Texas Instruments DIYAMP-SOT23-EVM User Manual

User's Guide
SBOU191–July 2017
DIYAMP-SOT23-EVM
Contents
1 Introduction ................................................................................................................... 3
2 Hardware Setup.............................................................................................................. 4
3 Schematic and PCB Layout ................................................................................................ 7
4 Connections................................................................................................................. 27
5 Bill of Materials and Reference........................................................................................... 30
List of Figures
1 Location of Circuit Configurations ......................................................................................... 4
2 Detach Desired Circuit Configuration ..................................................................................... 5
3 Detach Configuration With Attached IC and Passive Components................................................... 5
4 Terminal Strip (TS-132-G-AA) Broken Into 4-Pin Lengths ............................................................. 5
5 4-Pin Length Terminal Strips Inserted in DIP Socket................................................................... 6
6 Detached Board Configuration Position Over Terminal Pins .......................................................... 6
7 Fully-Assembled Circuit Configuration From DIYAMP-SOT23-EVM.................................................. 6
8 Silk Screen Circuit Schematic.............................................................................................. 7
9 Single-Supply, Multiple Feedback Filter Schematic..................................................................... 7
10 Single-Supply, MFB Filter Top Layer ..................................................................................... 8
11 Single-Supply, MFB Filter Bottom Layer.................................................................................. 8
12 Single-Supply, Sallen-Key Filter Schematic.............................................................................. 9
13 Single-Supply, Sallen-Key Filter Top Layer .............................................................................. 9
14 Single-Supply, Sallen-Key Filter Bottom Layer......................................................................... 10
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
1
www.ti.com
15 Single-Supply, Non-Inverting Amplifier Schematic..................................................................... 10
16 Single-Supply, Non-Inverting Amplifier Top Layer ..................................................................... 12
17 Single-Supply, Non-Inverting Amplifier Bottom Layer ................................................................. 12
18 Single-Supply, Inverting Amplifier Schematic .......................................................................... 12
19 Single-Supply, Inverting Amplifier Top Layer........................................................................... 13
20 Single-Supply, Inverting Amplifier Bottom Layer ....................................................................... 14
21 Difference Amplifier Schematic........................................................................................... 14
22 Difference Amplifier Top Layer ........................................................................................... 15
23 Difference Amplifier Bottom Layer ....................................................................................... 15
24 Dual-Supply, Multiple Feedback Filter Schematic ..................................................................... 16
25 Dual-Supply, Multiple Feedback Filter Top Layer...................................................................... 16
26 Dual-Supply, Multiple Feedback Bottom Layer......................................................................... 17
27 Dual-Supply, Sallen-Key Filter Schematic .............................................................................. 17
28 Dual-Supply, Sallen-Key Top Layer ..................................................................................... 18
29 Dual-Supply, Sallen-Key Bottom Layer ................................................................................. 18
30 Inverting Comparator Schematic......................................................................................... 19
31 Inverting Comparator Top Layer ......................................................................................... 19
32 Inverting Comparator Bottom Layer ..................................................................................... 20
33 Non-Inverting Comparator Schematic................................................................................... 20
34 Non-inverting Comparator Top Layer.................................................................................... 21
35 Non-Inverting Comparator Bottom Layer................................................................................ 21
36 R 37 Example of f 38 R 39 R
with Dual-Feedback Schematic...................................................................................... 21
iso
, Where A
ZERO
Dual-Feedback Top Layer............................................................................................ 23
iso
Dual-Feedback Bottom Layer........................................................................................ 23
iso
= 20 dB .............................................................................. 22
OL_Loaded
40 Dual-Supply, Non-Inverting Amplifier Schematic....................................................................... 23
