Texas Instruments CY74FCT540CTQCT, CY74FCT540CTQC, CY74FCT541TSOCT, CY74FCT541TSOC, CY74FCT541CTSOCT Datasheet

...
8-Bit Buffers/Line Drivers
CY54/74FCT540T
CY54/74FCT541T
SCCS029 - May 1994 - Revised March 2000
Data sheet acquired from Cypress Semiconductor Corporation. Data sheet modified to remove devices not offered.
Copyright © 2000, Texas Instruments Incorporated
Features
F logic
FCT-C speed at 4.1 ns max. (Com’l)
FCT-A speed at 4.8 ns max. (Com’l)
Reduced V
OH
(typically = 3.3V) versions of equivalent
FCT functions
Edge-rate control circuitry for significantly improved
noise characteristics
Power-off disable feature
ESD > 2000V
Matched rise and fall times
Fully compatible with TTL input and output logic levels
• Sink current 64 mA (Com’l), 48 mA (Mil) Source current 32 mA (Com’l), 12 mA (Mil)
Extended commercial range of 40˚C to +85˚C
Functional Description
The FCT540T inverting buffer/line driver and the FCT541T non-invertingbuffer/linedriverare designed to be employedas memory address drivers, clock drivers, and bus-oriented transmitters/receivers. The devices provide speed and drive capabilities equivalent to their fastest bipolar logic counterparts while reducing power dissipation. The input and output voltage levels allow direct interface with TTL, NMOS, and CMOS devices without external components.
The outputs are designed with a power-off disable feature to allow for liv e insertion of boards.
Logic Block Diagram—FCT540T
Pin Configurations
1 2 3 4 5 6 7 8 9 10
11
12
16
17
18
19
20
13
14
V
CC
15
CERDIP/SOIC/QSOP
Top View
GND
O
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
O
1
O
2
O
3
O
4
O
5
O
6
O
7
OE
B
OE
A
O
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
O
1
O
2
O
3
O
4
O
5
O
6
O
7
OE
B
OE
A
FCT540T
1 2 3 4 5 6 7 8 9 10
11
12
16
17
18
19
20
13
14
V
CC
15
CERDIP/DIP/SOIC/QSOP
Top View
GND
O
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
O
1
O
2
O
3
O
4
O
5
O
6
O
7
OE
B
OE
A
O
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
O
1
O
2
O
3
O
4
O
5
O
6
O
7
OE
B
OE
A
Logic Block Diagram—FCT541T
FCT541T
CY54/74FCT540T
CY54/74FCT541T
2
Maximum Ratings
[2, 3]
(Above which the useful life may be impaired. For user guide­lines, not tested.)
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with
Power Applied.............................................–65°C to +135°C
Supply Voltage to Ground Potential............... –0.5V to +7.0V
DC Input Voltage ........................................... –0.5V to +7.0V
DC Output Voltage......................................... –0.5V to +7.0V
DC Output Current (Maximum Sink Current/Pin) ......120 mA
Power Dissipation..........................................................0.5W
Static Discharge Voltage............................................>2001V
(per MIL-STD-883, Method 3015)
Function Table FCT540T
[1]
Inputs
OutputOE
A
OE
B
D
L L
H
L L
H
L H X
H
L
Z
Function Table FCT541T
[1]
Inputs
OutputOE
A
OE
B
D
L L
H
L L
H
L H X
L H Z
Operating Range
Range Range
Ambient
Temperature V
CC
Commercial T, AT, CT –40°C to +85°C 5V ± 5% Military
[4]
All –55°C to +125°C 5V ± 10%
Electrical Characteristics Over the Operating Range
Parameter Description Test Conditions Min. Typ.
