B2
P9 ,2 /S 15
P9 .1 /S 16
P9 .0 /S 17
P8 .5 /S 20
P8 .0 /S 25
P7 .7 /S 26
P7 .6 /S 27
P7 .5 /S 28
P7 .4 /S 29
P4 .7 /U C A0 R XD /S3 4
P7 .3 /U C A0 C LK /S 3 0
P1 .0 /TA 0
TD I/ TC L K
TD O /T DI
P8 .4 /S 21
SS 1
DV
P6 .2 /A 2/ OA 0 I1
P1 .2 /TA 1
P8 .1 /S 24
P4 .6 /U C A0 TXD /S 3 5
DVCC1
P6.3/A3/OA1O
P6.4/A4/OA1I0
P6.5/A5/OA2O
P6.6/A6/DAC0/OA2I0
P6.7/A7/DAC1/SVSIN
VREF+
XIN
XOUT
VeREF+/DAC0
VREF-/VeREF-
P5.1/S0/A12/DAC1
P5.0/S1/A13/OA1I1
P10.7/S2/A14/OA2I1
P10.6/S3/A15
P10.5/S4
P10.4/S5
P10.3/S6
P10.2/S7
P10.1/S8
P10.0/S9
P9.7/S10
P9.6/S11
P9.5/S12
P9.4/S13
P2.4/UCA0TXD
P2.5/UCA0RXD
P2.6/CAOUT
P2.7/ADC12CLK/DMAE0
P3.0/UCB0STE
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK
P3.4/TB3
P3.5/TB4
P3.6/TB5
P3.7/TB6
P4.0/UTXD1
P4.1/URXD1
DVSS2
DVCC2
LCDCAP/R33
P5.7/R23
P5.6/LCDREF/R13
P5.5/R03
P5.4/COM3
P5.3/COM2
P5.2/COM1
COM0
P4.2/STE1/S39
P8 .6 /S 19
P8 .3 /S 22
P8 .2 /S 23
P7 .0 /U C A0 S TE /S 3 3
P4 .5 /U C LK 1/S36
P4 .4 /S OMI 1/S3 7
P4 .3 /S IM O 1/S3 8
CCAVSS
AV
TC K
TM S
P1 .1 /TA 0/MC L K
P2 .0 /TA 2
P2 .1 /T B0
P2 .2 /T B1
P9.3/S14
P8.7/S18
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
4 Terminal Configuration and Functions
4.1 Pin Diagrams
Figure 4-1 shows the pinout for the 100-pin PZ package.
www.ti.com
Figure 4-1. 100-Pin PZ Package (Top View)
6 Terminal Configuration and Functions Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
A
B
C
D
E
F
G
H
J
K
L
M
1 2 3 4 5 6 7 8 9 10 11 12
DV
CC1
P6.3
P6.6
XIN
XOUT
P5.1
P10.6
P10.3
P10.0
P9.5
P9.4
N/A
AV
CC
P6.4
P6.5
V
REF+
Ve
REF+
P5.0
P10.5
P10.2
P9.7
P9.2
N/A
P9.3
AV
SS
DV
SS1
P6.7
P9.1
P9.0
P6.0
P6.2
N/A
V
REF–
P10.4
P9.6
P8.7
N/A
P8.6
P8.5
TCK
RST
P6.1
P10.7
P10.1
P8.4
P8.1
P8.0
P8.3
P8.2
TDO
XT2IN
TDI
TMS
P7.3
P7.5
P7.6
P7.7
P1.0
XT2OUT
P1.2
P1.1
P4.4
P4.7
P7.2
P7.4
P1.3
P1.4
P2.1
P2.2
N/A
N/A
N/A
P5.3
P7.0
P7.1
P1.6
P1.5
N/A
P2.7
P3.2
P3.5
P4.0
N/A
P4.5
P4.6
P2.0
P1.7
COM0
P4.3
P2.3
N/A
P2.5
P3.0
P3.3
P3.6
P4.1
LCDCAP
P5.7
P5.5
N/A
P4.2
N/A
P2.4
P2.6
P3.1
P3.4
P3.7
DV
SS2
DV
CC2
P5.6
P5.4
P5.2
N/A
www.ti.com
Figure 4-2 shows the pinout for the 113-pin ZQW package. This figure shows only the default pin
assignments; for all pin assignments, see Table 4-1.
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
supply. The shortest ground return path to the device should be established to ball location B3, DV
N/A = Not Assigned. All unassigned ball locations on the ZQW package should be electrically tied to the ground
Figure 4-2. 113-Pin ZQW Package (Top View)
Copyright © 2006–2015, Texas Instruments Incorporated Terminal Configuration and Functions 7
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
SS1
.
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
4.2 Signal Descriptions
Table 4-1 describes the signals for all device variants and package options.
Table 4-1. Signal Descriptions
SIGNAL NAME I/O DESCRIPTION
DV
CC1
P6.3 General-purpose digital I/O A3 2 B1 I/O Analog input A3 for 12-bit ADC OA1O OA1 output P6.4 General-purpose digital I/O A4 3 B2 I/O Analog input A4 for 12-bit ADC OA1I0 OA1 input multiplexer on + terminal and – terminal P6.5 General-purpose digital I/O A5 4 C2 I/O Analog input A5 for 12-bit ADC OA2O OA2 output P6.6 General-purpose digital I/O A6 Analog input A6 for 12-bit ADC DAC0 DAC12.0 output OA2I0 OA2 input multiplexer on + terminal and – terminal P6.7 General-purpose digital I/O A7 Analog input A7 for 12-bit ADC DAC1 DAC12.1 output SVSIN Analog input to brownout, supply voltage supervisor V
REF+
XIN 8 D1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 E1 O Output terminal of crystal oscillator XT1 Ve
REF+
DAC0 DAC12.0 output V
REF
Ve
REF–
P5.1 General-purpose digital I/O
(1)
S0 A12 Analog input A12 for 12-bit ADC DAC1 DAC12.1 output P5.0 General-purpose digital I/O
(1)
S1 A13 Analog input A13 for 12-bit ADC OA1I1 OA1 input multiplexer on + terminal and – terminal P10.7 General-purpose digital I/O
(1)
S2 A14 Analog input A14 for 12-bit ADC OA2I1 OA2 input multiplexer on + terminal and – terminal P10.6 General-purpose digital I/O
(1)
S3 A15 Analog input A15 to 12-bit ADC
PIN NO.
PZ ZQW
1 A1 Digital supply voltage, positive terminal
5 C1 I/O
6 C3 I/O
7 D2 O Output of positive terminal of the reference voltage in the ADC
10 E2 I/O
11 E4 I
12 F1 I/O
13 F2 I/O
14 E5 I/O
Input for an external reference voltage to the ADC
Internal reference voltage, negative terminal for the ADC reference voltage External applied reference voltage, negative terminal for the ADC reference voltage
LCD segment output 0
LCD segment output 1
LCD segment output 2
15 G1 I/O LCD segment output 3
www.ti.com
(1) Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and, therefore, cannot be used
together with the LCD charge pump. On the MSP430xG461x devices only, S0 through S3 are also disabled if VLCDEXT = 1. This setting is typically used to apply an external LCD voltage supply to the LCDCAP terminal. For these devices, set LCDCPEN = 0, VLCDEXT = 0, and VLCDx > 0 to enable an external LCD voltage supply to be applied to the LCDCAP terminal.
8 Terminal Configuration and Functions Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
Table 4-1. Signal Descriptions (continued)
SIGNAL NAME I/O DESCRIPTION
P10.5 General-purpose digital I/O S4 LCD segment output 4 P10.4 General-purpose digital I/O S5 LCD segment output 5 P10.3 General-purpose digital I/O S6 LCD segment output 6 P10.2 General-purpose digital I/O S7 LCD segment output 7 P10.1 General-purpose digital I/O S8 LCD segment output 8 P10.0 General-purpose digital I/O S9 LCD segment output 9 P9.7 General-purpose digital I/O S10 LCD segment output 10 P9.6 General-purpose digital I/O S11 LCD segment output 11 P9.5 General-purpose digital I/O S12 LCD segment output 12 P9.4 General-purpose digital I/O S13 LCD segment output 13 P9.3 General-purpose digital I/O S14 LCD segment output 14 P9.2 General-purpose digital I/O S15 LCD segment output 15 P9.1 General-purpose digital I/O S16 LCD segment output 16 P9.0 General-purpose digital I/O S17 LCD segment output 17 P8.7 General-purpose digital I/O S18 LCD segment output 18 P8.6 General-purpose digital I/O S19 LCD segment output 19 P8.5 General-purpose digital I/O S20 LCD segment output 20 P8.4 General-purpose digital I/O S21 LCD segment output 21 P8.3 General-purpose digital I/O S22 LCD segment output 22 P8.2 General-purpose digital I/O S23 LCD segment output 23 P8.1 General-purpose digital I/O S24 LCD segment output 24 P8.0 General-purpose digital I/O S25 LCD segment output 25 P7.7 General-purpose digital I/O S26 LCD segment output 26
PIN NO.
PZ ZQW
16 G2 I/O
17 F4 I/O
18 H1 I/O
19 H2 I/O
20 F5 I/O
21 J1 I/O
22 J2 I/O
23 G4 I/O
24 K1 I/O
25 L1 I/O
26 M2 I/O
27 K2 I/O
28 L3 I/O
29 M3 I/O
30 H4 I/O
31 L4 I/O
32 M4 I/O
33 G5 I/O
34 L5 I/O
35 M5 I/O
36 H5 I/O
37 J5 I/O
38 M6 I/O
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Terminal Configuration and Functions 9
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 4-1. Signal Descriptions (continued)
SIGNAL NAME I/O DESCRIPTION
P7.6 General-purpose digital I/O S27 LCD segment output 27 P7.5 General-purpose digital I/O S28 LCD segment output 28 P7.4 General-purpose digital I/O S29 LCD segment output 29 P7.3 General-purpose digital I/O UCA0CLK External clock input – USCI_A0 in UART or SPI mode,
S30 LCD segment 30 P7.2 General-purpose digital I/O UCA0SOMI 43 L7 I/O Slave out/master in of USCI_A0 in SPI mode S31 LCD segment output 31 P7.1 General-purpose digital I/O UCA0SIMO 44 M8 I/O Slave in/master out of USCI_A0 in SPI mode S32 LCD segment output 32 P7.0 General-purpose digital I/O UCA0STE 45 L8 I/O Slave transmit enable – USCI_A0 in SPI mode S33 LCD segment output 33 P4.7 General-purpose digital I/O UCA0RXD 46 J7 I/O Receive data in – USCI_A0 in UART or IrDA mode S34 LCD segment output 34 P4.6 General-purpose digital I/O UCA0TXD 47 M9 I/O Transmit data out – USCI_A0 in UART or IrDA mode S35 LCD segment output 35 P4.5 General-purpose digital I/O UCLK1 External clock input – USART1 in UART or SPI mode,
S36 LCD segment output 36 P4.4 General-purpose digital I/O SOMI1 49 H7 I/O Slave out/master in of USART1 in SPI mode S37 LCD segment output 37 P4.3 General-purpose digital I/O SIMO1 50 M10 I/O Slave in/master out of USART1 in SPI mode S38 LCD segment output 38 P4.2 General-purpose digital I/O STE1 51 M11 I/O Slave transmit enable – USART1 in SPI mode S39 LCD segment output 39 COM0 52 L10 O Common output, COM0 for LCD backplanes P5.2 General-purpose digital I/O COM1 Common output, COM1 for LCD backplanes P5.3 General-purpose digital I/O COM2 Common output, COM2 for LCD backplanes P5.4 General-purpose digital I/O COM3 Common output, COM3 for LCD backplanes P5.5 General-purpose digital I/O R03 Input port of lowest analog LCD level (V5)
PIN NO.
PZ ZQW
39 L6 I/O
40 J6 I/O
41 M7 I/O
42 H6 I/O
48 L9 I/O
53 L12 I/O
54 J8 I/O
55 K12 I/O
56 K11 I/O
Clock output – USCI_A0 in SPI mode
Clock output – USART1 in SPI MODE
www.ti.com
10 Terminal Configuration and Functions Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 4-1. Signal Descriptions (continued)
SIGNAL NAME I/O DESCRIPTION
P5.6 General-purpose digital I/O LCDREF 57 J12 I/O External reference voltage input for regulated LCD voltage R13 Input port of third most positive analog LCD level (V4 or V3) P5.7 General-purpose digital I/O R23 Input port of second most positive analog LCD level (V2) LCDCAP LCD capacitor connection R33 Input/output port of most positive analog LCD level (V1) DV
CC2
DV
SS2
P4.1 General-purpose digital I/O URXD1 Receive data in – USART1 in UART mode P4.0 General-purpose digital I/O UTXD1 Transmit data out – USART1 in UART mode P3.7 General-purpose digital I/O TB6 Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6 output P3.6 General-purpose digital I/O TB5 Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5 output P3.5 General-purpose digital I/O TB4 Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4 output P3.4 General-purpose digital I/O TB3 Timer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output P3.3 General-purpose digital I/O UCB0CLK External clock input – USCI_B0 in UART or SPI mode,
P3.2 General-purpose digital I/O UCB0SOMI 69 F9 I/O Slave out/master in of USCI_B0 in SPI mode UCB0SCL I2C clock – USCI_B0 in I2C mode P3.1 General-purpose digital I/O UCB0SIMO 70 D12 I/O Slave in/master out of USCI_B0 in SPI mode UCB0SDA I2C data – USCI_B0 in I2C mode P3.0 General-purpose digital I/O UCB0STE Slave transmit enable – USCI_B0 in SPI mode P2.7 General-purpose digital I/O ADC12CLK 72 E9 I/O Conversion clock for 12-bit ADC DMAE0 DMA channel 0 external trigger P2.6 General-purpose digital I/O CAOUT Comparator_A output P2.5 General-purpose digital I/O UCA0RXD Receive data in – USCI_A0 in UART or IrDA mode P2.4 General-purpose digital I/O UCA0TXD Transmit data out – USCI_A0 in UART or IrDA mode P2.3 General-purpose digital I/O TB2 Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2 General-purpose digital I/O TB1 Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1 General-purpose digital I/O TB0 Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
PIN NO.
PZ ZQW
58 J11 I/O
59 H11 I
60 H12 Digital supply voltage, positive terminal 61 G12 Digital supply voltage, negative terminal
62 G11 I/O
63 H9 I/O
64 F12 I/O
65 F11 I/O
66 G9 I/O
67 E12 I/O
68 E11 I/O
Clock output – USCI_B0 in SPI mode
71 D11 I/O
73 C12 I/O
74 C11 I/O
75 B12 I/O
76 A11 I/O
77 E8 I/O
78 D8 I/O
Copyright © 2006–2015, Texas Instruments Incorporated Terminal Configuration and Functions 11
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 4-1. Signal Descriptions (continued)
SIGNAL NAME I/O DESCRIPTION
P2.0 General-purpose digital I/O TA2 Timer_A Capture: CCI2A input, compare: Out2 output P1.7 General-purpose digital I/O CA1 Comparator_A input P1.6 General-purpose digital I/O CA0 Comparator_A input P1.5 General-purpose digital I/O TACLK 82 B9 I/O Timer_A, clock signal TACLK input ACLK ACLK output (divided by 1, 2, 4, or 8) P1.4 General-purpose digital I/O TBCLK 83 B8 I/O Input clock TBCLK – Timer_B7 SMCLK Submain system clock SMCLK output P1.3 General-purpose digital I/O TBOUTH 84 A8 I/O Switch all PWM digital output ports to high impedance – Timer_B7 TB0 to TB6 SVSOUT SVS: output of SVS comparator P1.2 General-purpose digital I/O TA1 Timer_A, Capture: CCI1A input, compare: Out1 output P1.1 General-purpose digital I/O TA0 86 E7 I/O Timer_A. Capture: CCI0B input. Note: TA0 is only an input on this pin. BSL receive. MCLK MCLK output P1.0 General-purpose digital I/O TA0 Timer_A. Capture: CCI0A input, compare: Out0 output. BSL transmit. XT2OUT 88 B7 O Output terminal of crystal oscillator XT2 XT2IN 89 B6 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO Test data output port. TDO/TDI data output. TDI Programming data input terminal TDI Test data input TCLK Test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 E6 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 A5 I Test clock. TCK is the clock input port for device programming and test. RST Reset input NMI Nonmaskable interrupt input port P6.0 General-purpose digital I/O A0 95 A4 I/O Analog input A0 for 12-bit ADC OA0I0 OA0 input multiplexer on + terminal and – terminal P6.1 General-purpose digital I/O A1 96 D5 I/O Analog input A1 for 12-bit ADC OA0O OA0 output P6.2 General-purpose digital I/O A2 97 B4 I/O Analog input A2 for 12-bit ADC OA0I1 OA0 input multiplexer on + terminal and – terminal
AVSS 98 A3 DV
SS1
AV
CC
PIN NO.
PZ ZQW
79 A10 I/O
80 B10 I/O
81 A9 I/O
85 D7 I/O
87 A7 I/O
90 A6 I/O
91 D6 I
94 B5 I
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, Comparator_A, port 1
99 B3 Digital supply voltage, negative terminal
100 A2
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, Comparator_A, port 1. Do not power up before powering DV
CC1
and DV
CC2
.
www.ti.com
12 Terminal Configuration and Functions Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 4-1. Signal Descriptions (continued)
SIGNAL NAME I/O DESCRIPTION
Not Assigned G8, H8, supply. The shortest ground return path to the device should be established to ball location
PIN NO.
PZ ZQW
A12,
B11, D4,
D9, F8, All unassigned ball locations on the ZQW package should be electrically tied to the ground
J4, J9, B3, DV
L2, L11,
M1, M12
SS1
.