41 Dual-Supply, Non-Inverting Amplifier Top Layer ....................................................................... 24
42 Dual-Supply, Non-Inverting Amplifier Bottom Layer ................................................................... 24
43 Dual-Supply, Inverting Amplifier Schematic ............................................................................ 25
44 Dual-Supply, Inverting Amplifier Top Layer............................................................................. 26
45 Dual-Supply, Inverting Amplifier Bottom Layer......................................................................... 26
46 SMA Vertical Connectors ................................................................................................. 27
47 SMA Horizontal Connectors .............................................................................................. 27
48 Wire Connections .......................................................................................................... 27
49 Through-Hole Test Points................................................................................................. 28
50 Input and Output Pins in Terminal Area................................................................................. 28
51 Wire Alternative for Terminal Area ....................................................................................... 29
1 DIYAMP-SOT23-EVM Kit Contents ....................................................................................... 3
2 Location of Circuit Legend.................................................................................................. 4
3 MFB Filter Type Component Selection ................................................................................... 8
4 Sallen-Key Filter Component Type Selection............................................................................ 9
5 MFB Filter Type Component Selection.................................................................................. 16
6 Sallen-Key Filter Component Type Selection .......................................................................... 18
7 Bill of Materials ............................................................................................................. 30
Trademarks
FilterPro, TINA-TI are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
2
DIYAMP-SOT23-EVM
List of Tables
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
SBOU191–July 2017
www.ti.com
1 Introduction
The DIYAMP-SOT23-EVM is an EVM developed to give users the ability to easily evaluate their design concepts. This break-apart EVM has several popular op-amp configurations including: amplifiers, filters, and stability compensation configurations for both single and dual supply. The EVM is designed for 0805 and 0603 package size surface mount components enabling easy prototyping. This board gives the user the ability to build anything from a simple amplifier to complex signal chains by combining different configurations.
For more information about power supply voltages and input/output limitations, consult TI Precision Labs –
Op Amps videos.
1.1 DIYAMP-SOT23-EVM Kit Contents
Table 1 details the contents included in the DIYAMP-SOT23-EVM kit.
Table 1. DIYAMP-SOT23-EVM Kit Contents
Item Description Quantity
DIYAMP-SOT23-EVM PCB 1
Header Strip 100 mil (2.54 mm) spacing, 32 position, through hole 2
1.2 EVM Features
This EVM supports the following features:
Multiple circuit configurations
Dual- and single-supply configurations
Breadboard compatible
Schematic provided in silk screen on the PCB
Multiple connector options for input and output connections: SMA, test point, and wires.
Introduction
1.3 List of Circuits on the EVM
Single-supply multiple feedback (MFB) filter
Single-supply Sallen-Key filter
Single-supply non-inverting amplifier
Single-supply inverting amplifier
Difference amplifier
Dual-supply multiple feedback (MFB) filter
Dual-supply Sallen-Key filter
R
Non-Inverting Comparator
Inverting Comparator
Dual-supply non-inverting amplifier
Dual-supply inverting amplifier
with dual feedback
iso
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
3
Hardware Setup
2 Hardware Setup
Assembly of the DIYAMP-SOT23-EVM involves identifying and breaking out the desired circuit configuration from the EVM, soldering components, header pins, and inputs and outputs connections. This section presents the details of these procedures.
2.1 EVM Circuit Locations
Figure 1 and Table 2 map the location of each circuit configuration on the EVM. Figure 1 labels each
circuit configuration with a letter ranging from A to L. Table 2 matches the circuit configuration to a letter in
Figure 1 and also provides the name of each individual circuit written in silk screen on the EVM.
www.ti.com
Figure 1. Location of Circuit Configurations
Circuit Name Silk Screen Label
Single-supply multiple feedback filter Single-Supply MFB Filter A Single-supply Sallen Key filter Single-Supply SK Filter B Single-supply non-inverting amplifier Single-Supply Non-Inverting Amp C Single-supply inverting amplifier Single-Supply Inverting Amp D Difference amplifier Difference Amp E Dual-supply multiple feedback filter MFB Filter F Dual-supply Sallen Key filter SK Filter G Inverting comparator Inverting Comparator H Non-inverting comparator Non-Inverting Comparator I R
with dual feedback Riso Dual Feedback J
iso
Dual-supply non-inverting amplifier Non-Inverting Amp K Dual-supply inverting amplifier Inverting Amp L
4
DIYAMP-SOT23-EVM
Table 2. Location of Circuit Legend
Copyright © 2017, Texas Instruments Incorporated
Letter in
Figure 1
SBOU191–July 2017
Submit Documentation Feedback
www.ti.com
2.2 EVM Assembly Instructions
This section has step-by-step instructions on how to assemble a circuit configuration from the EVM.