[5]
Max. Unit
V
OH
Output HIGH Voltage VCC= Min., IOH= –32 mA Com’l 2.0 V
VCC= Min., IOH= –15 mA Com’l 2.4 3.3 V VCC= Min., IOH= –12 mA Mil 2.4 3.3 V
V
OL
Output LOW Voltage VCC= Min., IOL= 64 mA Com’l 0.3 0.55 V
VCC= Min., IOL= 48 mA Mil 0.3 0.55 V
V
IH
Input HIGH Voltage 2.0 V
V
IL
Input LOW Voltage 0.8 V
V
H
Hysteresis
[6]
All inputs 0.2 V
V
IK
Input Clamp Diode Voltage VCC= Min., IIN= –18 mA –0.7 –1.2 V
I
I
Input HIGH Current VCC= Max., VIN= V
CC
5 µA
I
IH
Input HIGH Current VCC= Max., VIN= 2.7V ±1 µA
I
IL
Input LOW Current VCC= Max., VIN= 0.5V ±1 µA
I
OZH
Off State HIGH-Level Output Current
VCC= Max., V
OUT
= 2.7V 10 µA
I
OZL
Off State LOW-Level Output Current
VCC= Max., V
OUT
= 0.5V –10 µA
I
OS
Output Short Circuit Current
[7]
VCC= Max,. V
OUT
= 0.0V –60 –120 –225 mA
I
OFF
Power-Off Disable VCC= 0V, V
OUT
= 4.5V ±1 µA
Notes:
1. H = HIGH Voltage Level L = LOW Voltage Level X = Don’t Care Z = High Impedance
2. Unless otherwise noted, these limits are over the operating free-air temperature range.
3. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V
CC
or ground.
4. T
A
is the “instant on” case temperature.
5. Typical values are at V
CC
=5.0V, TA=+25˚C ambient.
6. This parameter is specified but not tested.
7. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parametric tests, I
OS
tests should be performed last.
CY54/74FCT540T
CY54/74FCT541T
3
Capacitance
[6]
Parameter Description Test Conditions Typ.
[5]
Max. Unit
C
IN
Input Capacitance 5 10 pF
C
OUT
Output Capacitance 9 12 pF
Power Supply Characteristics
Parameter Description Test Conditions Typ.
[5]
Max. Unit
I
CC
Quiescent Power Supply Current VCC=Max., VIN≤ 0.2V, VIN≥ VCC–0.2V 0.1 0.2 mA
I
CC
Quiescent Power Supply Current (TTL inputs)
VCC= Max., VIN= 3.4V, f1= 0, Outputs Open
[8]
0.5 2.0 mA
I
CCD
Dynamic Power Supply Current
[9]
VCC= Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f
1
= 10 MHz,
OEA=OEB=GND, orOEA=GND, OEB=V
CC,
VIN≤ 0.2V or VIN≥ VCC–0.2V
0.06 0.12 mA/MHz
I
C
Total Power Supply Current
[10]
VCC=Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f
1
=10 MHz,
OEA=OEB=GND, orOEA=GND, OEB=V
CC,
VIN≤0.2V or VIN≥VCC–0.2V
0.7 1.4 mA
VCC= Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f
1
=10 MHz,
OEA=OEB=GND, orOEA=GND, OEB=V
CC,
VIN= 3.4V or VIN= GND
1.0 2.4 mA
VCC= Max., 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f
1
= 2.5 MHz,
OEA=OEB=GND, orOEA=GND, OEB=V
CC,
VIN≤ 0.2V or VIN≥ VCC–0.2V
1.3 2.6
[11]
mA
VCC= Max., 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f
1
=2.5 MHz,
OEA=OEB=GND, orOEA=GND, OEB=V
CC,
VIN= 3.4V or VIN= GND
3.3 10.6
[11]
mA
Notes:
8. Per TTL driven input (V
IN
=3.4V); all other inputs at VCC or GND.
9. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
10. I
C
=I
QUIESCENT
+ I
INPUTS
+ I
DYNAMIC
IC=ICC+ICCDHNT+I
CCD(f0
/2 + f1N1)
I
CC
= Quiescent Current with CMOS input levels
I
CC
= Power Supply Current for a TTL HIGH input (VIN=3.4V)
D
H
= Duty Cycle for TTL inputs HIGH
N
T
= Number of TTL inputs at D
H
I
CCD
= Dynamic Current caused by an input transition pair (HLH or LHL)
f
0
= Clock frequency for registered devices, otherwise zero
f
1
= Input signal frequency
N
1
= Number of inputs changing at f
1
All currents are in milliamps and all frequencies are in megahertz.
11. Values for these conditions are examples of the ICC formula. These limits are specified but not tested.
CY54/74FCT540T
CY54/74FCT541T
4
Switching Characteristics Over the Operating Range
[12]
Parameter Description
FCT540T/FCT541T FCT540AT/FCT541AT
Unit Fig. No.
[13]
Commercial Commercial
Min. Max. Min. Max.
t
PLH
t
PHL
Propagation Delay Data to Output (FCT540)
1.5 8.5 1.5 4.8 ns 1, 2
t
PLH
t
PHL
Propagation Delay Data to Output (FCT541)
1.5 8.0 1.5 4.8 ns 1, 3
t
PZH
t
PZL
Output Enable Time 1.5 10.0 1.5 6.2 ns 1, 7, 8
t
PHZ
t
PLZ
Output Disable Time 1.5 9.5 1.5 5.6 ns 1, 7, 8
Parameter Description
FCT540CT/FCT541CT
FCT540DT/
FCT541DT
Unit
Fig.
No.
[13]
Military Commercial Commercial
Min. Max. Min. Max. Min. Max.
t
PLH
t
PHL
Propagation Delay Data to Output (FCT540)
1.5 4.7 1.5 4.1 1.5 3.8 ns 1, 2
t
PLH
t
PHL
Propagation Delay Data to Output (FCT541)
1.5 4.6 1.5 4.1 1.5 3.8 ns 1, 3
t
PZH
t
PZL
Output Enable Time 1.5 6.5 1.5 5.8 1.5 5.2 ns 1, 7, 8
t
PHZ
t
PLZ
Output Disable Time 1.5 5.7 1.5 5.2 1.5 5.0 ns 1, 7, 8
Shaded areas contain preliminary information.
Notes:
12. Minimum limits are specified but not tested on Propagation Delays.
13. See “Parameter Measurement Information” in the General Information section.
CY54/74FCT540T
CY54/74FCT541T
5
Document #: 38-00260-B
Ordering Information—FCT540T
Speed
(ns) Ordering Code
Package
Name Package Type
Operating
Range
4.1 CY74FCT540CTQCT Q5 20-Lead (150-Mil) QSOP Commercial
4.7 CY54FCT540CTDMB D6 20-Lead (300-Mil) CerDIP Military
Ordering Information—FCT541T
Speed
(ns) Ordering Code
Package
Name Package Type
Operating
Range
4.1 CY74FCT541CTQCT Q5 20-Lead (150-Mil) QSOP Commercial CY74FCT541CTSOC/SOCT S5 20-Lead (300-Mil) Molded SOIC
4.6 CY54FCT541CTDMB D6 20-Lead (300-Mil) CerDIP Military
4.8 CY74FCT541ATPC P5 20-Lead (300-Mil) Molded DIP Commercial CY74FCT541ATQCT Q5 20-Lead (150-Mil) QSOP CY74FCT541ATSOC/SOCT S5 20-Lead (300-Mil) Molded SOIC
8.0 CY74FCT541TSOC/SOCT S5 20-Lead (300-Mil) Molded SOIC Commercial
Package Diagrams
20-Lead (300-Mil) CerDIP D6
MIL-STD-1835 D-8 Config.A
CY54/74FCT540T
CY54/74FCT541T
6
Package Diagrams (continued)
20-Lead (300-Mil) Molded DIP
P5
20-Lead Quarter Size Outline
Q5
CY54/74FCT540T
CY54/74FCT541T
7
Package Diagrams (continued)
20-Lead (300-Mil) Molded SOIC
S5
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 2000, Texas Instruments Incorporated
Loading...