Copyright © 2006–2015, Texas Instruments Incorporated Terminal Configuration and Functions 13
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
5 Specifications
www.ti.com
5.1 Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage applied at VCCto V Voltage applied to any pin
SS
(2)
–0.3 4.1 V –0.3 VCC+ 0.3 V
Diode current at any device terminal ±2 mA
Storage temperature, T
stg
Unprogrammed device –55 105 Programmed device –40 85
°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are referenced to VSS.The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is
applied to the TDI/TCLK pin when blowing the JTAG fuse.
5.2 ESD Ratings
VALUE UNIT
V
Electrostatic discharge V
(ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 Charged-device model (CDM), per JEDEC specification JESD22-C101
(1)
(2)
±1000
±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
5.3 Recommended Operating Conditions
Typical values are specified at VCC= 3.3 V and TA= 25°C (unless otherwise noted)
MIN NOM MAX UNIT
During program execution (AVCC= DV
V
CC
Supply voltage 2.7 3.6 V
During flash memory programming (FG461x) (AVCC= DV
CC1/2
CC1/2
= VCC)
= VCC)
During program execution, SVS enabled and PORON = 1 (AVCC= DV
V
SS
T
A
Supply voltage (AVSS= DV
= VSS) 0 0 V
SS1/2
Operating free-air temperature range –40 85 °C
CC1/2
= VCC)
LF selected, XTS_FLL = 0
f
(LFXT1)
Crystal frequency
(3)
XT1 selected, XTS_FLL = 1 Ceramic resonator 450 8000 kHz XT1 selected, XTS_FLL = 1 Crystal 1000 8000
f
(XT2)
f
(System)
Crystal frequency kHz
Processor frequency (signal MCLK) VCC= 2.0 V DC 4.6 MHz
(1) TI recommends powering AVCCand DVCCfrom the same source. A maximum difference of 0.3 V between AVCCand DVCCcan be
tolerated during power up and operation.
(2) The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply
voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.
(3) In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
(1)
(1)
(2)
(3)
Watch crystal 32.768
(1)
1.8 3.6
2 3.6
Ceramic resonator 450 8000 Crystal 1000 8000 VCC= 1.8 V DC 3
VCC= 3.6 V DC 8
14 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
1.8 3.62.7 3
3.0 MHz
8.0 MHz
Supply Voltage (V)
Supply voltage range, MSP430FG461x, during flash memory programming
Supply voltage range, MSP430xG461x, during program execution
2.0
4.6 MHz
f (MHz)
System
www.ti.com
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-1. Frequency vs Supply Voltage
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 15
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.4 Supply Current Into AVCC+ DVCCExcluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
(1) (2)
= f
= 32768 Hz, µA
(SMCLK)
= 1 MHz,
CG461x TA= –40°C to 85°C
FG461x TA= –40°C to 85°C
(1) (2)
TA= –40°C to 85°C µA
I
(AM)
I
(LPM0)
Active mode f
(MCLK)
f
(ACLK)
XTS = 0, SELM = (0, 1), (FG461x: program executes from flash)
Low power mode (LPM0)
Low-power mode (LPM2), VCC= 2.2 V 11 20
I
(LPM2)f(MCLK)
= f
f
(ACLK)
(SMCLK)
= 32768 Hz, SCG0 = 0
= 0 MHz, TA= –40°C to 85°C µA
(3) (2)
TA= –40°C 1.3 4.0 TA= 25°C 1.3 4.0
I
(LPM3)
Low-power mode (LPM3), f
= f
(MCLK)
f
= 32768 Hz, SCG0 = 1,
(ACLK)
Basic Timer1 enabled, ACLK selected, LCD_A enabled, LCDCPEN = 0, (static mode, f
(SMCLK)
= 0 MHz,
LCD
= f
(ACLK)
/32)
(3) (4) (2)
TA= 60°C 2.22 6.5 TA= 85°C 6.5 15.0 TA= –40°C 1.9 5.0 TA= 25°C 1.9 5.0 TA= 60°C 2.5 7.5 TA= 85°C 7.5 18.0 TA= –40°C 1.5 5.5 TA= 25°C 1.5 5.5
I
(LPM3)
Low-power mode (LPM3), f
= f
(MCLK)
f
= 32768 Hz, SCG0 = 1,
(ACLK)
Basic Timer1 enabled, ACLK selected, LCD_A enabled, LCDCPEN = 0, (4-mux mode; f
(SMCLK)
= 0 MHz,
= f
LCD
(ACLK)
/32)
(3) (4) (2)
TA= 60°C 2.8 7.0 TA= 85°C 7.2 17.0 TA= –40°C 2.5 6.5 TA= 25°C 2.5 6.5 TA= 60°C 3.2 8.0 TA= 85°C 8.5 20.0 TA= –40°C 0.13 1.0 TA= 25°C 0.22 1.0 TA= 60°C 0.9 2.5
I
Low-power mode (LPM4),
(LPM4)f(MCLK)
f
(ACLK)
= 0 MHz, f
= 0 Hz, SCG0 = 1
(SMCLK)
= 0 MHz, µA
(3) (2)
TA= 85°C 4.3 12.5 TA= –40°C 0.13 1.6 TA= 25°C 0.3 1.6 TA= 60°C 1.1 3.0 TA= 85°C 5.0 15.0
(1) Timer_B is clocked by f (2) Current for brownout included.
(DCOCLK)
= f
= 1 MHz. Allinputs aretied to 0 V or to VCC. Outputs do notsource orsink any current.
(DCO)
(3) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. (4) The LPM3 currents are characterized with a Micro Crystal CC4V-T1A (9 pF) crystal and OSCCAPx = 1h.
VCC= 2.2 V 280 370 VCC= 3 V 470 580 VCC= 2.2 V 400 480 VCC= 3 V 600 740 VCC= 2.2 V 45 70 VCC= 3 V 75 110
VCC= 3 V 17 24
VCC= 2.2 V
VCC= 3 V
VCC= 2.2 V
VCC= 3 V
VCC= 2.2 V
VCC= 3 V
www.ti.com
µA
µA
Current consumption of active mode versus system frequency, FG version: I
(AM)
= I
(AM) [1 MHz]
× f
(System)
[MHz] Current consumption of active mode versus supply voltage, FG version: I
= I
(AM)
(AM) [3 V]
16 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
+ 200 µA/V × (VCC– 3 V)
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.5 Thermal Characteristics
PARAMETER PACKAGE VALUE UNIT
θ
JA
θ
JC,TOP
θ
JB
Ψ
JB
Ψ
JT
θ
JA
θ
JC,TOP
θ
JB
Ψ
JB
Ψ
JT
Junction-to-ambient thermal resistance, still air Junction-to-case (top) thermal resistance Junction-to-board thermal resistance
(3)
Junction-to-board thermal characterization parameter 12 °C/W Junction-to-top thermal characterization parameter 0.3 °C/W Junction-to-ambient thermal resistance, still air Junction-to-case (top) thermal resistance Junction-to-board thermal resistance
(3)
Junction-to-board thermal characterization parameter 21.2 °C/W Junction-to-top thermal characterization parameter 0.2 °C/W
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as
specified in JESD51-7, in an environment described in JESD51-2a.
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
(1)
(2)
42 °C/W 10 °C/W
ZQW (S-PBGA-N113) 12 °C/W
(1)
(2)
43.5 °C/W
6.2 °C/W
PZ (S-PQFP-G100) 21.8 °C/W
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 17
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.6 Schmitt-Trigger Inputs – Ports P1 to P10, RST/NMI, JTAG (TCK, TMS, TDI/TCLK,TDO/TDI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
IT+
V
IT–
V
hys
Positive-going input threshold voltage V
Negative-going input threshold voltage V
Input voltage hysteresis (V
IT+
– V
) V
IT–
VCC= 2.2 V 1.1 1.55 VCC= 3 V 1.5 1.98 VCC= 2.2 V 0.4 0.9 VCC= 3 V 0.9 1.3 VCC= 2.2 V 0.3 1.1 VCC= 3 V 0.5 1
5.7 Inputs Px.x, TAx, TBX
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
t
(int)
t
(cap)
f
(TAext)
f
(TBext)
f
(TAint)
f
(TBint)
External interrupt timing ns
Timer_A, Timer_B capture timing ns
Timer_A or Timer_B clock frequency TACLK, TBCLK externally applied to pin INCLK t
Timer A or Timer B clock frequency SMCLK or ACLK signal selected MHz
Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag
TA0, TA1, TA2 TB0, TB1, TB2, TB3, TB4, TB5, TB6
= t
(H)
(L)
(1) The external signal sets the interrupt flag every time the minimum t
shorter than t
5.8 Leakage Current – Ports P1 to P10
(int)
.
(1)
(1)
parameters are met. It may be set even with trigger signals
(int)
CC
2.2 V 62 3 V 50
2.2 V 62 3 V 50
2.2 V 8 3 V 10
2.2 V 8 3 V 10
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
(2)
I
lkg(Px.y)
Leakage current, Port Px VCC= 2.2 V, 3 V ±50 nA
(1) The leakage current is measured with VSSor VCCapplied to the corresponding pins, unless otherwise noted. (2) The port pin must be selected as input.
V(Px.y) (1 × 10, 0 y 7)
MIN MAX UNIT
MHz
5.9 Outputs – Ports P1 to P10
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
OH
V
OL
(1) The maximum total current, I (2) The maximum total current, I
18 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
High-level output voltage V
Low-level output voltage V
and I
voltage drop. voltage drop.
OH(max)
OH(max)
and I
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
I
= –1.5 mA, VCC= 2.2 V
OH(max)
I
= –6 mA, VCC= 2.2 V
OH(max)
I
= –1.5 mA, VCC= 3 V
OH(max)
I
= –6 mA, VCC= 3 V
OH(max)
I
= 1.5 mA, VCC= 2.2 V
OL(max)
I
= 6 mA, VCC= 2.2 V
OL(max)
I
= 1.5 mA, VCC= 3 V
OL(max)
I
= 6 mA, VCC= 3 V
OL(max)
, for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified
OL(max)
, for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified
OL(max)
(1) (2) (1)
(2)
(1) (2) (1)
(2)
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
VCC– 0.25 V
VCC– 0.6 V
VCC– 0.25 V
VCC– 0.6 V
V
VSS+ 0.25
SS
V V V
SS SS SS
VSS+ 0.6
VSS+ 0.25
VSS+ 0.6
CC CC CC CC
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.10 Output Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
(Px.y)
f
(MCLK)
f
(SMCLK)
f
(ACLK)
t
(Xdc)
(1 × 10, 0 y 7) CL= 20 F, IL= ±1.5 mA MHz
P1.1/TA0/MCLK P1.4/TBCLK/SMCLK
CL= 20 pF MHz
P1.5/TACLK/ACLK VCC= 3 V DC 12
P1.5/TACLK/ACLK, CL= 20 pF, VCC= 2.2 V, 3 V
Duty cycle of output frequency
P1.1/TA0/MCLK, CL= 20 pF, VCC= 2.2 V, 3 V
P1.4/TBCLK/SMCLK, CL= 20 pF, VCC= 2.2 V, 3 V
VCC= 2.2 V DC 10 VCC= 3 V DC 12
VCC= 2.2 V 10
f
(ACLK)
f
(ACLK)
f
(ACLK)
f
(MCLK)
f
(MCLK)
f
(SMCLK)
f
(SMCLK)
= f = f = f
= f = f
(LFXT1) (LFXT1) (LFXT1)
(XT1)
(DCOCLK)
= f
(XT2)
= f
(DCOCLK)
= f = f
(XT1)
(LF)
40% 60% 30% 70%
50%
40% 60%
50% – 50%+
15 ns 15 ns
50%
40% 60%
50% – 50% +
15 ns 15 ns
50%
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 19
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
!
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
0.0 0.5 1.0 1.5 2.0 2.5
T =25 CA°
T =85 CA°
V =2.2V P2.0
CC
V High-LevelOutputVoltage V
OH
- -
I -typicalHigh-LevelOutputCurrent-mA
OH
0.0
-10.0
-20.0
-30.0
-40.0
-50.0
I TypicalHigh-LevelOutputCurren mA
OH
- -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
V High-LevelOutputVoltage V
OH
- -
T =25 CA°
T =85 CA°
V =3V P2.0
CC
25.0
20.0
15.0
10.0
5.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
V Low-LevelOutputVoltage V
OL
V =2.2V P2.0
CC
T =25 CA°
T =85 CA°
I -TypicalLow-LevelOutputCurrent-mA
OL
50.0
40.0
30.0
20.0
10.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
V Low-LevelOutputVoltage V
OL
- -
I TypicalLow-LevelOutputCurrent mA
OL
- -
V =3V P2.0
CC
T =25 CA°
T =85 CA°
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.11 Typical Characteristics – Outputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
www.ti.com
Figure 5-2. Typical Low-Level Output Current vs Typical Low- Figure 5-3. Typical Low-Level Output Current vs Typical Low-
Figure 5-4. Typical High-Level Output Current vs Typical High- Figure 5-5. Typical High-Level Output Current vs Typical High-
Level Output Current Level Output Current
Level Output Current Level Output Current
20 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.12 Wake-up Timing From LPM3
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
f = 1 MHz 6
t
d(LPM3)
Delay time f = 2 MHz VCC= 2.2 V, 3 V 6 µs
f = 3 MHz 6
5.13 RAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
VRAMh CPU halted
(1) This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
(1)
1.6 V
5.14 LCD_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
V
CC(LCD)
I
CC(LCD)
C
LCD
f
LCD
PARAMETER TEST CONDITIONS V
Supply voltage
Supply current
(1)
(1)
Capacitor on LCDCAP
(3) (4)
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
V VLCDx= 1000, all segments on, f no LCD connected
= 3 V, LCDCPEN = 1,
LCD(typ)
(2)
, TA= 25°C
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
LCD
= f
/32, 2.2 V 3 µA
ACLK
LCD frequency 1.1 kHz
CC
VLCDx = 0000 V VLCDx = 0001 2.60 VLCDx = 0010 2.66 VLCDx = 0011 2.72 VLCDx = 0100 2.78 VLCDx = 0101 2.84 VLCDx = 0110 2.90
V
LCD
LCD voltage
(4)
VLCDx = 0111 2.96 VLCDx = 1000 3.02 VLCDx = 1001 3.08 VLCDx = 1010 3.14 VLCDx = 1011 3.20 VLCDx = 1100 3.26 VLCDx = 1101 3.32 VLCDx = 1110 3.38 VLCDx = 1111 3.44 3.60
R
LCD
LCD driver output impedance 2.2 V 10 k
(1) Refer to the supply current specifications I (2) Connecting an actual display increases the current consumption depending on the size of the LCD.
V
= 3 V, CPEN = 1,
LCD
VLCDx = 1000, I
for additional current specifications with the LCD_A module active.
(LPM3)
LOAD
= ±10 µΑ
(3) Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. (4) Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and, therefore, cannot be used
together with the LCD charge pump. On the MSP430xG461x devices only, S0 through S3 are also disabled if VLCDEXT = 1. This setting is typically used to apply an external LCD voltage supply to the LCDCAP terminal. For these devices, set LCDCPEN = 0, VLCDEXT = 0, and VLCDx > 0 to enable an external LCD voltage supply to be applied to the LCDCAP terminal.
MIN TYP MAX UNIT
2.2 3.6 V
4.7 µF
CC
V
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 21
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Voltage@0.5V node
CC
V
CC
Voltage@0.25V node
CC
V
CC
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.15 Comparator_A
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
I
(CC)
I
(Refladder/RefDiode)
V
(Ref025)
V
(Ref050)
CAON = 1, CARSEL = 0, CAREF = 0 µA
CAON = 1, CARSEL = 0, CAREF = (1, 2, 3), No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1
CC
2.2 V 25 40 3 V 45 60
2.2 V 30 50 3 V 45 71
2.2 V, 3 V 0.23 0.24 0.25
2.2 V, 3 V 0.47 0.48 0.5
PCA0 = 1, CARSEL = 1, CAREF = 3, 2.2 V 390 480 540
V
(RefVT)
V
IC
Vp– V V
hys
t
(response LH)
t
(response HL)
Common-mode input voltage range
S
Offset voltage
(2)
Input hysteresis CAON = 1 2.2 V, 3 V 0 0.7 1.4 mV
(1) The leakage current for the Comparator_A terminals is identical to I (2) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The
No load at P1.6/CA0 and P1.7/CA1, mV TA= 85°C
3 V 400 490 550
CAON = 1 2.2 V, 3 V 0 VCC– 1 V
2.2 V, 3 V –30 30 mV
TA= 25°C, Overdrive 10 mV, without filter: CAF = 0
TA= 25°C, Overdrive 10 mV, without filter: CAF = 1
TA= 25°C, Overdrive 10 mV, without filter: CAF = 0
TA= 25°C, Overdrive 10 mV, without filter: CAF = 1
lkg(Px.x)
specification.
2.2 V 160 210 300 3 V 80 150 240
2.2 V 1.4 1.9 3.4 3 V 0.9 1.5 2.6
2.2 V 130 210 300 3 V 80 150 240
2.2 V 1.4 1.9 3.4 3 V 0.9 1.5 2.6
two successive measurements are then summed together.