Step 1. Choose the desired circuit configuration. See Section 2.1 for the location of each circuit
configuration.
Step 2. Gently flex the PCB panel at the score lines to separate the desired circuit configuration from
the EVM.
Figure 2. Detach Desired Circuit Configuration
Step 3. Solder device and surface mount passive components to the separated PCB.
Hardware Setup
Figure 3. Detach Configuration With Attached IC and Passive Components
Step 4. Use long-nose pliers to break header strips, provided in the EVM kit, into 4-position lengths.
Figure 4. Terminal Strip (TS-132-G-AA) Broken Into 4-Pin Lengths
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
5
Hardware Setup
Step 5. Insert header strips into a spare DIP socket as shown in Figure 5.
Step 6. Position separated PCB over pins and solder the connections. Carefully remove from the DIP
www.ti.com
Figure 5. 4-Pin Length Terminal Strips Inserted in DIP Socket
socket.
Figure 6. Detached Board Configuration Position Over Terminal Pins
Step 7. Attach SMA connectors, test points, or wires to the input and output of the separated PCB.
Figure 7. Fully-Assembled Circuit Configuration From DIYAMP-SOT23-EVM
6
DIYAMP-SOT23-EVM
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
SBOU191–July 2017
www.ti.com
3 Schematic and PCB Layout
This section provides the schematic and PCB layout of each circuit configuration provided on the EVM.
3.1 Schematic PCB Drawing
Each circuit board has a silk screen of its schematic for easy reference.
Figure 8. Silk Screen Circuit Schematic
3.2 Single-Supply, Multiple Feedback Filter
Figure 9 shows the schematic for the single-supply, multiple feedback (MFB) filter circuit configuration.
Schematic and PCB Layout
Figure 9. Single-Supply, Multiple Feedback Filter Schematic
The MFB topology (sometimes called infinite gain or Rauch) is often preferred, due to low sensitivity to component variations. The MFB topology creates an inverting second-order stage. This inversion may, or may not, be a concern in the filter application.
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
7
c _ Vref
1 2 2
1
2 R / / R C
=
p ´ ´
f
Schematic and PCB Layout
The single-supply, MFB filter circuit can be configured as a low-pass filter, high-pass filter, or band-pass filter based on the component selection of Z1 through Z5. Table 3 displays the type of passive component that should be chosen for Z1 through Z5 for each filter configuration.
www.ti.com
Table 3. MFB Filter Type Component Selection
Pass-Band Filter Type
Low Pass R1 C2 R3 R4 C5
High Pass C1 R2 C3 C4 R5
Band Pass R1 R2 C3 C4 R5
Type of
Component (Z1)
Type of
Component (Z2)
Type of
Component (Z3)
Type of
Component (Z4)
Type of
Component (Z5)
For additional guidance in designing a filter, download FilterPro™ active filter design software. Capacitor C2 provides the option to filter noise that may be introduced from the Vref input. calculates the
cutoff frequency due to C2.
The PCB layout of the top layer of the single-supply, MFB filter configuration is displayed in Figure 10.
(1)
Figure 10. Single-Supply, MFB Filter Top Layer
The PCB layout of the bottom layer of the single-supply, MFB filter configuration is displayed in Figure 11.
Figure 11. Single-Supply, MFB Filter Bottom Layer
8
DIYAMP-SOT23-EVM
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
SBOU191–July 2017
www.ti.com
3.3 Single-Supply, Sallen-Key Filter
Figure 12 shows the schematic for the single-supply, Sallen-Key filter circuit configuration.
Figure 12. Single-Supply, Sallen-Key Filter Schematic
Sallen-Key is one of the most commonly applied active filter topologies. The Sallen-Key is a non-inverting, voltage-controlled, voltage-source (VCVS) able to attain larger Qs with a stable response than other filter topologies. Because Sallen-Key is non-inverting, it might be preferable over the MFB topology.
The single-supply, Sallen-Key filter can be configured as a low-pass filter, high-pass filter, or band-pass filter based on the component selection of Z1 through Z5. Table 4 displays the type of passive component that should be chosen for Z1 through Z5 for each filter configuration.