MIN TYP MAX UNIT
µA
ns
µs
ns
µs
22 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Overdrive
VCAOUT
t(response)
V+
V-
400mV
_
+
CAON
0
1
V+
0
1
CAF
Low-PassFilter
t »2µ
s
ToInternal Modules
SetCAIFG Flag
CAOUT
V-
VCC
1
0V
0
650
600
550
500
450
400
-45 -25
-5
15 35
55 75
95
T Free-AirTemperature C
A
- - °
V ReferenceVoltage mV
REF
- -
V =3V
CC
Typical
650
600
550
500
450
400
-45 -25
-5
15 35
55 75
95
T Free-AirTemperature C
A
- - °
V ReferenceVoltage mV
REF
- -
V =2.2V
CC
Typical
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
5.16 Typical Characteristics – Comparator_A
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-6. Reference Voltage vs Free-Air Temperature Figure 5-7. Reference Voltage vs Free-Air Temperature
Figure 5-8. Block Diagram of Comparator_A Module
Figure 5-9. Overdrive Definition
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 23
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
V
CC(drop)
V
CC
3V
t
pw
0
0.5
1
1.5
2
0.001 1 1000
TypicalConditions
1ns 1ns
t -PulseWidth-
pw
m
s t -PulseWidth-
pw
m
s
V =3V
CC
V -V
CC(drop)
0
1
t
d(BOR)
V
CC
V
(B_IT-)
V
hys(B_IT-)
V
CC(start)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.17 POR, BOR
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
d(BOR)
V
CC(start)
V
(B_IT–)
V
hys(B_IT–)
t
(reset)
Brownout
(2) (3)
(1) The current consumption of the brownout module is already included in the ICCcurrent consumption data. (2) The voltage level V (3) During power up, the CPU begins code execution following a period of t
(B_IT–)
+ V
hys(B_IT–)
must not be changed until VCC≥ V MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout and SVS circuit.
dVCC/dt 3 V/s (see Figure 5-10) V
V
(B_IT– )
dVCC/dt 3 V/s (see Figure 5-10 through Figure 5-
12)
dVCC/dt 3 V/s (see Figure 5-10) 70 130 210 mV Pulse duration needed at RST/NMI pin to accepted
reset internally, VCC= 2.2 V, 3 V
2 µs
1.89 V.
CC(min)
, where V
after VCC= V
is the minimum supply voltage for the desired operating frequency. See the
CC(min)
d(BOR)
(B_IT–)
+ V
. The default FLL+settings
hys(B_IT–)
www.ti.com
(1)
2000 µs
0.7 ×
1.79 V
Figure 5-11. V
CC(drop)
Level with a Square Voltage Drop to Generate a POR or BOR Signal
24 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-10. POR, BOR vs Supply Voltage
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
V
CC
0
0.5
1
1.5
2
V
CC(drop)
t
pw
tpw-PulseWidth-ms
V
CC(d ro p )
- V
3V
0.001 1 1000
t
f
t
r
tpw-PulseWidth-ms
t =t
f r
TypicalConditions
V =3V
CC
www.ti.com
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-12. V
CC(drop)
Level With a Triangle Voltage Drop to Generate a POR or BOR Signal
5.18 SVS (Supply Voltage Supervisor and Monitor)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
(SVSR)
t
d(SVSon)
t
settle
V
(SVSstart)
V
hys(SVS_IT–)
V
(SVS_IT–)
(3)
I
CC(SVS)
(1) t (2) The recommended operating voltage range is limited to 3.6 V.
(3) The current consumption of the SVS module is not included in the ICCcurrent consumption data.
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 25
is the settling time that the comparator output needs to have a stable level after VLD is switched from VLD 0 to a different VLD
settle
value from 2 to 15. The overdrive is assumed to be > 50 mV.
dVCC/dt > 30 V/ms (see Figure 5-13) 5 150 dVCC/dt 30 V/ms 2000 SVS on, switch from VLD = 0 to VLD 0, VCC= 3 V 150 300 µs
(1)
VLD 0 VLD 0, VCC/dt 3 V/s (see Figure 5-13) 1.55 1.7 V
VCC/dt 3 V/s (see Figure 5-13)
VCC/dt 3 V/s (see Figure 5-13), external voltage applied on A7
VCC/dt 3 V/s (see Figure 5-13)
VCC/dt 3 V/s (see Figure 5-13), external voltage applied on A7
VLD 0, VCC= 2.2 V, 3 V 10 15 µA
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
VLD = 1 70 120 155 mV VLD = 2 to 14
VLD = 15 4.4 20 mV VLD = 1 1.8 1.9 2.05
VLD = 2 1.94 2.1 2.23 VLD = 3 2.05 2.2 2.35 VLD = 4 2.14 2.3 2.46 VLD = 5 2.24 2.4 2.58 VLD = 6 2.33 2.5 2.69 VLD = 7 2.46 2.65 2.84 VLD = 8 2.58 2.8 2.97 VLD = 9 2.69 2.9 3.10 VLD = 10 2.83 3.05 3.26 VLD = 11 2.94 3.2 3.39 VLD = 12 3.11 3.35 3.58 VLD = 13 3.24 3.5 3.73 VLD = 14 3.43 3.7
VLD = 15 1.1 1.2 1.3
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
V
(SVS_IT–)
× 0.001 × 0.016
V
(SVS_IT–)
(2)
3.96
µs
12 µs
V
(2) (2) (2)
0
0.5
1
1.5
2
V
CC
V
CC
1ns 1ns
t
pw
tpw-PulseWidth-ms
3V
1 10 1000
t
f
t
r
t-PulseWidth-ms
100
t
pw
3V
t =t
f r
RectangularDrop
TriangularDrop
V
CC(drop)
V
CC(d ro p )
- V
V
CC(drop)
V
CC(start)
V
CC
V
(B_IT-)
Brownout
Region
V
(SVSstart)
V
(SVS_IT-)
SoftwareSetsVLD>0:
SVSis Active
t
d(SVSR)
undefined
V
hys(SVS_IT-)
0
1
t
d(BOR)
Brownout
0
1
t
d(SVSon)
t
d(BOR)
0
1
SetPOR
Brown
Out
Region
SVSCircuitis ActiveFromVLD>toVCC<V(B_IT-)
SVSOut
Vhys(B_IT-)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
Figure 5-13. SVS Reset (SVSR) vs Supply Voltage
Figure 5-14. V
CC(drop)
with a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal
26 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
T -
A
°
CV -V
CC
1.8 3.0
2.4 3.6
1.0
20 6040 85
1.0
0-20-400
f
(DCO)
f
(DCO3V)
f
(DCO)
f
(DCO20 C)°
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.19 DCO
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
N
= 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,
f
(DCOCLK)
f
(DCO = 2)
f
(DCO = 27)
f
(DCO = 2)
f
(DCO = 27)
f
(DCO = 2)
f
(DCO = 27)
f
(DCO = 2)
f
(DCO = 27)
f
(DCO = 2)
f
(DCO = 27)
S
n
D
t
D
V
(DCO)
DCOPLUS = 0
2.2 V, 3 V 1 MHz
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 MHz
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 MHz
FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 MHz
FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 MHz
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 MHz
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 MHz
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 MHz
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 MHz
FN_8 = 1, FN_4 = 1 = FN_3 = FN_2 = x, DCOPLUS = 1 MHz
FN_8 = 1, FN_4 = 1 = FN_3 = FN_2 = x, DCOPLUS = 1 MHz
Step size between adjacent DCO taps: Sn= f
DCO(Tap n+1)/fDCO(Tap n)
Temperature drift, N FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0
Drift with VCCvariation, N FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0
(see Figure 5-16 for taps 21 to 27)
= 01Eh,
(DCO)
= 01Eh,
(DCO)
1 < TAP 20 1.06 1.11
CC
2.2 V 0.3 0.65 1.25
3 V 0.3 0.7 1.3
2.2 V 2.5 5.6 10.5
3 V 2.7 6.1 11.3
2.2 V 0.7 1.3 2.3
3 V 0.8 1.5 2.5
2.2 V 5.7 10.8 18
3 V 6.5 12.1 20
2.2 V 1.2 2 3
3 V 1.3 2.2 3.5
2.2 V 9 15.5 25
3 V 10.3 17.9 28.5
2.2 V 1.8 2.8 4.2
3 V 2.1 3.4 5.2
2.2 V 13.5 21.5 33
3 V 16 26.6 41
2.2 V 2.8 4.2 6.2
3 V 4.2 6.3 9.2
2.2 V 21 32 46
3 V 30 46 70
TAP = 27 1.07 1.17
2.2 V –0.2 –0.3 –0.4
3 V –0.2 –0.3 –0.4
MIN TYP MAX UNIT
0 5 15 %/V
%/°C
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 27
Figure 5-15. DCO Frequency vs Supply Voltage VCCand vs Ambient Temperature
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
DCOFrequency AdjustedbyBits 2 to2 inSCFI1{N }
9 5
{DCO}
FN_2=0 FN_3=0 FN_4=0 FN_8=0
FN_2=1 FN_3=0 FN_4=0 FN_8=0
FN_2=x FN_3=1 FN_4=0 FN_8=0
FN_2=x FN_3=x FN_4=1 FN_8=0
FN_2=x FN_3=x FN_4=x
FN_8=1
Legend
ToleranceatTap27
ToleranceatTap2
OverlappingDCORanges: UninterruptedFrequencyRange
f
(DCO)
1 2720
1.11
1.17
DCOTap
Sn - S te p s iz e Ratio b et w een D C O Ta p s
Min
Max
1.07
1.06
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-16. DCO Tap Step Size
www.ti.com
28 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-17. Five Overlapping DCO Ranges Controlled by FN_x Bits
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.20 Crystal Oscillator, LFXT1 Oscillator
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OSCCAPx = 0h, VCC= 2.2 V, 3 V 0
C
C
V V
XIN
XOUT
IL IH
Integrated input capacitance
Integrated output capacitance
Low-level input voltage at XIN VCC= 2.2 V, 3 V High-level input voltage at XIN VCC= 2.2 V, 3 V
(3)
(3)
(1) The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is
(C
× C
) / (C
+ C
XIN
(2) To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.
XOUT
XIN
). This is independent of XTS_FLL.
XOUT
• Keep the trace between the MCU and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
• Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
(3) TI recommends external capacitance for precision real-time clock applications; OSCCAPx = 0h. (4) Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
OSCCAPx = 1h, VCC= 2.2 V, 3 V 10 OSCCAPx = 2h, VCC= 2.2 V, 3 V 14 OSCCAPx = 3h, VCC= 2.2 V, 3 V 18 OSCCAPx = 0h, VCC= 2.2 V, 3 V 0 OSCCAPx = 1h, VCC= 2.2 V, 3 V 10 OSCCAPx = 2h, VCC= 2.2 V, 3 V 14 OSCCAPx = 3h, VCC= 2.2 V, 3 V 18
(4) (4)
0.8 × V
V
SS CC
(1) (2)
0.2 × V
pF
pF
CC
V
CC
V V
5.21 Crystal Oscillator, XT2 Oscillator
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
C
XT2IN
C
XT2OUT
V
IL
V
IH
(1) The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. (2) Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
Integrated input capacitance VCC= 2.2 V, 3 V 2 pF Integrated output capacitance VCC= 2.2 V, 3 V 2 pF
Input levels at XT2IN
VCC= 2.2 V, 3 V
(2)
0.8 × V
(1)
V
SS
CC
0.2 × V
CC
V
CC
5.22 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK
f
USCI
f
BITCLK
t
τ
USCI input clock frequency External: UCLK f
Duty cycle = 50% ±10%
BITCLK clock frequency (equals baud rate in MBaud)
UART receive deglitch time UART
(1)
2.2 V, 3 V 1 MHz
2.2 V 50 150 600 3 V 50 100 600
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
MIN TYP MAX UNIT
SYSTEM
V V
MHz
ns
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 29
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.23 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18 and Figure 5-19)
f
USCI
t
SU,MI
t
HD,MI
t
VALID,MO
PARAMETER TEST CONDITIONS V
USCI input clock frequency f
SMCLK, ACLK Duty cycle = 50% ±10%
SOMI input data setup time ns
iSOMI input data hold time ns
SIMO output data valid time UCLK edge to SIMO valid, CL= 20 pF ns
CC
2.2 V 110 3 V 75
2.2 V 0 3 V 0
2.2 V 30 3 V 20
MIN MAX UNIT
SYSTEM
5.24 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-20 and Figure 5-21)
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VALID,SO
PARAMETER TEST CONDITIONS V
STE lead time STE low to clock
STE lag time Last clock to STE high
STE access time STE low to SOMI data out
STE disable time STE high to SOMI high impedance
SIMO input data setup time ns
SIMO input data hold time ns
SOMI output data valid time UCLK edge to SOMI valid, CL= 20 pF ns
CC
2.2 V, 3 V 50 ns
2.2 V, 3 V 10 ns
2.2 V, 3 V 50 ns
2.2 V, 3 V 50 ns
2.2 V 20 3 V 15
2.2 V 10 3 V 10
2.2 V 75 110 3 V 50 75
MIN TYP MAX UNIT
MHz
30 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
UCLK
CKPL = 0
CKPL = 1
SIMO
1/f
UC xCLK
t
LOW /HIGHtLOW /HIGH
SOMI
t
SU ,MI
t
HD ,MI
t
VALID , MO
UCLK
CKPL = 0
CKPL = 1
SIMO
1/f
UCx CLK
t
LOW /HIGHtLOW /HIGH
SOMI
t
SU ,MI
t
HD ,MI
t
VALID , MO
www.ti.com
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-18. SPI Master Mode, CKPH = 0
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 31
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-19. SPI Master Mode, CKPH = 1
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
STE
UCLK
CKPL =0
CKPL =1
t
STE ,LEAD
t
STE ,LAG
t
ACC
t
DIS
t
LOW /HIGHtLOW /HIGH
t
SU ,SI
t
HD ,SI
t
VALID , SO
SO MI
SI MO
1/f
UCx CLK
STE
UCLK
CKPL = 0
CKPL = 1
SOMI
t
ACC
t
DIS
1/f
UCx CLK
t
LOW /HIGHtLOW /HIGH
SIMO
t
SU ,SIMO
t
HD ,SIMO
t
VALID , SOMI
t
STE ,LEAD
t
STE ,LAG
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-20. SPI Slave Mode, CKPH = 0
www.ti.com
32 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-21. SPI Slave Mode, CKPH = 1
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
SDA
SCL
t
LOW
t
HD ,DAT
t
SU , DAT
t
HD ,STA
t
SU ,STAtHD ,STA
t
HIGH
t
SU ,STO
t
SP
t
BUF
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.25 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-22)
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK
USCI input clock frequency External: UCLK f
Duty Cycle = 50% ±10%
SCL clock frequency 2.2 V, 3 V 0 400 kHz
f
100 kHz 2.2 V, 3 V 4
Hold time (repeated) START µs
Setup time for a repeated START µs
SCL
f
> 100 kHz 2.2 V, 3 V 0.6
SCL
f
100 kHz 2.2 V, 3 V 4.7
SCL
f
> 100 kHz 2.2 V, 3 V 0.6
SCL
Data hold time 2.2 V, 3 V 0 ns Data setup time 2.2 V, 3 V 250 ns Setup time for STOP 2.2 V, 3 V 4 µs
Pulse duration of spikes suppressed by input filter
2.2 V 50 150 600 3 V 50 100 600
MIN TYP MAX UNIT
SYSTEM
MHz
ns
Figure 5-22. I2C Mode Timing
5.26 USART1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
USART1 deglitch time ns
(τ)
(1) The signal applied to the USART1 receive signal (terminal) (URXD1) must meet the timing requirements of t
flip-flop is set. The URXS flip-flop is set with negative pulses that meet the minimum-timing condition of t set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD1 line.
VCC= 2.2 V, SYNC = 0, UART mode 200 430 800 VCC= 3 V, SYNC = 0, UART mode 150 280 500
to ensure that the URXS
(τ)
. The operating conditions to
(τ)
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 33
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.27 12-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AV
CC
V
(P6.x/Ax)
I
ADC12
I
REF+
C
I
R
I
Analog supply voltage AVSSand DVSSare connected together, 2.2 3.6 V
Analog input voltage range
Operating supply current into AVCCterminal
Operating supply current into AVCCterminal
(3)
(4)
Input capacitance VCC= 2.2 V 40 pF Input MUX ON resistance 0 V VAx≤ V
(1) The leakage current is defined in the leakage current table with Ax parameter. (2) The analog input voltage range must be within the selected reference voltage range VR+to VR–for valid conversion results. (3) The internal reference supply current is not included in current consumption parameter I (4) The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
AVCCand DVCCare connected together, V
= V
(AVSS)
All external Ax terminals, Analog inputs selected in
(2)
ADC12MCTLx register, P6Sel.x = 1, 0 V V
VAx≤ V
(AVSS)
f
ADC12CLK
ADC12ON = 1, REFON = 0, mA SHT0 = 0, SHT1 = 0, ADC12DIV = 0
f
ADC12CLK
ADC12ON = 0, REFON = 1, REF2_5V = 1 f
ADC12CLK
ADC12ON = 0, REFON = 1, REF2_5V = 0
= 0 V
(DVSS)
(AVCC)
= 5.0 MHz, VCC= 2.2 V 0.65 1.3
VCC= 3 V 0.8 1.6
= 5.0 MHz,
= 5.0 MHz,
VCC= 3 V 0.5 0.8 VCC= 2.2 V 0.5 0.8
VCC= 3 V 0.5 0.8
Only one terminal can be selected at one time, Ax
AVCC
VCC= 3 V 2000
.
ADC12
(1)
AVCC
V
mA
5.28 12-Bit ADC, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Ve
REF+
V
/Ve
REF–
REF–
(Ve
Differential external reference
REF+
V
/Ve
REF–
REF–
I
VeREF+
I
VREF–/VeREF–
Positive external reference voltage input
Negative external reference voltage input
) voltage input
Input leakage current 0 V Ve Input leakage current 0 V Ve
Ve
Ve
Ve
REF+
REF+
REF+
> V
> V
> V
REF+ REF–
REF–
REF–
REF–
/Ve
/Ve
/Ve
VV
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
REF–
REF–
REF–
AVCC AVCC
(2)
(3)
(4)
VCC= 2.2 V, 3 V ±1 µA VCC= 2.2 V, 3 V ±1 µA
(1)
1.4 V
AVCC
0 1.2 V
1.4 V
AVCC
V
V
34 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
C
VREF+
1mF
0
1ms
10ms
100ms t
REFON
t
REFON
»
.66xC [ms]withC in
VREF+ VREF+
m
F
100mF
10mF
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.29 12-Bit ADC, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
REF2_5V = 1 for 2.5 V,
V
REF+
AV
CC(min)
I
VREF+
I
L(VREF+)
Positive built in reference voltage output
AVCCminimum voltage, Positive built in reference active
Load current out of V terminal
Load-current regulation, V terminal
REF+
REF+
max I
VREF+
REF2_5V = 0 for 1.5 V, I
max I
VREF+
REF2_5V = 0, I REF2_5V = 1, I REF2_5V = 1, I
I
= 500 µA ±100 µA, VCC= 2.2 V ±2
VREF+
Analog input voltage 0.75 V, REF2_5V = 0
I
= 500 µA ±100 µA,
VREF+
Analog input voltage 1.25 V, VCC= 3 V ±2
VREF+
VREF+
VREF+ VREF+ VREF+
I
VREF+
I
VREF+
max I min I min I
min
min
VREF+ VREF+
I
REF2_5V = 1 I
= 100 µA 900 µA,
I
DL(VREF+)
C
VREF+
T
REF+
t
REFON
Load current regulation, VREF+ terminal
Capacitance at pin V
REF+
(1)
Temperature coefficient of built- I in reference 0 mA I
Settling time of internal reference I voltage (see Figure 5-23 )
(2)
VREF+
C
= 5 µF, Ax 0.5 × V
VREF+
Error of conversion result 1 LSB
REF+
REFON = 1, 0 mA I
VREF+
VREF+
V
REF+
I
VREF+
VREF+
max
is a constant in the range of
1 mA
VREF+
= 0.5 mA, C
= 1.5 V, V
AVCC
VREF+
= 2.2 V
= 10 µF,
(1) The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two
capacitors between pins V
(2) The condition is that the error in a conversion started after t
capacitive load.
and AVSSand V
REF+
REF-–
/Ve
and AVSS: 10-µF tantalum and 100-nF ceramic.
REF–
is less than ±0.5 LSB. The settling time depends on the external
REFON
VCC= 3 V 2.4 2.5 2.6
VCC= 2.2 V, 3 V 1.44 1.5 1.56
I
VREF+
min 2.2
VREF+
–0.5 mA 2.8 V– 1 mA 2.9
VCC= 2.2 V 0.01 –0.5 VCC= 3 V 0.01 –1
VCC= 3 V ±2
, VCC= 3 V 20 ns
VCC= 2.2 V, 3 V 5 10 µF
VCC= 2.2 V, 3 V ±100 ppm/°C
mA
LSB
17 ms
V
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 35
Figure 5-23. Typical Settling Time of Internal Reference t
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
vs External Capacitor on V
REFON
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
REF+
+
-
10 m F 100 nF
AV
SS
MSP430FG461x
+
-
10 m F 100 nF
AV
CC
10 m F 100 nF
DV
SS1/2
DV
CC1/2
From Power Supply
+
-
ApplyExternalReference[V ]
eREF+
orUseInternalReference[V ]
REF+
V orV
REF+ eREF+
V /V
REF- eREF-
ReferenceIsInternally Switchedto AV
SS
+
-
10 m F 100 nF
AV
SS
MSP430FG461x
+
-
+
-
10 m F 100 nF
10 m F 100 nF
AV
CC
10 m F 100 nF
DV
SS1/2
DV
CC1/2
From
Power
Supply
Apply
External
Reference
+
-
ApplyExternalReference[V ]
eREF+
orUseInternalReference[V ]
REF+
V orV
REF+ eREF+
V /V
REF- eREF-
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
Figure 5-24. Supply Voltage and Reference Voltage Design V
Figure 5-25. Supply Voltage and Reference Voltage Design V
REF–
/Ve
REF–
REF–
/Ve
External Supply
REF–
= AVSS, Internally Connected
36 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.30 12-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
ADC12CLK
f
ADC12OSC
t
CONVERT
Internal ADC12 ADC12DIV = 0, oscillator f
Conversion time µs
For specified performance of ADC12 linearity parameters
ADC12CLK
C f
ADC12OSC
External f SMCLK,
= f
ADC12OSC
5 µF, Internal oscillator,
VREF+
= 3.7 MHz to 6.3 MHz
ADC12CLK
from ACLK, MCLK, or
ADC12SSEL 0
t
ADC12ON
t
Sample
Turnon settling time of the ADC
Sampling time ns
(1) The condition is that the error in a conversion started after t
settled.
(2) Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
t
Sample
n+1
= ln(2
) × (RS+ RI) x CI+ 800 ns where n = ADC resolution = 12, RS= external source resistance.
(1)
RS= 400 ,RI= 1000 , CI= 30pF, τ = [RS +RI] × C
(2)
I
ADC12ON
is less than ±0.5 LSB. The reference and input signal are already
CC
2.2 V, 3 V 0.45 5 6.3 MHz
2.2 V, 3 V 3.7 5 6.3 MHz
2.2 V, 3 V 2.06 3.51
3 V 1220
2.2 V 1400
MIN TYP MAX UNIT
13 × ADC12DIV
× 1/f
ADC12CLK
5.31 12-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
Integral linearity
E
I
error Differential linearity (Ve
E
D
error C
E
Offset error Internal impedance of source RS < 100 , 2.2 V, 3 V ±2 ±4 LSB
O
E
Gain error 2.2 V, 3 V ±1.1 ±2 LSB
G
Total unadjusted (Ve
E
T
error CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
1.4 V (Ve
1.6 V < (Ve
REF+
= 10 µF (tantalum) and 100 nF (ceramic)
VREF+
(Ve
REF+
C
= 10 µF (tantalum) and 100 nF (ceramic)
VREF+
(Ve
REF+
C
= 10 µF (tantalum) and 100 nF (ceramic)
VREF+
REF+
– V
– V
– V
-– V
REF+ REF+
REF–
REF–
REF–
REF–
– V – V
/Ve
/Ve
/Ve
/Ve
/Ve
REF–
/Ve
REF–
) min (Ve
REF–
) min (Ve
REF–
)min (Ve
REF–
REF–
) min 1.6 V ±2
REF–
) min [V
REF–
)min (Ve
REF+
REF+
REF+
REF+–VREF–
] ±1.7
AVCC
– V
/Ve
/Ve
/Ve
REF–
REF–
REF–
REF–
),
),
),
),
– V
– V
REF–
REF–
REF–
/Ve
CC
2.2 V, 3 V LSB
2.2 V, 3 V ±1 LSB
2.2 V, 3 V ±2 ±5 LSB
MIN TYP MAX UNIT
100 ns
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 37
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.32 12-Bit ADC, Temperature Sensor and Built-In V
MID
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
I
SENSOR
V
SENSOR
TC
SENSOR
t
SENSOR(sample)
I
VMID
V
MID
t
VMID(sample)
(1) The sensor current I
high). When REFON = 1, I
(2) The temperature sensor offset can be as much as ±20°C. TI recommends a single-point calibration to minimize the offset error of the
Operating supply current REFON = 0, INCH = 0Ah, into AVCCterminal
(2)
(1)
ADC12ON = N/A, TA= 25°C ADC12ON = 1, INCH = 0Ah,
TA= 0°C ADC12ON = 1, INCH = 0Ah 2.2 V, 3 V 3.55 ±3% mV/°C
Sample time required if ADC12ON = 1, INCH = 0Ah, channel 10 is selected
Current into divider at channel 11
(4)
AVCCdivider at channel 11 V
Sample time required if ADC12ON = 1, INCH = 0Bh, channel 11 is selected
is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is
SENSOR
SENSOR
(3)
Error of conversion result 1 LSB
ADC12ON = 1, INCH = 0Bh µA
ADC12ON = 1, INCH = 0Bh, V
0.5 × V
MID
(5)
Error of conversion result 1 LSB
is already included in I
AVCC
REF+
.
CC
2.2 V 40 120 3 V 60 160
2.2 V, 3 V 986 mV
2.2 V 30 3 V 30
2.2 V N/A 3 V N/A
2.2 V 1.1 1.1 ±0.04 3 V 1.5 1.50 ±0.04
2.2 V 1400 3 V 1220
built-in temperature sensor. (3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t (4) No additional current is needed. The V (5) The on-time t
is included in the sampling time t
VMID(on)
is used during sampling.
MID
VMID(sample)
; no additional on time is needed.
MIN TYP MAX UNIT
µA
µs
(4) (4)
ns
SENSOR(on)
5.33 12-Bit DAC, Supply Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
AV
PARAMETER TEST CONDITIONS V
Analog supply voltage AVCC= DVCC, AVSS= DVSS= 0 V 2.20 3.60 V
CC
CC
DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0800h
DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, 50 110 Ve
= V
= V
REF+
REF+
= AV
= AV
CC
2.2 V, 3 V µA
CC
I
DD
Supply current, single DAC
(1) (2)
channel
REF+
DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, 200 440 Ve
REF+
DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, 700 1500 Ve
= V
REF+
DAC12_xDAT = 800h, V
PSRR 70 dB
Power-supply rejection
(3)(4)
ratio
ΔAVCC= 100 mV DAC12_×DAT = 800h, V
ΔAVCC= 100 mV
REF+
= AV
CC
REF
REF
= 1.5 V,
= 1.5 V or 2.5 V,
2.2 V
3 V
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. (2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. (3) PSRR = 20× log{ΔAVCC/ΔV (4) V
is applied externally. The internal reference is not used.
REF
DAC12_xOUT
}.
MIN TYP MAX UNIT
50 110
38 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Positive
Negative
V
R+
GainError
OffsetError
DACCode
DACV
OUT
Idealtransfer function
R
Load
=
AV
CC
C
Load
=100pF
2
DACOutput
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.34 12-Bit DAC, Linearity Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-26)
PARAMETER TEST CONDITIONS V
CC
Resolution 12-bit monotonic 12 bits
V
= 1.5 V,
INL Integral nonlinearity
(1)
DNL Differential nonlinearity
Offset voltage without calibration
E
O
Offset voltage with calibration
d
E(O)/dT
E
G
d
E(G)/dT
Offset error temperature coefficient
Gain error
(1)
Gain temperature coefficient
ref
DAC12AMPx = 7, DAC12IR = 1 V
= 2.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1 V
= 1.5 V,
ref
(1)
(1) (2)
(1)
DAC12AMPx = 7, DAC12IR = 1 V
= 2.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1 V
= 1.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1
(1) (2)
V
= 2.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1 V
= 1.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1 V
= 2.5 V,
ref
DAC12AMPx = 7, DAC12IR = 1
(1)
V
= 1.5 V 2.2 V
REF
V
= 2.5 V 3 V
REF
2.2 V
3 V
2.2 V
3 V
2.2 V
3 V
2.2 V
3 V
2.2 V, 3 V ±30 µV/°C
2.2 V, 3 V 10
DAC12AMPx = 2 100
t
Offset_Cal
Time for offset calibration
(3)
DAC12AMPx = 3, 5 2.2 V, 3 V 32 ms DAC12AMPx = 4, 6, 7 6
(1) Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of
the first order equation: y = a + b × x. V (2) The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting bit DAC12CALON.
DAC12_xOUT
= EO+ (1 + EG) × (Ve
/4095) × DAC12_xDAT, DAC12IR = 1.
REF+
(3) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx =
{0, 1}. TI recommends that the DAC12 module be configured before initiating calibration. Port activity during calibration may effect
accuracy and is not recommended.
MIN TYP MAX UNIT
±2.0 ±8.0 LSB
±0.4 ±1.0 LSB
±21
mV
±2.5
±3.5 %FSR
ppm of
FSR/°C
Figure 5-26. Linearity Test Load Conditions and Gain and Offset Definition
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 39
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
DAC12_xDAT-DigitalCode
DNL -DifferentialNonlinearityError-LSB
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0 0 512 1024 1536
2048
2560 3072
3584 4095
V =2.2V,V =1/.5V DAC12AMPx=7
DAC12IR=1
CC REF
V = 2.2 V, V = 1.5 V DAC12AMPx = 7
DAC12IR = 1
CC REF
4
3
2
1
0
-1
-2
-3
-4 0 512 1024 1536
2048
2560 3072
3584 4095
DAC12_xDAT – Digital Code
INL – Integral Nonlinearity Error – LSB
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-27. Typical INL Error vs Digital Input Data
www.ti.com
Figure 5-28. Typical DNL Error vs Digital Input Data
40 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
R
O/P(DAC12_x)
Max
0.3
AV
CC
AVCC-0.3V
V
OUT
Min
R
Load
AV
CC
C
Load
=100pF
2
I
Load
DAC12
O/P(DAC12_x)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.35 12-Bit DAC, Output Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
No load, Ve DAC12_xDAT = 0h, DAC12IR = 1, 0 0.005
REF+
= AVCC,
DAC12AMPx = 7 No load, Ve
DAC12_xDAT = 0FFFh, DAC12IR = 1, AV
V
O
Output voltage range (see
Figure 5-29)
(1)
DAC12AMPx = 7 R
= 3 k, Ve
Load
DAC12_xDAT = 0h, DAC12IR = 1, 0 0.1
REF+
= AVCC,
REF+
DAC12AMPx = 7 R
= 3 k, Ve
Load
DAC12_xDAT = 0FFFh, DAC12IR = 1, AV
REF+
DAC12AMPx = 7
C
L(DAC12)
I
L(DAC12)
R
O/P(DAC12)
Max DAC12 load capacitance
Max DAC12 load current mA
R
= 3 k, V
Output resistance (see
Figure 5-29)
Load
DAC12AMPx = 2, DAC12_xDAT = 0h R
= 3 k,
Load
V
O/P(DAC12)
DAC12_xDAT = 0FFFh R
= 3 k,
Load
0.3 V V
O/P(DAC12)
> AVCC– 0.3 V, 2.2 V, 3 V 150 250
O/P(DAC12)
(1) Data is valid after the offset calibration of the output amplifier.
= AVCC,
= AVCC,
< 0.3 V,
AVCC– 0.3 V
CC
2.2 V, 3 V V
2.2 V, 3 V 100 pF
2.2 V –0.5 +0.5 3 V –1.0 +1.0
MIN TYP MAX UNIT
AVCC–
0.05
AVCC–
0.13
CC
CC
150 250
1 4
Figure 5-29. DAC12_x Output Resistance Tests
5.36 12-Bit DAC, Reference Input Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
Ve
REF+
Ri
(VREF+)
(Ri
(VeREF+)
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). (2) The maximum voltage applied at reference input voltage terminal Ve (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). (4) The maximum voltage applied at reference input voltage terminal Ve (5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 41
Reference input voltage range
,
Reference input resistance 2.2 V, 3 V
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MIN TYP MAX UNIT
AVCC/3 AVCC+ 0.2
AVCCAVCC+ 0.2
DAC12IR = 0 DAC12IR = 1
(1) (2) (3) (4)
CC
2.2 V, 3 V V
DAC12_0 IR = DAC12_1 IR = 0 20 M DAC12_0 IR = 1, DAC12_1 IR = 0 DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 IR = DAC12_1 IR = 1,
DAC12_0 SREFx = DAC12_1 20 24 28
(5)
SREFx
= [AVCC– V
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
REF+
= [AVCC– V
REF+
E(O)
E(O)
40 48 56
] / [3 × (1 + EG)]. ] / (1 + EG).
k
Conversion1 Conversion2
V
OUT
Conversion3
10%
t
SRLH
t
SRHL
90%
10%
90%
R
Load
AV
CC
C
Load
=100pF
2
DACOutput
R
O/P(DAC12.x)
I
Load
Conversion1 Conversion2
V
OUT
Conversion3
Glitch
Energy
+/-1/2LSB
+/-1/2LSB
t
settleLH
t
settleHL
=3k
W
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.37 12-Bit DAC, Dynamic Specifications
V
= VCC, DAC12IR = 1, over recommended ranges of supply voltage and operating free-air temperature (unless otherwise
ref
noted) (see Figure 5-30 and Figure 5-31)
PARAMETER TEST CONDITIONS V
t
ON
DAC12 on time Error
(see Figure 5-30)
< ±0.5 LSB
V(O)
DAC12_xDAT = 800h,
DAC12AMPx = 0 {2, 3, 4} 60 120
(1)
DAC12AMPx = 0 {5, 6} 2.2 V, 3 V 15 30 µs DAC12AMPx = 0 7 6 12
CC
DAC12AMPx = 2 100 200
t
S(FS)
Settling time, full scale DAC12AMPx = 3,5 2.2 V, 3 V 40 80 µs
DAC12_xDAT = 80hF7Fh80h
DAC12AMPx = 4, 6, 7 15 30 DAC12AMPx = 2 5
DAC12AMPx = 4, 6, 7 1
t
S(C–C)
Settling time, code to code 3F8h408h3F8h DAC12AMPx = 3,5 2.2 V, 3 V 2 µs
DAC12_xDAT = BF8hC08hBF8h
DAC12AMPx = 2 0.05 0.12
SR Slew rate DAC12AMPx = 3,5 2.2 V, 3 V 0.35 0.7 V/µs
DAC12_xDAT = 80hF7Fh80h
(2)
DAC12AMPx = 4, 6, 7 1.5 2.7 DAC12AMPx = 2 600
Glitch energy, full-scale DAC12AMPx = 3,5 2.2 V, 3 V 150 nV-s
DAC12_xDAT = 80hF7Fh80h
DAC12AMPx = 4, 6, 7 30
(1) R (2) Slew rate applies to output voltage steps 200 mV.
Load
and C
connected to AVSS(not AVCC/2) in Figure 5-30.