Schematic and PCB Layout
Table 4. Sallen-Key Filter Component Type Selection
Pass-Band Filter Type
Low Pass R1 R2 C3 C4 Not populated
High Pass C1 C2 R3 R4 Not populated
Band Pass R1 C2 R3 R4 C5
Type of
Component (Z1)
Type of
Component (Z2)
Type of
Component (Z3)
Type of
Component (Z4)
Type of
Component (Z5)
For additional guidance in designing a filter, download the FilterPro active filter design software. The PCB layout of the top layer of the single-supply, Sallen-Key filter circuit configuration is displayed in
Figure 13.
Figure 13. Single-Supply, Sallen-Key Filter Top Layer
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
9
Schematic and PCB Layout
The PCB layout of the bottom layer of the single-supply, Sallen-Key filter configuration is displayed in
Figure 14.
Figure 14. Single-Supply, Sallen-Key Filter Bottom Layer
3.4 Single-Supply, Non-Inverting Amplifier
Figure 15 shows the schematic for the single-supply, non-inverting amplifier circuit configuration.
www.ti.com
Figure 15. Single-Supply, Non-Inverting Amplifier Schematic
The non-inverting op-amp configuration takes an input signal that is applied directly to the high impedance, non-inverting input terminal and outputs a signal that is the same polarity as the input signal. The load resistance for this topology is the sum of R1 and R2. The values of the resistors in the feedback network will determine the amount of gain to amplify the input signal.
There are multiple ways to configure the single-supply, non-inverting amplifier. The following cases show three primary use case configurations for this circuit.
10
DIYAMP-SOT23-EVM
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
SBOU191–July 2017
1
4 ref
2
3
offset
R
1 C V
R
V
æ ö
+ ´
ç ÷ è ø
=
pole
3 2
1
2 C R
=
´
( )
ZERO
3 1 2
1
2 C R R
=
+
4
IN ref
3 4
R
V V
R R
+
æ ö
=
ç ÷
+
è ø
c
1 2
1
2 R C
=
´
f
1
out in
2
R
V 1 V
R
æ ö
= +
ç ÷ è ø
www.ti.com
Case 1: Standard non-inverting circuit
This circuit board can be configured into a standard non-inverting circuit by shorting C3 and C4 with a 0-Ω resistor and leaving R3 and R4 unpopulated.
Equation 2 displays the transfer function for the standard single-supply, non-inverting amplifier circuit
configuration.
Capacitor C2 provides the option to filter the output. The cutoff frequency of the filter can be calculated using Equation 3.
Case 2: AC coupled, single-supply, non-inverting circuit
This circuit board can be configured into an AC coupled non-inverting circuit by populating C3 and C4 with capacitors and populating R3 or R4 with resistors. R3 and R4 are used to set the DC output in the following two ways:
Option 1: VREF is directly applied to the input IN+
R3 is populated with the desired biasing resistor
R4 is unpopulated Option 2: VREF is divided down and applied to the input IN+
R3 and R4 are populated with resistors, see Equation 4
Schematic and PCB Layout
where
C3 is shorted with a 0-resistor
C4 is shorted with a 0-resistor
R3 is unpopulated
R4 is unpopulated (2)
(3)
The AC response of the input signal is high-passed through C4, R3 + R4. The op-amp noise-gain is unity­gain until the gain begins to rise at the zero frequency defined in Equation 5.
The gain flattens off to the same gain defined in Equation 2 at the frequency defined in Equation 6.
For more information on the AC coupled non-inverting circuit, see e2e.ti.com.
Case 3: Non-inverting signal scaling circuit
This circuit board can be configured into a non-inverting signal scaling circuit by shorting C3 with a 0-Ω resistor and populating C4 with a resistor. This forms a 3-resistor divider with R3 and R4 on the input to scale or shift the input signal level. The op amp is typically configured as a unity-gain buffer.
Step 1. Choose a value for the resistor installed in place of C4 Step 2. Compute R3
SBOU191–July 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DIYAMP-SOT23-EVM
(4)
(5)
(6)
(7)
11
Loading...
+ 24 hidden pages