Load
MIN TYP MAX UNIT
Figure 5-30. Settling Time and Glitch Energy Testing
42 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-31. Slew Rate Testing
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
DAC12_xDAT 080h
V
OUT
1/f
Toggle
F7Fh
V
DAC12_yOUT
080h F7Fh 080h
V
DAC12_xOUT
REF+
R
Load
AV
CC
C
Load
= 100 pF
2
I
Load
DAC12_1
R
Load
AV
CC
C
Load
= 100 pF
2
I
Load
DAC12_0
DAC0
DAC1
V
Ve
REF+
AC
DC
R
Load
AV
CC
C
Load
=100pF
2
I
Load
DAC12_x
DACx
=3k
W
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
5.38 12-Bit DAC, Dynamic Specifications Continued
TA= 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS V
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80hF7Fh, R f
DAC12_1OUT
= 10 kHz at 50/50 duty cycle
DAC12_0DAT = 80hF7Fh, R DAC12_1DAT = 800h, No Load, –80 f
DAC12_0OUT
= 10 kHz at 50/50 duty cycle
Load
Load
BW
(1) R
–3dB
3-dB bandwidth, VDC= 1.5 V, VAC= 0.1 VPP 2.2 V, 3 V 180 kHz (see Figure 5-32)
Channel-to-channel crosstalk 2.2 V, 3 V dB (see Figure 5-33)
= 3 k, C
LOAD
LOAD
(1)
= 100 pF
SLAS508J –APRIL 2006–REVISED JUNE 2015
CC
MIN TYP MAX UNIT
40
550
= 3 kΩ –80
= 3 kΩ,
Figure 5-32. Test Conditions for 3-dB Bandwidth Specification
Figure 5-33. Crosstalk Test Conditions
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 43
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MSP430CG4618 MSP430CG4617 MSP430CG4616
Submit Documentation Feedback
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.39 Operational Amplifier OA, Supply Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
Supply voltage 2.2 3.6 V
CC
CC
Fast Mode, OARRIP = 1 (rail-to-rail mode off) 180 290 Medium Mode, OARRIP = 1 (rail-to-rail mode off) 110 190
I
CC
Supply current
(1)
Slow Mode, OARRIP = 1 (rail-to-rail mode off) 50 80 Fast Mode, OARRIP = 0 (rail-to-rail mode on) 300 490
2.2 V, 3 V µA
Medium Mode, OARRIP = 0 (rail-to-rail mode on) 190 350 Slow Mode, OARRIP = 0 (rail-to-rail mode on) 90 190
PSRR Power supply rejection ratio Noninverting 2.2 V, 3 V 70 dB
(1) P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode.
MIN TYP MAX UNIT
5.40 Operational Amplifier OA, Input/Output Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
I/P
I
Ikg
Voltage supply, I/P V
Input leakage current, I/P
OARRIP = 1 (rail-to-rail mode off) –0.1 VCC– 1.2 OARRIP = 0 (rail-to-rail mode on) –0.1 VCC+ 0.1 TA= –40 to +55°C –5 ±0.5 5
(1) (2)
TA= +55 to +85°C –20 ±5 20
CC
Fast Mode 50 Medium Mode f
V
n
Voltage noise density, I/P nV/HZ
Slow Mode Fast Mode 30 Medium Mode f
= 1 kHz
V(I/P)
= 10 kHz 50
V(I/P)
Slow Mode 65
V
IO
V
OH
V
OL
R
O/P (OAx)
Offset voltage, I/P 2.2 V, 3 V ±10 mV Offset temperature drift, I/P Offset voltage drift with supply, 0.3 V VIN≤ VCC– 0.3 V
I/P ΔVCC≤ ±10%, TA= 25°C
High-level output voltage, O/P V
Low-level output voltage, O/P V
Output resistance (see
Figure 5-34)
(4)
(3)
2.2 V, 3 V ±10 µV/°C
2.2 V, 3 V ±1.5 mV/V
Fast Mode, I Slow Mode, I Fast Mode, I Slow Mode, I R
= 3 k, C
Load
OARRIP = 0 (rail-to-rail mode on), 150 250 V
R OARRIP = 0 (rail-to-rail mode on), 2.2 V, 3 V V
R OARRIP = 0 (rail-to-rail mode on),
0.2 V V
O/P(OAx)
= 3 k, C
Load
O/P(OAx)
= 3 k, C
Load
< 0.2 V
> AVCC– 0.2 V
O/P(OAx)
–500 µA 2.2 V VCC– 0.2 V
SOURCE
–150 µA 3 V VCC– 0.1 V
SOURCE
+500 µA 2.2 V V
SOURCE
+150 µA 3 V V
SOURCE
= 50 pF,
Load
= 50 pF,
Load
= 50 pF,
Load
AVCC– 0.2 V
CMRR Common-mode rejection ratio Noninverting 2.2 V, 3 V 70 dB
(1) ESD damage can degrade input current leakage. (2) The input bias current is overridden by the input leakage current. (3) Calculated using the box method. (4) Specification valid for voltage-follower OAx configuration.
MIN TYP MAX UNIT
nA
80
140
CC
CC SS SS
0.2
0.1
150 250
0.1 4
44 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
1
10 100 1000 10000
0
-50
-100
-150
-200
-250
InputFrequency-kHz
Phase-degrees
FastMode
MediumMode
SlowMode
140
120
100
80
60
40
20
0
-20
-40
-60
-80
0.001 0.01 0.1
1
10 100 1000 10000
InputFrequency-kHz
Gain=dB
FastMode
MediumMode
SlowMode
R
O/P(OAx)
Max
0.2V AV
CC
AVCC-0.2V
V
OUT
Min
R
Load
AV
CC
C
Load
2
I
Load
OAx
O/P(OAx)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 5-34. OAx Output Resistance Tests
5.41 Operational Amplifier OA, Dynamic Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
Fast Mode 1.2
SR Slew rate Medium Mode 0.8 V/µs
Slow Mode 0.3
Open-loop voltage gain 100 dB
φm Phase margin CL= 50 pF 60 deg
Gain margin CL= 50 pF 20 dB
GBW (see Figure 5-35 and 2.2 V, 3 V MHz
Gain-bandwidth product
Figure 5-36)
t t
Enable time on ton, Noninverting, Gain = 1 2.2 V, 3 V 10 20 µs
en(on)
Enable time off 2.2 V, 3 V 1 µs
en(off)
Noninverting, Fast Mode, RL= 47 k, CL= 50 pF Noninverting, Medium Mode, RL= 300 k, CL= 50 pF
Noninverting, Slow Mode, RL= 300 k, CL= 50 pF
MIN TYP MAX UNIT
2.2
1.4
0.5
5.42 Operational Amplifier OA, Typical Characteristics
Figure 5-35. Typical Open-Loop Gain vs Frequency
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 45
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Figure 5-36. Typical Phase vs Frequency
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
5.43 Operational Amplifier OA Feedback Network, Noninverting Amplifier Mode (OAFCx = 4)
over recommended operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
OAFBRx = 0 0.996 1.00 1.002 OAFBRx = 1 1.329 1.334 1.340 OAFBRx = 2 1.987 2.001 2.016
G Gain 2.2 V, 3 V
OAFBRx = 3 2.64 2.667 2.70 OAFBRx = 4 3.93 4.00 4.06 OAFBRx = 5 5.22 5.33 5.43 OAFBRx = 6 7.76 7.97 8.18 OAFBRx = 7 15.0 15.8 16.6
THD Total harmonic distortion and nonlinearity All gains dB
t
Settle
Settling time
(1)
All power modes 2.2 V, 3 V 7 12 µs
2.2 V –60 3 V –70
(1) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
MIN TYP MAX UNIT
5.44 Operational Amplifier OA Feedback Network, Inverting Amplifier Mode (OAFCx = 6)
(1)
over recommended operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
CC
OAFBRx = 1 –0.371 –0.335 –0.298 OAFBRx = 2 –1.031 –1.002 –0.972 OAFBRx = 3 –1.727 –1.668 –1.609
G Gain OAFBRx = 4 2.2 V, 3 V –3.142 –3.00 –2.856
OAFBRx = 5 –4.581 –4.33 –4.073 OAFBRx = 6 –7.529 –6.97 –6.379 OAFBRx = 7 –17.040 –14.8 –12.279
THD Total harmonic distortion and nonlinearity All gains dB
t
Settle
Settling time
(2)
All power modes 2.2 V, 3 V 7 12 µs
2.2 V –60 3 V –70
(1) This includes the two OA configuration "inverting amplifier with input buffer". Both OAs need to be set to the same power mode, OAPMx. (2) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The
settling time of the amplifier itself might be faster.
MIN TYP MAX UNIT
46 Specifications Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
5.45 Flash Memory (FG461x Devices Only)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER V
V
CC(PGM/ERASE)
f
FTG
I
PGM
I
ERASE
I
GMERASE
t
CPT
t
CMErase
Program and erase supply voltage 2.7 3.6 V Flash timing generator frequency 257 476 kHz Supply current from DVCC during program 2.7 V, 3.6 V 3 5 mA Supply current from DVCC during erase Supply current from DVCC during global mass erase Cumulative program time Cumulative mass erase time 2.7 V, 3.6 V 20 ms Program and erase endurance 10
t
Retention
t
Word
t
Block, 0
t
Block, 1-63
t
Block, End
t
Mass Erase
t
Global Mass Erase
t
Seg Erase
Data retention duration TJ= 25°C 100 years Word or byte program time 30 Block program time for 1st byte or word 25 Block program time for each additional byte or word 18 Block program end-sequence wait time Mass erase time 10593 Global mass erase time 10593 Segment erase time 4819
(1) Lower 64KB or upper 64KB flash memory erased. (2) All flash memory erased. (3) The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write
feature is used.
(4) These values are hardwired into the flash controller state machine (t
TEST
CONDITIONS
(1) (2) (3)
(4)
= 1/f
FTG
FTG
CC
MIN TYP MAX UNIT
2.7 V, 3.6 V 3 7 mA
2.7 V, 3.6 V 6 14 mA
2.7 V, 3.6 V 10 ms
4
5
10
cycles
6 t
).
FTG
5.46 JTAG Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
TCK
R
Internal
(1) f (2) TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.
5.47 JTAG Fuse
TCK input frequency
Internal pullup resistance on TMS, TCK, TDI/TCLK
may be restricted to meet the timing requirements of the module selected.
TCK
(1)
(1)
(2)
CC
2.2 V 0 5 3 V 0 10
2.2 V, 3 V 25 60 90 k
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
CC(FB)
V
FB
I
FB
t
FB
(1) After the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to
bypass mode.
Supply voltage during fuse-blow condition TA= 25°C 2.5 V Voltage level on TDI/TCLK for fuse-blow (FG461x) 6 7 V Supply current into TDI/TCLK during fuse blow 100 mA Time to blow fuse 1 ms
MIN TYP MAX UNIT
MHz
Copyright © 2006–2015, Texas Instruments Incorporated Specifications 47
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
General-PurposeRegister
ProgramCounter
StackPointer
StatusRegister
ConstantGenerator
General-PurposeRegister
General-PurposeRegister
General-PurposeRegister
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R12
R13
General-PurposeRegister
General-PurposeRegister
R6
R7
General-PurposeRegister
General-PurposeRegister
R8
R9
General-PurposeRegister
General-PurposeRegister
R10
R11
General-PurposeRegister
General-PurposeRegister
R14
R15
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6 Detailed Description
6.1 CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to­register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.
The MSP430xG461x device family uses the MSP430X CPU and is completely backwards compatible with the MSP430 CPU. For a complete description of the MSP430X CPU, refer to the MSP430x4xx Family User’s Guide (SLAU056).
www.ti.com
48 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.2 Instruction Set
The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; the address modes are listed in Table 6-2.
Table 6-1. Instruction Word Formats
FORMAT EXAMPLE OPERATION
Dual operands, source-destination ADD R4,R5 R4 + R5 R5 Single operands, destination only CALL R8 PC(TOS), R8 PC Relative jump, un/conditional JNE Jump-on-equal bit = 0
Table 6-2. Address Mode Descriptions
ADDRESS MODE S
Register MOV Rs,Rd MOV R10,R11 R10 R11
Indexed MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)M(6+R6)
Symbolic (PC relative) MOV EDE,TONI M(EDE) M(TONI)
Absolute MOV & MEM, & TCDAT M(MEM) M(TCDAT)
Indirect MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) M(Tab+R6)
Indirect autoincrement MOV @Rn+,Rm MOV @R10+,R11
Immediate MOV #X,TONI MOV #45,TONI #45 M(TONI)
(1) NOTE: S = source D = destination
(1)
(1)
D
SYNTAX EXAMPLE OPERATION
M(R10) R11 R10 + 2R10
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 49
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.3 Operating Modes
These devices have one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
Active mode (AM) – All clocks are active
Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active. MCLK is disabled – FLL+ loop control remains active
Low-power mode 1 (LPM1) – CPU is disabled – FLL+ loop control is disabled – ACLK and SMCLK remain active. MCLK is disabled
Low-power mode 2 (LPM2) – CPU is disabled – MCLK, FLL+ loop control and DCOCLK are disabled – DCO DC generator remains enabled – ACLK remains active
Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL+ loop control, and DCOCLK are disabled – DCO DC generator is disabled – ACLK remains active
Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL+ loop control, and DCOCLK are disabled – DCO DC generator is disabled – Crystal oscillator is stopped
www.ti.com
50 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
www.ti.com
6.4 Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 6-3. Interrupt Sources, Flags, and Vectors
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
INTERRUPT SOURCE INTERRUPT FLAG PRIORITY
SYSTEM WORD
INTERRUPT ADDRESS
Power-Up
External Reset WDTIFG
Watchdog KEYV
(1) (2)
Reset 0FFFEh 31, highest
Flash Memory
TBIFG
(1) (3)
(1) (3)
(1) (4)(2)
(1)(4)
(Non)maskable (Non)maskable 0FFFCh 30 (Non)maskable
(4)
Maskable 0FFFAh 29
NMI NMIIFG
Oscillator Fault OFIFG
Flash Memory Access Violation ACCVIFG
Timer_B7 TBCCR0 CCIFG0 Timer_B7 Maskable 0FFF8h 28
TBCCR1 CCIFG1 to TBCCR6 CCIFG6,
Comparator_A CAIFG Maskable 0FFF6h 27
Watchdog Timer+ WDTIFG Maskable 0FFF4h 26
(4)
(1) (4)
(1) (1)
Maskable 0FFF2h 25 Maskable 0FFF0h 24 Maskable 0FFEEh 23 Maskable 0FFECh 22
Maskable 0FFE8h 20
USCI_A0, USCI_B0 Receive UCA0RXIFG, UCB0RXIFG
USCI_A0, USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG
ADC12 ADC12IFG
(1) (4)
Timer_A3 TACCR0 CCIFG0 Timer_A3 Maskable 0FFEAh 21
TACCR1 CCIFG1 and TACCR2 CCIFG2,
TAIFG
(1) (4)
I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7
USART1 Receive URXIFG1 Maskable 0FFE6h 19 USART1 Transmit UTXIFG1 Maskable 0FFE4h 18
I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7
(1) (4)
Maskable 0FFE2h 17
Basic Timer 1, RTC BTIFG Maskable 0FFE0h 16
(1) (4)
(1) (4)
Maskable 0FFDEh 15 Maskable 0FFDCh 14
DMA DMA0IFG, DMA1IFG, DMA2IFG
DAC12 DAC12.0IFG, DAC12.1IFG
0FFDAh 13
Reserved Reserved
(5)
0FFC0h 0, lowest
(1) Multiple source flags (2) Access and key violations, KEYV and ACCVIFG, only applicable to FG devices. (3) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. (4) Interrupt flags are located in the module. (5) The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 51
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
7 6 5 4 03 2 1
Address
01h
rw*0
BTIE UTXIE1 URXIE1
rw*0 rw*0
UCA0TXIE UCA0RXIE
rw*0 rw*0
UCB0TXIE UCB0RXIE
rw*0 rw*0
7 6 5 4 0
OFIE WDTIE
3 2 1
rw*0 rw*0 rw*0
Address
0h ACCVIE NMIIE
rw*0
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.5 Special Function Registers (SFRs)
The MSP430 SFRs are in the lowest address space and are organized as byte mode registers. SFRs should be accessed with byte instructions.
Legend
rw Bit can be read and written. rw-0, rw-1 Bit can be read and written. It is Reset or Set by PUC. rw-(0), rw-(1) Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
6.5.1 Interrupt Enable 1 and 2
WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected.
Active if watchdog timer is configured as a general-purpose timer. OFIE Oscillator fault-interrupt enable NMIIE Nonmaskable interrupt enable ACCVIE Flash access violation interrupt enable
www.ti.com
UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable URXIE1 USART1 UART and SPI receive-interrupt enable UTXIE1 USART1 UART and SPI transmit-interrupt enable BTIE Basic timer interrupt enable
52 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MSP430CG4618 MSP430CG4617 MSP430CG4616
Submit Documentation Feedback
7 6 5 4 0
UTXE1
3 2 1
rw*0 rw*0
Address
05h
URXE1
USPIE1
7 6 5 4 03 2 1
Address
04h
7 6 5 4 03 2 1
Address
03h
BTIFG
rw*0
UTXIFG1 URXIFG1
rw*1 rw*0
UCA0TXIFG UCA0RXIFG
rw*0 rw*0
UCB0TXIFG UCB0RXIFG
rw*0 rw*0
7 6 5 4 0
OFIFG WDTIFG
3 2 1
rw*0 rw*1 rw*(0)
Address
02h NMIIFG
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.5.2 Interrupt Flag Register 1 and 2
WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation
Reset on VCCpower-on or a reset condition at the RST/NMI pin in reset mode OFIFG Flag set on oscillator fault NMIIFG Set by the RST/NMI pin
UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag URXIFG0 USART1: UART and SPI receive flag UTXIFG0 USART1: UART and SPI transmit flag BTIFG Basic timer flag
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.5.3 Module Enable Registers 1 and 2
URXE1 USART1: UART mode receive enable UTXE1 USART1: UART mode transmit enable USPIE1 USART1: SPI mode transmit and receive enable
URXE1 USART1: UART mode receive enable UTXE1 USART1: UART mode transmit enable USPIE1 USART1: SPI mode transmit and receive enable
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 53
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MSP430CG4618 MSP430CG4617 MSP430CG4616
Submit Documentation Feedback
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
6.6 Memory Organization
Table 6-4 summarizes the memory organization for the FG461x devices, and Table 6-5 summarizes the
memory organization for the CG461x devices.
Table 6-4. MSP430FG461x Memory Organization
MSP430FG4616 MSP430FG4617 MSP430FG4618 MSP430FG4619
Memory Size 92KB 92KB 116KB 120KB Main: interrupt vector Flash 0FFFFh-0FFC0h 0FFFFh-0FFC0h 0FFFFh-0FFC0h 0FFFFh-0FFC0h Main: code memory Flash 018FFFh-002100h 019FFFh-003100h 01FFFFh-003100h 01FFFFh-002100h
RAM Total Size 4KB 8KB 8KB 4KB
Extended Size 2KB 6KB 6KB 2KB
Mirrored Size 2KB 2KB 2KB 2KB
Information memory Size 256 Byte 256 Byte 256 Byte 256 Byte
Flash 010FFh-01000h 010FFh-01000h 010FFh-01000h 010FFh-01000h
Boot memory Size 1KB 1KB 1KB 1KB
ROM 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h
RAM Size 2KB 2KB 2KB 2KB (Mirrored at 018FFh- 09FFh-0200h 09FFh-0200h 09FFh-0200h 09FFh-0200h 01100h)
Peripherals 16 bit 01FFh-0100h 01FFh-0100h 01FFh-0100h 01FFh-0100h
8 bit 0FFh-010h 0FFh-010h 0FFh-010h 0FFh-010h
8-bit SFR 0Fh-00h 0Fh-00h 0Fh-00h 0Fh-00h
020FFh-01100h 030FFh-01100h 030FFh-01100h 020FFh-01100h
020FFh-01900h 030FFh-01900h 030FFh-01900h 020FFh-01900h
018FFh-01100h 018FFh-01100h 018FFh-01100h 018FFh-01100h
Table 6-5. MSP430CG461x Memory Organization
MSP430CG4616 MSP430CG4617 MSP430CG4618 MSP430CG4619
Memory Size 92KB 92KB 116KB 120KB Main: interrupt vector ROM 0FFFFh-0FFC0h 0FFFFh-0FFC0h 0FFFFh-0FFC0h 0FFFFh-0FFC0h Main: code memory ROM 018FFFh-002100h 019FFFh-003100h 01FFFFh-003100h 01FFFFh-002100h
RAM Total Size 4KB 8KB 8KB 4KB
Extended Size 2KB 6KB 6KB 2KB
Mirrored Size 2KB 2KB 2KB 2KB
Information memory Size 256 Byte 256 Byte 256 Byte 256 Byte
ROM 010FFh-01000h 010FFh-01000h 010FFh-01000h 010FFh-01000h
Boot memory Size 1KB 1KB 1KB 1KB (Optional on CG) ROM 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h
RAM Size 2KB 2KB 2KB 2KB (Mirrored at 018FFh- 09FFh-0200h 09FFh-0200h 09FFh-0200h 09FFh-0200h 01100h)
Peripherals 16 bit 01FFh-0100h 01FFh-0100h 01FFh-0100h 01FFh-0100h
8 bit 0FFh-010h 0FFh-010h 0FFh-010h 0FFh-010h
8-bit SFR 0Fh-00h 0Fh-00h 0Fh-00h 0Fh-00h
020FFh-01100h 030FFh-01100h 030FFh-01100h 020FFh-01100h
020FFh-01900h 030FFh-01900h 030FFh-01900h 020FFh-01900h
018FFh-01100h 018FFh-01100h 018FFh-01100h 018FFh-01100h
54 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
www.ti.com
6.7 Bootstrap Loader (BSL)
The BSL lets users program the flash memory or RAM using a UART serial interface. Access to the MCU memory through the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader (SLAA089).
any other value BSL enabled
BSL FUNCTION PZ/ZQW PACKAGE PINS
Data Transmit 87/A7 – P1.0 Data Receiver 86/E7 – P1.1
6.8 Flash Memory
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
BSLKEY DESCRIPTION
00000h
0AA55h BSL disabled
Erasure of flash disabled if an invalid password is supplied
SLAS508J –APRIL 2006–REVISED JUNE 2015
The flash memory can be programmed by the JTAG port, the bootstrap loader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments A and B can be erased individually, or as a group with segments 0-n. Segments A and B are also called information memory.
New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory before the first use.
6.9 Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide.
6.9.1 DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral.
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 55
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.9.2 Oscillator and System Clock
The clock system in the MSP430xG461x family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals:
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal
Main clock (MCLK), the system clock used by the CPU
Submain clock (SMCLK), the subsystem clock used by the peripheral modules
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
6.9.3 Brownout, Supply Voltage Supervisor (SVS)
The brownout circuit provides the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset).
www.ti.com
The CPU begins code execution after the brownout circuit releases the device reset. However, VCCmay not have ramped to V
CC(min)
changed until VCCreaches V reaches V
CC(min)
.
at that time. The user must make sure the default FLL+ settings are not
. If desired, the SVS circuit can be used to determine when V
CC(min)
6.9.4 Digital I/O
There are ten 8-bit I/O ports implemented—ports P1 through P10:
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read and write access to port-control registers is supported by all instructions
Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB, respectively.
6.9.5 Basic Timer1 and Real-Time Clock
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Basic Timer1 is extended to provide an integrated real­time clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap­year correction.
6.9.6 LCD_A Drive With Regulated Charge Pump
The LCD_A driver generates the segment and common signals required to drive a segment LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and, thus, contrast by software.
CC
6.9.7 Watchdog Timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.
56 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.9.8 Universal Serial Communication Interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3-pin or 4-pin), I2C, and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA.
The USCI_A0 module provides support for SPI (3-pin or 4-pin), UART, enhanced UART and IrDA. The USCI_B0 module provides support for SPI (3-pin or 4-pin) and I2C.
6.9.9 USART1
The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for serial data communication. The USART supports synchronous SPI (3-pin or 4-pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.
6.9.10 Hardware Multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16, 16×8, 8×16, and 8×8 bit operations. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.9.11 Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 6-6. Timer_A3 Signal Connections
INPUT PIN NUMBER
PZ/ZQW PZ/ZQW
82/B9 - P1.5 TACLK TACLK
82/B9 - P1.5 TACLK INCLK 87/A7 - P1.0 TA0 CCI0A 87/A7 - P1.0 86/E7 - P1.1 TA0 CCI0B
85/D7 - P1.2 TA1 CCI1A 85/D7 - P1.2
79/A10 - P2.0 TA2 CCI2A 79/A10 - P2.0
DEVICE INPUT MODULE INPUT MODULE OUT
SIGNAL NAME SIGNAL
ACLK ACLK
SMCLK SMCLK
DV
SS
DV
CC
CAOUT (internal) CCI1B ADC12 (internal)
DV
SS
DV
CC
ACLK (internal) CCI2B
DV
SS
DV
CC
GND
V
CC
GND
V
CC
GND
V
CC
MODULE BLOCK
Timer NA
CCR0 TA0
CCR1 TA1
CCR2 TA2
OUTPUT PIN
NUMBER
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 57
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.9.12 Timer_B7
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 6-7. Timer_B7 Signal Connections
www.ti.com
INPUT PIN NUMBER
PZ/ZQW PZ/ZQW
DEVICE INPUT MODULE INPUT MODULE OUT
SIGNAL NAME SIGNAL
MODULE BLOCK
OUTPUT PIN
NUMBER
83/B8 - P1.4 TBCLK TBCLK
ACLK ACLK
SMCLK SMCLK
Timer NA
83/B8 - P1.4 TBCLK INCLK 78/D8 - P2.1 TB0 CCI0A 78/D8 - P2.1 78/D8 - P2.1 TB0 CCI0B ADC12 (internal)
DV DV
SS
CC
GND
V
CC
CCR0CCR0 TB0TB0
77/E8 - P2.2 TB1 CCI1A 77/E8 - P2.2 77/E8 - P2.2 TB1 CCI1B ADC12 (internal)
DV DV
SS
CC
GND
V
CC
CCR1 TB1
76/A11 - P2.3 TB2 CCI2A 76/A11 - P2.3 76/A11 - P2.3 TB2 CCI2B
DV DV
SS
CC
GND
V
CC
CCR2 TB2
67/E12 - P3.4 TB3 CCI3A 67/E12 - P3.4 67/E12 - P3.4 TB3 CCI3B
DV DV
SS
CC
GND
V
CC
CCR3 TB3
66/G9 - P3.5 TB4 CCI4A 66/G9 - P3.5 66/G9 - P3.5 TB4 CCI4B
DV DV
SS
CC
GND
V
CC
CCR4 TB4
65/F11 - P3.6 TB5 CCI5A 65/F11 - P3.6 65/F11 - P3.6 TB5 CCI5B
DV DV
SS
CC
GND
V
CC
CCR5 TB5
64/F12 - P3.7 TB6 CCI6A 64/F12 - P3.7
ACLK (internal) CCI6B
DV DV
SS
CC
GND
V
CC
CCR6 TB6
58 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
www.ti.com
6.9.13 Comparator_A
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.
6.9.14 ADC12
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.
6.9.15 DAC12
The DAC12 module is a 12-bit R-ladder voltage-output DAC. The DAC12 can be used in 8-bit or 12-bit mode and can be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.
6.9.16 OA
The MSP430xG461x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning before analog-to­digital conversion.
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-8. OA Signal Connections
INPUT PIN OUTPUT PIN
NUMBER NUMBER
PZ PZ
95 - P6.0 OA0I0 OA0I0 OA0O 96 - P6.1 97 - P6.2 OA0I1 OA0I1 OA0O ADC12 (internal)
3- P6.4 OA1I0 OA1I0 OA1O 2- P6.3
13 - P5.0 OA1I1 OA1I1 OA1O 13- P5.0
5- P6.6 OA2I0 OA2I0 OA2O 4- P6.5
14 - P10.7 OA2I1 OA2I1 OA2O 14 - P10.7
DEVICE INPUT MODULE INPUT MODULE DEVICE OUTPUT
SIGNAL NAME OUTPUT SIGNAL SIGNAL
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
DAC12_0OUT
DAC12_1OUT
DAC12_0OUT OA1O ADC12 (internal)
DAC12_1OUT
DAC12_0OUT OA2O ADC12 (internal)
DAC12_1OUT
MODULE BLOCK
OA0 OA0OUT
OA1 OA1OUT
OA2 OA2OUT
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 59
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.9.17 Peripheral File Map
Table 6-9 lists the registers and addresses for peripherals with word access. Table 6-10 lists the registers
and addresses for peripherals with byte access.
Table 6-9. Peripherals With Word Access
MODULE REGISTER NAME ACRONYM ADDRESS Watchdog+ Watchdog timer control WDTCTL 0120h Timer_B7 Capture/compare register 6 TBCCR6 019Eh
Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh
Timer_A3 Capture/compare register 2 TACCR2 0176h
Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh
Hardware Multiplier Sum extend SUMEXT 013Eh
Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h
Flash Flash control 3 FCTL3 012Ch (FG devices only) Flash control 2 FCTL2 012Ah
Flash control 1 FCTL1 0128h
DMA DMA module control 0 DMACTL0 0122h
DMA module control 1 DMACTL1 0124h DMA interrupt vector DMAIV 0126h
DMA Channel 0 DMA channel 0 control DMA0CTL 01D0h
DMA channel 0 source address DMA0SA 01D2h DMA channel 0 destination address DMA0DA 01D6h DMA channel 0 transfer size DMA0SZ 01DAh
DMA Channel 1 DMA channel 1 control DMA1CTL 01DCh
DMA channel 1 source address DMA1SA 01DEh DMA channel 1 destination address DMA1DA 01E2h DMA channel 1 transfer size DMA1SZ 01E6h
DMA Channel 2 DMA channel 2 control DMA2CTL 01E8h
DMA channel 2 source address DMA2SA 01EAh DMA channel 2 destination address DMA2DA 01EEh DMA channel 2 transfer size DMA2SZ 01F2h
www.ti.com
60 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-9. Peripherals With Word Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS ADC12 Conversion memory 15 ADC12MEM15 015Eh
See also Table 6-10 Conversion memory 14 ADC12MEM14 015Ch
DAC12 DAC12_1 data DAC12_1DAT 01CAh
Port PA Port PA selection PASEL 03Eh
Port PB Port PB selection PBSEL 00Eh
Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h
DAC12_1 control DAC12_1CTL 01C2h DAC12_0 data DAC12_0DAT 01C8h DAC12_0 control DAC12_0CTL 01C0h
Port PA direction PADIR 03Ch Port PA output PAOUT 03Ah Port PA input PAIN 038h
Port PB direction PBDIR 00Ch Port PB output PBOUT 00Ah Port PB input PBIN 008h
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 61
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-10. Peripherals With Byte Access
MODULE REGISTER NAME ACRONYM ADDRESS OA2 Operational Amplifier 2 control register 1 OA2CTL1 0C5h
Operational Amplifier 2 control register 0 OA2CTL0 0C4h
OA1 Operational Amplifier 1 control register 1 OA1CTL1 0C3h
Operational Amplifier 1 control register 0 OA1CTL0 0C2h
OA0 Operational Amplifier 0 control register 1 OA0CTL1 0C1h
Operational Amplifier 0 control register 0 OA0CTL0 0C0h
LCD_A LCD Voltage Control 1 LCDAVCTL1 0AFh
LCD Voltage Control 0 LCDAVCTL0 0AEh LCD Voltage Port Control 1 LCDAPCTL1 0ADh LCD Voltage Port Control 0 LCDAPCTL0 0ACh LCD memory 20 LCDM20 0A4h : : : LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh : : : LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h
ADC12 ADC memory-control register 15 ADC12MCTL15 08Fh (Memory control registers ADC memory-control register 14 ADC12MCTL14 08Eh require byte access) ADC memory-control register 13 ADC12MCTL13 08Dh
ADC memory-control register 12 ADC12MCTL12 08Ch ADC memory-control register 11 ADC12MCTL11 08Bh ADC memory-control register 10 ADC12MCTL10 08Ah ADC memory-control register 9 ADC12MCTL9 089h ADC memory-control register 8 ADC12MCTL8 088h ADC memory-control register 7 ADC12MCTL7 087h ADC memory-control register 6 ADC12MCTL6 086h ADC memory-control register 5 ADC12MCTL5 085h ADC memory-control register 4 ADC12MCTL4 084h ADC memory-control register 3 ADC12MCTL3 083h ADC memory-control register 2 ADC12MCTL2 082h ADC memory-control register 1 ADC12MCTL1 081h ADC memory-control register 0 ADC12MCTL0 080h
USART1 Transmit buffer U1TXBUF 07Fh
Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h
USCI USCI I2C Slave Address UCBI2CSA 011Ah
USCI I2C Own Address UCBI2COA 0118h USCI Synchronous Transmit Buffer UCBTXBUF 06Fh USCI Synchronous Receive Buffer UCBRXBUF 06Eh USCI Synchronous Status UCBSTAT 06Dh USCI I2C Interrupt Enable UCBI2CIE 06Ch USCI Synchronous Bit Rate 1 UCBBR1 06Bh USCI Synchronous Bit Rate 0 UCBBR0 06Ah USCI Synchronous Control 1 UCBCTL1 069h USCI Synchronous Control 0 UCBCTL0 068h USCI Transmit Buffer UCATXBUF 067h USCI Receive Buffer UCARXBUF 066h USCI Status UCASTAT 065h USCI Modulation Control UCAMCTL 064h USCI Baud Rate 1 UCABR1 063h USCI Baud Rate 0 UCABR0 062h USCI Control 1 UCACTL1 061h USCI Control 0 UCACTL0 060h USCI IrDA Receive Control UCAIRRCTL 05Fh USCI IrDA Transmit Control UCAIRTCTL 05Eh USCI LIN Control UCAABCTL 05Dh
Comparator_A Comparator_A port disable CAPD 05Bh
Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h
www.ti.com
62 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-10. Peripherals With Byte Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+Clock FLL+ Control 1 FLL_CTL1 054h
RTC Real Time Clock Year High Byte RTCYEARH 04Fh (Basic Timer 1) Real Time Clock Year Low Byte RTCYEARL 04Eh
Port P10 Port P10 selection P10SEL 00Fh
Port P9 Port P9 selection P9SEL 00Eh
Port P8 Port P8 selection P8SEL 03Fh
Port P7 Port P7 selection P7SEL 03Eh
Port P6 Port P6 selection P6SEL 037h
Port P5 Port P5 selection P5SEL 033h
Port P4 Port P4 selection P4SEL 01Fh
Port P3 Port P3 selection P3SEL 01Bh
Port P2 Port P2 selection P2SEL 02Eh
FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h
Real Time Clock Month RTCMON 04Dh Real Time Clock Day of Month RTCDAY 04Ch Basic Timer1 Counter 2 BTCNT2 047h Basic Timer1 Counter 1 BTCNT1 046h Real Time Counter 4 RTCNT4 045h (Real Time Clock Day of Week) (RTCDOW) 044h Real Time Counter 3 RTCNT3 043h (Real Time Clock Hour) (RTCHOUR) 042h Real Time Counter 2 RTCNT2 041h (Real Time Clock Minute) (RTCMIN) 040h Real Time Counter 1 RTCNT1 (Real Time Clock Second) (RTCSEC) Real Time Clock Control RTCCTL Basic Timer1 Control BTCTL
Port P10 direction P10DIR 00Dh Port P10 output P10OUT 00Bh Port P10 input P10IN 009h
Port P9 direction P9DIR 00Ch Port P9 output P9OUT 00Ah Port P9 input P9IN 008h
Port P8 direction P8DIR 03Dh Port P8 output P8OUT 03Bh Port P8 input P8IN 039h
Port P7 direction P7DIR 03Ch Port P7 output P7OUT 03Ah Port P7 input P7IN 038h
Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h
Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h
Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch
Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h
Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 63
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-10. Peripherals With Byte Access (continued)
MODULE REGISTER NAME ACRONYM ADDRESS Port P1 Port P1 selection P1SEL 026h
Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h
Special functions SFR module enable 2 ME2 005h
SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h
www.ti.com
64 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 1SEL .x
1
0
P1DIR .x
P1IN .x
DV
SS
DV
SS
PadLogic
DV
SS
P1IRQ .x
D
EN
ModuleXIN
1
0
ModuleXOUT
P1OUT .x
Note : x = 0,1,2,3,4,5
P1.0/TA 0 P1.1/TA 0/MCLK P1.2/TA 1 P1.3/TBOUTH /SVSOUT P1.4/TBCLK /SMCLK P1.5/TACLK /ACLK
Interrupt
Edge
Select
Q
EN
Set
P1SEL .x
P 1IES .x
P1IFG .x
P 1IE .x
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10 Input/Output Schematics
6.10.1 Port P1, P1.0 to P1.5, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 65
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-11. Port P1 (P1.0 to P1.5) Pin Functions
www.ti.com
PIN NAME (P1.x) x FUNCTION
P1.0/TA0 0 P1.0 (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1
P1.1/TA0/MCLK 1 P1.1 (I/O) I: 0; O: 1 0
Timer_A3.CCI0B 0 1 MCLK 1 1
P1.2/TA1 2 P1.2 (I/O) I: 0; O: 1 0
Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1
P1.3/TBOUTH/SVSOUT 3 P1.3 (I/O) I: 0; O: 1 0
Timer_B7.TBOUTH 0 1 SVSOUT 1 1
P1.4/TBCLK/SMCLK 4 P1.4 (I/O) I: 0; O: 1 0
Timer_B7.TBCLK 0 1 SMCLK 1 1
P1.5/TACLK/ACLK 5 P1.5 (I/O) I: 0; O: 1 0
Timer_A3.TACLK 0 1 ACLK 1 1
CONTROL BITS OR SIGNALS
P1DIR.x P1SEL.x
66 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
-
+
Comp_A
Bus
Keeper
EN
Direction 0: Input 1: Output
P 1SEL .x
1
0
P1DIR .x
P1IN .x
DV
SS
DV
SS
PadLogic
CAPD .x
P1IRQ .x
D
EN
ModuleXIN
1
0
ModuleXOUT
P1OUT .x
Note : x = 6,7
P1.6/CA 0 P1.7/CA 1
Interrupt
Edge
Select
Q
EN
Set
P1SEL .x
P1IES .x
P1IFG .x
P 1IE .x
P2CA 0
CA0
CA1
P2CA 1
1
0
1
0
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.2 Port P1, P1.6, P1.7, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-12. Port P1 (P1.6 and P1.7) Pin Functions
PIN NAME (P1.x) x FUNCTION
P1.6/CA0 6 P1.6 (I/O) 0 I: 0; O: 1 0
P1.7/CA1 7 P1.7 (I/O) 0 I: 0; O: 1 0
(1) X = don't care
CA0 1 X X
CA1 1 X X
CONTROL BITS OR SIGNALS
CAPD.x P1DIR.x P1SEL.x
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 67
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 2SEL .x
1
0
P2DIR .x
P2IN .x
DV
SS
DV
SS
PadLogic
TBOUTH
P2IRQ .x
D
EN
ModuleXIN
1
0
ModuleXOUT
P2OUT .x
Note : x = 0,1,2,3,6,7
P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.6/CAOUT P2.7/ADC 12CLK /DMAE 0
Interrupt
Edge
Select
Q
EN
Set
P2SEL .x
P 2IES .x
P2IFG .x
P 2IE.x
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.3 Port P2, P2.0 to P2.3, P2.6 to P2.7, Input/Output With Schmitt Trigger
www.ti.com
68 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
www.ti.com
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-13. Port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) Pin Functions
PIN NAME (P2.x) x FUNCTION
CONTROL BITS OR SIGNALS
P2DIR.x P2SEL.x
P2.0/TA2 0 P2.0 (I/O) I: 0; O: 1 0
Timer_A3.CCI2A 0 1 Timer_A3.TA2 1 1
P2.1/TB0 1 P2.1 (I/O) I: 0; O: 1 0
Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0
(1)
1 1
P2.2/TB1 2 P2.2 (I/O) I: 0; O: 1 0
Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1
(1)
1 1
P2.3/TB3 3 P2.3 (I/O) I: 0; O: 1 0
Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB3
(1)
1 1
P2.6/CAOUT 6 P2.6 (I/O) I: 0; O: 1 0
CAOUT 1 1
P2.7/ADC12CLK/DMAE0 7 P2.7 (I/O) I: 0; O: 1 0
ADC12CLK 1 1 DMAE0 0 1
(1) Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 69
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P2SEL .x
1
0
P 2DIR .x
P2IN .x
DV
SS
DV
SS
PadLogic
DV
SS
P2IRQ .x
D
EN
ModuleXIN
1
0
ModuleXOUT
P2OUT .x
Note: x = 4,5
P2.4/UCA 0TXD P2.5/UCA 0RXD
Interrupt
Edge
Select
Q
EN
Set
P2SEL .x
P2IES .x
P2IFG .x
P2IE.x
Directioncontrol
fromModuleX
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.4 Port P2, P2.4 to P2.5, Input/Output With Schmitt Trigger
www.ti.com
(1) X = don't care (2) When in USCI mode, P2.4 is set to output, P2.5 is set to input.
Table 6-14. Port P2 (P2.4 and P2.5) Pin Functions
PIN NAME (P2.x) x FUNCTION
P2.4/UCA0TXD 4
P2.5/UCA0RXD 5
P2.4 (I/O) I: 0; O: 1 0 USCI_A0.UCA0TXD P2.5 (I/O) I: 0; O: 1 0 USCI_A0.UCA0RXD
(2)
(2)
CONTROL BITS OR
SIGNALS
P2DIR.x P2SEL.x
X 1
X 1
(1)
70 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 3SEL .x
1
0
P3DIR .x
P3IN .x
DV
SS
DV
SS
PadLogic
DV
SS
D
EN
ModuleXIN
1
0
ModuleXOUT
P3OUT .x
Note: x = 0,1,2,3
P 3.0/UCB 0STE P 3.1/UCB 0SIMO /UCB 0SDA P 3.2/UCB 0SOMI /UCB 0SCL P 3.3/UCB 0CLK
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.5 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-15. Port P3 (P3.0 to P3.3) Pin Functions
CONTROL BITS OR
PIN NAME (P3.x) x FUNCTION
P3.0/UCB0STE 0 P3.0 (I/O) I: 0; O: 1 0
UCB0STE
P3.1/UCB0SIMO/UCB0SDA 1 P3.1 (I/O) I: 0; O: 1 0
P3.2/UCB0SOMI/UCB0SCL 2 P3.2 (I/O) I: 0; O: 1 0
P3.3/UCB0CLK 3 P3.3 (I/O) I: 0; O: 1 0
(1) X = don't care (2) The pin direction is controlled by the USCI module. (3) If the I2C functionality is selected the output drives only the logical 0 to VSSlevel.
UCB0SIMO/UCB0SDA
UCB0SOMI/UCB0SCL
UCB0CLK
(2)
(2) (3)
(2) (3)
(2)
SIGNALS
P3DIR.x P3SEL.x
X 1
X 1
X 1
X 1
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 71
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 3SEL .x
1
0
P3DIR .x
P3IN .x
DV
SS
DV
SS
PadLogic
TBOUTH
D
EN
ModuleXIN
1
0
ModuleXOUT
P3OUT .x
Note: x = 4, 5,6,7
P3.4/TB 3 P3.5/TB 4 P3.6/TB 5 P3.7/TB 6
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.6 Port P3, P3.4 to P3.7, Input/Output With Schmitt Trigger
www.ti.com
Table 6-16. Port P3 (P3.4 to P3.7) Pin Functions
PIN NAME (P3.x) x FUNCTION
P3.4/TB3 4 P3.4 (I/O) I: 0; O: 1 0
P3.5/TB4 5 P3.5 (I/O) I: 0; O: 1 0
P3.6/TB5 6 P3.6 (I/O) I: 0; O: 1 0
P3.7/TB6 7 P3.7 (I/O) I: 0; O: 1 0
(1) Setting TBOUTH causes all Timer_B outputs to be set to high impedance.
Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3
Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4
Timer_B7.CCI5A and Timer_B7.CCI5B 0 1 Timer_B7.TB5
Timer_B7.CCI6A and Timer_B7.CCI6B 0 1 Timer_B7.TB6
(1)
(1)
(1)
(1)
CONTROL BITS OR SIGNALS
P3DIR.x P3SEL.x
1 1
1 1
1 1
1 1
72 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL .x
1
0
P4DIR .x
P4IN.x
DV
SS
DV
SS
PadLogic
DV
SS
D
EN
ModuleXIN
1
0
ModuleXOUT
P4OUT .x
Note: x = 0, 1
P4.1/URXD 1 P4.0/UTXD 1
Directioncontrol
fromModuleX
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.7 Port P4, P4.0 to P4.1, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
P4.0/UTXD1 0 P4.0 (I/O) I: 0; O: 1 0
P4.1/URXD1 1 P4.1 (I/O) I: 0; O: 1 0
(1) X = don't care (2) When in USART1 mode, P4.0 is set to output, P4.1 is set to input.
Table 6-17. Port P4 (P4.0 to P4.1) Pin Functions
PIN NAME (P4.x) x FUNCTION
(2)
(2)
USART1.UTXD1
USART1.URXD1
CONTROL BITS OR
SIGNALS
P4DIR.x P4SEL.x
X 1
X 1
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 73
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P4SEL .x
1
0
P4DIR .x
P4IN .x
LCDS 32/36
SegmentSy
PadLogic
DV
SS
D
EN
ModuleXIN
1
0
ModuleXOUT
P4OUT .x
Note : x = 2,3,4,5,6,7
y
= 34,35 ,36 ,37,38 ,39
P4.7/UCA 0RXD /S34 P4.6/UCA 0TXD /S35 P4.5/UCLK 1 /S36 P4.4/SOMI 1/S37 P4.3/SIMO 1/S38 P4.2/STE1/S39
Directioncontrol
fromModuleX
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.8 Port P4, P4.2 to P4.7, Input/Output With Schmitt Trigger
www.ti.com
(1) X = don't care (2) The pin direction is controlled by the USART1 module.
Table 6-18. Port P4 (P4.2 to P4.5) Pin Functions
PIN NAME (P4.x) x FUNCTION
P4.2 (I/O) I: 0; O: 1 0 0
P4.2/STE1/S39 2 USART1.STE1 X 1 0
S39 X X 1
P4.3/SIMO/S38 3 USART1.SIMO1
P4.4/SOMI/S37 4 USART1.SOMI1
P4.5/SOMI/S36 5 USART1.UCLK1
P4.3 (I/O) I: 0; O: 1 0 0
(2)
S38 X X 1 P4.4 (I/O) I: 0; O: 1 0 0
S37 X X 1 P4.5 (I/O) I: 0; O: 1 0 0
S36 X X 1
(2)
(2)
CONTROL BITS OR SIGNALS
P4DIR.x P4SEL.x LCDS36
X 1 0
X 1 0
X 1 0
(1)
74 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
Table 6-19. Port P4 (P4.6 and P4.7) Pin Functions
PIN NAME (P4.x) x FUNCTION
P4.6 (I/O) I: 0; O: 1 0 0
P4.6/UCA0TXD/S35 6 USCI_A0.UCA0TXD
S35 X X 1 P4.7 (I/O) I: 0; O: 1 0 0
P4.7/UCA0RXD/S34 7 USCI_A0.UCA0RXD
S34 X X 1
(1) X = don't care (2) When in USCI mode, P4.6 is set to output, P4.7 is set to input.
(2)
(2)
SLAS508J –APRIL 2006–REVISED JUNE 2015
CONTROL BITS OR SIGNALS
(1)
P4DIR.x P4SEL.x LCDS32
X 1 0
X 1 0
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 75
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL .x
1
0
P5DIR .x
P5IN.x
LCDS 0
SegmentSy
1
0
P5OUT .x
P 5.0/S1/A13/OA 1I1
DV
SS
INCH =13
#
A13
#
PadLogic
-
+
OA1
Note:x=0
y=1
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.9 Port P5, P5.0, Input/Output With Schmitt Trigger
www.ti.com
PIN NAME (P5.x) x FUNCTION
P5.0/S1/A13/OA1I1 0 P5.0 (I/O) I: 0; O: 1 0 X X 0
OAI11 0 X X 1 0 A13 S1 enabled X 0 X X 1 S1 disabled X 1 X X 1
(1) X = don't care (2) Setting the P5SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
Table 6-20. Port P5 (P5.0) Pin Functions
P5DIR.x P5SEL.x INCHx LCDS0
(2)
X 1 13 X X
CONTROL BITS OR SIGNALS
OAPx (OA1) OANx (OA1)
(1)
76 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL .x
1
0
P5DIR .x
P 5IN.x
LCDS0
SegmentSy
1
0
P5OUT .x
P5.1/S0/A12 /DAC 1
DV
SS
INCH =12
#
A12
#
PadLogic
DAC 12.1OPS
DAC1
1
0
2
DV
SS
0 ifDAC 12 .1AMPx = 0 andDAC 12.1OPS = 1 1 ifDAC 12 .1AMPx = 1 andDAC 12.1OPS = 1 2 ifDAC 12 .1AMPx > 1 andDAC 12.1OPS = 1
Note:x=1
y=0
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.10 Port P5, P5.1, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 77
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
Table 6-21. Port P5 (P5.1) Pin Functions
PIN NAME (P5.x) x FUNCTION
P5.1/S0/A12/DAC1 1 P5.1 (I/O) I: 0; O: 1 0 X 0 X 0
DAC1 high impedance X X X 1 0 X DVSS X X X 1 1 X DAC1 output X X X 1 >1 X
(2)
A12 S0 enabled X 0 X 0 X 1 S0 disabled X 1 X 0 X 1
P5DIR.x P5SEL.x INCHx DAC12.1OPS DAC12.1AMPx LCDS0
X 1 12 0 X 0
CONTROL BITS OR SIGNALS
(1) X = don't care (2) Setting the P5SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
(1)
78 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL .x
1
0
P5DIR .x
P 5IN.x
LCDSignal
PadLogic
DV
SS
1
0
P5OUT .x
Note : x = 2,3,4
P5.2/COM1 P5.3/COM2 P5.4/COM3
DV
SS
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.11 Port P5, P5.2 to P5.4, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-22. Port P5 (P5.2 to P5.4) Pin Functions
CONTROL BITS OR
PIN NAME (P5.x) x FUNCTION
P5.2/COM1 2 P5.2 (I/O) I: 0; O: 1 0
COM1 X 1
P5.3/COM2 3 P5.3 (I/O) I: 0; O: 1 0
COM2 X 1
P5.4/COM3 4 P5.4 (I/O) I: 0; O: 1 0
COM3 X 1
(1) X = don't care
SIGNALS
P5DIR.x P5SEL.x
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 79
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P5SEL .x
1
0
P5DIR .x
P 5IN.x
LCDSignal
PadLogic
DV
SS
1
0
P5OUT .x
Note : x = 5,6,7
P5.5/R 03 P5.6/LCDREF /R 13 P5.7/R 03
DV
SS
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.12 Port P5, P5.5 to P5.7, Input/Output With Schmitt Trigger
www.ti.com
Table 6-23. Port P5 (P5.5 to P5.7) Pin Functions
CONTROL BITS OR
PIN NAME (P5.x) x FUNCTION
P5.5/R03 5 P5.5 (I/O) I: 0; O: 1 0
R03 X 1
P5.6/LCDREF/R13 6 P5.6 (I/O) I: 0; O: 1 0
R13 or LCDREF
P5.7/R03 7 P5.7 (I/O) I: 0; O: 1 0
R03 X 1
(1) X = don't care (2) External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.
(2)
SIGNALS
P5DIR.x P5SEL.x
X 1
(1)
80 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P6SEL .x
1
0
P6DIR .x
P6IN .x
INCH =0/2/4
#
Ay
#
PadLogic
1
0
DV
SS
P 6OUT.x
P6.0/A0/OA 0I0 P6.2/A2/OA 0I1 P6.4/A4/OA 1I0
-
+
OA0/1
Note:x=0,2,4
y=0,1
#=Signalfromorto ADC12
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.13 Port P6, P6.0, P6.2, and P6.4, Input/Output With Schmitt Trigger
Table 6-24. Port P6 (P6.0, P6.2, and P6.4) Pin Functions
PIN NAME (P6.x) x FUNCTION
P6.0/A0/OA0I0 0 P6.0 (I/O) I: 0; O: 1 0 X X X
P6.2/A2/OA0I1 2 P6.2 (I/O) I: 0; O: 1 0 X X X
P6.4/A4/OA1I0 4 P6.4 (I/O) I: 0; O: 1 0 X X X
(1) X = don't care (2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 81
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
OA0I0 0 X 0 X X
(2)
A0
OA0I1 0 X 1 X X
(2)
A2
OA1I0 0 X X 0 X
(2)
A4
CONTROL BITS OR SIGNALS
P6DIR.x P6SEL.x INCHx
X 1 X X 0
X 1 X X 2
X 1 X X 4
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
(1)
OAPx (OA0) OAPx (OA1) OANx (OA0) OANx (OA1)
Bus
Keeper
EN
Direction 0: Input 1: Output
P6SEL .x
1
0
P6DIR .x
P6IN .x
INCH =1/3/5
#
Ay
#
PadLogic
1
0
DV
SS
P 6OUT.x
P6.1/A1/OA0O P6.3/A3/OA1O P6.5/A5/OA2O
-
+
OAy
OAPMx > 0
OAADC 1
Note:x=1,3,5
y=0,1,2
#=Signalfromorto ADC12
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.14 Port P6, P6.1, P6.3, and P6.5 Input/Output With Schmitt Trigger
www.ti.com
PIN NAME (P6.x) x FUNCTION
P6.1/A1/OA0O 1 P6.1 (I/O) I: 0; O: 1 0 X 0 X
P6.3/A3/OA1O 3 P6.3 (I/O) I: 0; O: 1 0 X 0 X
P6.5/A5/OA2O 5 P6.5 (I/O) I: 0; O: 1 0 X 0 X
(1) X = don't care (2) Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally
connected to the corresponding ADC12 input.
(3) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
Table 6-25. Port P6 (P6.1, P6.3, and P6.5) Pin Functions
OA0O A1
OA1O A3
OA2O A5
P6DIR.x P6SEL.x OAADC1 OAPMx INCHx
(2)
(3)
(2)
(3)
X X 1 >0 X X 1 X 0 1
X X 1 >0 X X 1 X 0 3
(2)
(3)
X X 1 >0 X X 1 X 0 5
CONTROL BITS OR SIGNALS
(1)
82 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 6SEL .x
1
0
P6DIR .x
P6IN .x
INCH =6
#
A6
#
PadLogic
1
0
DV
SS
P6OUT .x
P6.6/A6 /DAC0/OA 2I0
-
+
OA 2
DAC 0
DAC12 .0OPS
DAC 12 .0AMP > 0
1
0
2
0 ifDAC 12.0AMPx = 0 andDAC 12.0OPS = 0 1 ifDAC 12.0AMPx = 1 andDAC 12.0OPS = 0 2 ifDAC 12.0AMPx > 1 andDAC 12.0OPS = 0
DVSS
Note:x=6
#=Signalfromorto ADC12
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.15 Port P6, P6.6, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 83
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
Table 6-26. Port P6 (P6.6) Pin Functions
CONTROL BITS OR SIGNALS
PIN NAME (P6.x) x FUNCTION
P6.6/A6/DAC0/OA2I0 6 P6.6 (I/O) I: 0; O: 1 0 X 1 X X
DAC0 high impedance X X X 0 0 X DVSS X X X 0 1 X DAC0 output X X X 0 >1 X
(2)
A6 OA2I0 0 X 0 X X 0
P6DIR.x P6SEL.x INCHx DAC12.0OPS DAC12.0AMPx
X 1 6 X X X
(1) X = don't care (2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
(1)
OAPx (OA2) OANx (OA2)
84 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P 6SEL .x
1
0
P6DIR .x
P6IN .x
INCH =7
#
A7
#
PadLogic
1
0
DV
SS
P6OUT .x
P6.7/A7 /DAC 1/SVSIN
DAC 1
DAC12 .1OPS
DAC 12 .1AMP > 0
1
0
2
0 ifDAC 12.1AMPx = 0 andDAC 12.1OPS = 0 1 ifDAC 12.1AMPx = 1 andDAC 12.1OPS = 0 2 ifDAC 12.1AMPx > 1 andDAC 12.1OPS = 0
ToSVSMux
VLD =15
DVSS
Note:x=7
#=Signalfromorto ADC12
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.16 Port P6, P6.7, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 85
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
Table 6-27. Port P6 (P6.7) Pin Functions
PIN NAME (P6.x) x FUNCTION
P6.7/A7/DAC1/SVSIN 7 P6.7 (I/O) I: 0; O: 1 0 X 1 X
DAC1 high impedance X X X 0 0 DVSS X X X 0 1 DAC1 output X X X 0 >1
(2)
A7
(2)
SVSIN
P6DIR.x P6SEL.x INCHx DAC12.1OPS DAC12.1AMPx
X 1 7 X X
0 1 0 1 X
CONTROL BITS OR SIGNALS
(1) X = don't care (2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals.
(1)
86 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P7SEL .x
1
0
P7DIR .x
P7IN .x
LCDS28/32
SegmentSy
PadLogic
DV
SS
D
EN
ModuleXIN
1
0
ModuleXOUT
P 7OUT .x
P7.3/UCA 0CLK /S30 P7.2/UCA 0SOMI/S 31 P7.1/UCA 0SIMO/S 32 P7.0/UCA 0STE /S33
Directioncontrol
fromModuleX
Note:x=0,1,2,3
y=30,31,32,33
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.17 Port P7, P7.0 to P7.3, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 87
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-28. Port P7 (P7.0 and P7.1) Pin Functions
PIN NAME (P7.x) x FUNCTION
CONTROL BITS OR SIGNALS
P7DIR.x P7SEL.x LCDS32
P7.0/UCA0STE/S33 0 P7.0 (I/O) I: 0; O: 1 0 0
USCI_A0.UCA0STE
(1)
S33
(2)
X 1 0 X X 1
P7.1/UCA0SIMO/S32 1 P7.1 (I/O) I: 0; O: 1 0 0
USCI_A0.UCA0SIMO
(2)
X 1 0
S32 X X 1
(1) X = don't care (2) The pin direction is controlled by the USCI module.
(1)
Table 6-29. Port P7 (P7.2 and P7.3) Pin Functions
PIN NAME (P7.x) x FUNCTION
CONTROL BITS OR SIGNALS
P7DIR.x P7SEL.x LCDS28
P7.2/UCA0SOMI/S31 2 P7.2 (I/O) I: 0; O: 1 0 0
USCI_A0.UCA0SOMI
(2)
X 1 0
S31 X X 1
P7.3/UCA0CLK/S30 3 P7.3 (I/O) I: 0; O: 1 0 0
USCI_A0.UCA0CLK
(2)
X 1 0
S30 X X 1
(1) X = don't care (2) The pin direction is controlled by the USCI module.
(1)
www.ti.com
88 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P7SEL .x
1
0
P7DIR .x
P7IN.x
LCDS 24/28
SegmentSy
PadLogic
DV
SS
1
0
P7OUT .x
P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29
DV
SS
Note:x=4,5,6,7
y=26,27,28,29
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.18 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-30. Port P7 (P7.4 and P7.5) Pin Functions
PIN NAME (P7.x) x FUNCTION
P7.4/S29 4 P7.4 (I/O) I: 0; O: 1 0 0
S29 X X 1
P7.5/S28 5 P7.5 (I/O) I: 0; O: 1 0 0
S28 X X 1
(1) X = don't care
CONTROL BITS OR SIGNALS
P7DIR.x P7SEL.x LCDS28
Table 6-31. Port P7 (P7.6 and P7.7) Pin Functions
PIN NAME (P7.x) x FUNCTION
P7.6/S27 6 P7.6 (I/O) I: 0; O: 1 0 0
P7.7/S26 7 P7.7 (I/O) I: 0; O: 1 0 0
(1) X = don't care
S27 X X 1
S26 X X 1
CONTROL BITS OR SIGNALS
P7DIR.x P7SEL.x LCDS24
(1)
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 89
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P8SEL .x
1
0
P8DIR .x
P 8IN.x
LCDS 16/20/24
SegmentSy
PadLogic
DV
SS
1
0
P8OUT .x
Note : x = 0,1,2,3,4,5,6,7
y = 25,24,23,22,21,20,19 ,18
P8.7/S18 P8.6/S19 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 P8.1/S24 P8.0/S25
DV
SS
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.19 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger
www.ti.com
Table 6-32. Port P8 (P8.0 and P8.1) Pin Functions
PIN NAME (P8.x) x FUNCTION
P8.0/S18 0 P8.0 (I/O) I: 0; O: 1 0 0
P8.1/S19 0 P8.0 (I/O) I: 0; O: 1 0 0
(1) X = don't care
Table 6-33. Port P8 (P8.2 to P8.5) Pin Functions
PIN NAME (P8.x) x FUNCTION
P8.2/S20 2 P8.2 (I/O) I: 0; O: 1 0 0
P8.3/S21 3 P8.3 (I/O) I: 0; O: 1 0 0
P8.4/S22 4 P8.4 (I/O) I: 0; O: 1 0 0
P8.5/S23 5 P8.5 (I/O) I: 0; O: 1 0 0
(1) X = don't care
90 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
CONTROL BITS OR SIGNALS
P8DIR.x P8SEL.x LCDS16
S18 X X 1
(1)
S19 X X 1
CONTROL BITS OR SIGNALS
P8DIR.x P8SEL.x LCDS20
S20 X X 1
S21 X X 1
S22 X X 1
(1)
S23 X X 1
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-34. Port P8 (P8.6 and P8.7) Pin Functions
PIN NAME (P8.x) X FUNCTION
P8.6/S24 6 P8.6 (I/O) I: 0; O: 1 0 0
S24 X X 1
P8.7/S25 7 P8.7 (I/O) I: 0; O: 1 0 0
S25 X X 1
(1) X = don't care
CONTROL BITS OR SIGNALS
P8DIR.x P8SEL.x LCDS24
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 91
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P9SEL .x
1
0
P9DIR .x
P 9IN.x
LCDS 8/12/16
SegmentSy
PadLogic
DV
SS
1
0
P9OUT .x
Note : x = 0,1,2,3,4,5,6,7
y = 17,16,15,14,13,12,11 ,10
P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 P9.3/S14 P9.2/S15 P9.1/S16 P9.0/S17
DV
SS
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.20 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger
www.ti.com
Table 6-35. Port P9 (P9.0 and P9.1) Pin Functions
PIN NAME (P9.x) x FUNCTION
P9.0/S17 0 P9.0 (I/O) I: 0; O: 1 0 0
S17 X X 1
P9.1/S16 1 P9.1 (I/O) I: 0; O: 1 0 0
(1) X = don't care
PIN NAME (P9.x) x FUNCTION
P9.2/S15 2 P9.2 (I/O) I: 0; O: 1 0 0
P9.3/S14 3 P9.3 (I/O) I: 0; O: 1 0 0
P9.4/S13 4 P9.4 (I/O) I: 0; O: 1 0 0
P9.5/S12 5 P9.5 (I/O) I: 0; O: 1 0 0
(1) X = don't care
S16 X X 1
Table 6-36. Port P9 (P9.2 to P9.5) Pin Functions
S15 X X 1
S14 X X 1
S13 X X 1
S12 X X 1
CONTROL BITS OR SIGNALS
P9DIR.x P9SEL.x LCDS16
CONTROL BITS OR SIGNALS
P9DIR.x P9SEL.x LCDS12
(1)
(1)
92 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-37. Port P9 (P9.6 and P9.7) Pin Functions
PIN NAME (P9.x x FUNCTION
P9.6/S11 6 P9.6 (I/O) I: 0; O: 1 0 0
S11 X X 1
P9.7/S10 7 P9.7 (I/O) I: 0; O: 1 0 0
S10 X X 1
(1) X = don't care
CONTROL BITS OR SIGNALS
P9DIR.x P9SEL.x LCDS8
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 93
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN.x
LCDS 4/8
SegmentSy
PadLogic
DV
SS
1
0
P10OUT.x
Note : x = 0,1,2,3,4,5
y = 9,8,7,6,5,4
P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9
DV
SS
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.21 Port P10, P10.0 to P10.5, Input/Output With Schmitt Trigger
www.ti.com
Table 6-38. Port P10 (P10.0 and P10.1) Pin Functions
PIN NAME (P10.x) x FUNCTION
P10.0/S9 0 P10.0 (I/O) I: 0; O: 1 0 0
P10.1/S8 1 P10.1 (I/O) I: 0; O: 1 0 0
(1) X = don't care
PIN NAME (P10.x) x FUNCTION
P10.2/S7 2 P10.2 (I/O) I: 0; O: 1 0 0
Table 6-39. Port P10 (P10.2 to P10.5) Pin Functions
P10.3/S6 3 P10.3 (I/O) I: 0; O: 1 0 0
P10.4/S5 4 P10.4 (I/O) I: 0; O: 1 0 0
P10.5/S4 5 P10.5 (I/O) I: 0; O: 1 0 0
(1) X = don't care
94 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
CONTROL BITS OR SIGNALS
P10DIR.x P10SEL.x LCDS8
S9 X X 1
S8 X X 1
S7 X X 1
S6 X X 1
S5 X X 1
S4 X X 1
CONTROL BITS OR SIGNALS
P10DIR.x P10SEL.x LCDS4
(1)
(1)
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN.x
LCDS 0
SegmentSy
1
0P10OUT.x
Note : x = 6
y
= 3
P10.6/S 3/A15
DV
SS
INCH =15
#
A15
#
PadLogic
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
www.ti.com
6.10.22 Port P10, P10.6, Input/Output With Schmitt Trigger
SLAS508J –APRIL 2006–REVISED JUNE 2015
Table 6-40. Port P10 (P10.6) Pin Functions
PIN NAME (P10.x) x FUNCTION
P10.6/S3/A15 P5.0 (I/O) I: 0; O: 1 0 X 0
(2)
A15
6
S3 enabled X 0 X 1
(1) X = don't care (2) Setting the P10SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals.
S3 disabled X 1 X 1
P10DIR.x P10SEL.x INCHx LCDS0
CONTROL BITS OR SIGNALS
X 1 15 0
(1)
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 95
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Bus
Keeper
EN
Direction 0: Input 1: Output
P10SEL.x
1
0
P10DIR.x
P10IN.x
LCDS 0
SegmentSy
1
0
P10OUT.x
Note : x = 7
y = 2
P10.7/S2/A14/OA 2I1
DV
SS
INCH =14
#
A14
#
PadLogic
-
+
OA2
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.23 Port P10, P10.7, Input/Output With Schmitt Trigger
www.ti.com
PIN NAME (P10.x) x FUNCTION
P10.7/S2/A14/OA2I1 7 P10.7(I/O) I: 0; O: 1 0 X X 0
A14 OA2I1 S2 enabled X 0 X X 1 S2 disabled X 1 X X 1
(1) X = don't care (2) Setting the P10SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals.
96 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Table 6-41. Port P10 (P10.7) Pin Functions
CONTROL BITS OR SIGNALS
P10DIR.x P10SEL.x INCHx LCDS0
(2)
(2)
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
X 1 14 X 0
0 X X 1 0
(1)
OAPx (OA1) OANx (OA1)
Ve
REF+
/DAC0
#
ReferenceVoltageto ADC12
1
0
'0',ifDAC12CALON=0
DAC12AMPx>1 ANDDAC12OPS=1
'1',ifDAC12AMPx=1
'1',ifDAC12AMPx>1
+
-
DAC12OPS
ReferenceVoltagetoDAC1
ReferenceVoltagetoDAC0
IfthereferenceofDAC0istakenfrompinVe
REF+
/DAC0 ,unpredictablevoltagelevelswillbeonpin.
Inthissituation,theDAC0outputisfedbacktoitsownreferenceinput.
#
DAC0_2_OA
DAC12.0OPS
1
0
P6.6/A6/DAC0/OA2I0
www.ti.com
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
6.10.24 Ve
REF+
/DAC0
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 97
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
TDI
TDO
TMS
TDI/TCLK
TDO/TDI
Controlled
byJTAG
TCK
TMS
TCK
DV
CC
ControlledbyJTAG
Test
JTAG
and
Emulation
Module
DV
CC
DV
CC
BurnandTest
Fuse
RST/NMI
G
D
S
U
G
D
S
U
TCK
Tau~50ns
Brownout
ControlledbyJTAG
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
www.ti.com
6.10.25 JTAG Pins TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger or Output
98 Detailed Description Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
TimeTMSGoesLow AfterPOR
TMS
I(TF)
ITDI/TCLK
www.ti.com
6.10.26 JTAG Fuse Check Mode
Devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 6-1). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination.
) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned.
(TF)
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
Figure 6-1. Fuse Check Mode Current
Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 99
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
MSP430FG4619,MSP430FG4618,MSP430FG4617,MSP430FG4616 MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616
SLAS508J –APRIL 2006–REVISED JUNE 2015
7 Device and Documentation Support
7.1 Device Support
7.1.1 Getting Started and Next Steps
For more information on the MSP430F4x family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.
7.1.2 Development Tools Support
All MSP430™ microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.
7.1.2.1 Hardware Features
See the Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.
MSP430 4-Wire 2-Wire Clock State Trace
Architecture JTAG JTAG Control Sequencer Buffer
MSP430 Yes No 2 No Yes No No No
Break- Range LPMx.5 points Break- Debugging
(N) points Support
www.ti.com
7.1.2.2 Recommended Hardware Options
7.1.2.2.1 Target Socket Boards
The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.
Package Target Board and Programmer Bundle Target Board Only
100-pin LQFP (PZ) MSP-FET430U100 MSP-TS430PZ100
7.1.2.2.2 Experimenter Boards
Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See
www.ti.com/msp430tools for details.
7.1.2.2.3 Debugging and Programming Tools
Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.
7.1.2.2.4 Production Programmers
The production programmers expedite loading firmware to devices by programming several devices simultaneously.
Part Number PC Port Features Provider
MSP-GANG Serial and USB Program up to eight devices at a time. Works with PC or standalone. Texas Instruments
7.1.2.3 Recommended Software Options
7.1.2.3.1 Integrated Development Environments
Software development tools are available from TI or from third parties. Open source solutions are also available.
This device is supported by Code Composer Studio™ IDE (CCS).
100 Device and Documentation Support Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
Submit Documentation Feedback
MSP430CG4618 MSP430CG4617 MSP430CG4616
Loading...