All Rights Reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any other language or computer
language in whole or in part, in any form or by any means, whether it be electronic,
mechanical, magnetic, optical, manual, or otherwise, without the prior written consent of
Teledyne Analytical Instruments, 16830 Chestnut Street, City of Industry, CA 91749-1580.
Warranty
This equipment is sold subject to the mutual agreement that it is warranted by us free
from defects of material and of construction, and that our liability shall be limited to
replacing or repairing at our factory (without charge, except for transportation), or at
customer plant at our option, any material or construction in which defects become
apparent within one year from the date of shipment, except in cases where quotations or
acknowledgments provide for a shorter period. Components manufactured by others bear
the warranty of their manufacturer. This warranty does not cover defects caused by wear,
accident, misuse, neglect or repairs other than those performed by Teledyne or an authorized service center. We assume no liability for direct or indirect damages of any kind and
the purchaser by the acceptance of the equipment will assume all liability for any damage
which may result from its use or misuse.
We reserve the right to employ any suitable material in the manufacture of our
apparatus, and to make any alterations in the dimensions, shape or weight of any parts, in
so far as such alterations do not adversely affect our warranty.
Important Notice
This instrument provides measurement readings to its user, and serves as a tool by
which valuable data can be gathered. The information provided by the instrument may
assist the user in eliminating potential hazards caused by his process; however, it is
essential that all personnel involved in the use of the instrument or its interface, with the
process being measured, be properly trained in the process itself, as well as all instrumentation related to it.
The safety of personnel is ultimately the responsibility of those who control process
conditions. While this instrument may be able to provide early warning of imminent danger,
it has no control over process conditions, and it can be misused. In particular, any alarm or
control systems installed must be tested and understood, both as to how they operate and
as to how they can be defeated. Any safeguards required such as locks, labels, or redundancy, must be provided by the user or specifically requested of Teledyne at the time the
order is placed.
Therefore, the purchaser must be aware of the hazardous process conditions. The
purchaser is responsible for the training of personnel, for providing hazard warning
methods and instrumentation per the appropriate standards, and for ensuring that hazard
warning devices and instrumentation are maintained and operated properly.
Teledyne Analytical Instruments, the manufacturer of this instrument, cannot
accept responsibility for conditions beyond its knowledge and control. No statement
expressed or implied by this document or any information disseminated by the manufacturer or its agents, is to be construed as a warranty of adequate safety control under the
user’s process conditions.
ii
Teledyne Analytical Instruments
Percent Oxygen Analyzer
Specific Model Information
The instrument for which this manual was supplied may incorporate one or
more options not included with the standard instrument. Commonly available
options are listed below, with check boxes. Any that are incorporated in the
instrument for which this manual is supplied are indicated by a check mark in the
box.
Instrument Serial Number _______________________
includes the following options:
!!
!3000PA-C:In addition to all standard features, this model also has
!!
separate ports for zero and span gases, and built-in
control valves. The internal valves are entirely under the
control of the 3000PA electronics, to automatically
switch between gases in synchronization with the
analyzer’s operations
!!
!3000PA-S:In models with this option, all wetted parts are made
!!
from 316 stainless steel.
!!
!3000PA-M:In models with this option, the 4-20 mA Analog Current
!!
output is active. (In the standard units, it is not active.)
!!
!19" Rack Mnt: The 19" Relay Rack Mount units are available with
!!
either one or two 3000 series analyzers installed on a
19" panel, and ready to mount in a standard rack.
!!
!Cell Class:___________________ See Maintenance for Specs.
A-5 Application Notes on Restrictors, Pressures & Flow...... A-5
A-6 Zero Functions............................................................... A-8
Teledyne Analytical Instruments
v
Model 3000PA
DANGER
COMBUSTIBLE GAS USAGE WARNING
This is a general purpose instrument designed for usage in a
nonhazardous area. It is the customer's responsibility to ensure
safety especially when combustible gases are being analyzed
since the potential of gas leaks always exist.
The customer should ensure that the principles of operating of
this equipment is well understood by the user . Misuse of this
product in an y manner , tampering with its components, or unauthorized substitution of any component may adversely affect the
safety of this instrument.
Since the use of this instrument is beyond the control of
T eledyne, no responsibility by T eled yne, its affiliates, and agents
for damage or injury from misuse or neglect of this equipment is
implied or assumed.
vi
Teledyne Analytical Instruments
Percent Oxygen AnalyzerIntroduction 1
Introduction
1.1Overview
The Teledyne Analytical Instruments
Model 3000PA Percent Oxygen Analyzer is a versatile microprocessorbased instrument for detecting the percentage of oxygen in a variety of
background gases. This manual covers the Model 3000PA General Purpose
flush-panel and/or rack-mount units only. These units are for indoor use in a
nonhazardous environment.
1.2Typical Applications
A few typical applications of the Model 3000PA are:
•Monitoring inert gas blanketing
•Air separation and liquefaction
•Chemical reaction monitoring
•Semiconductor manufacturing
•Petrochemical process control
•Quality assurance
•Gas analysis certification.
1.3Main Features of the Analyzer
The Model 3000PA Percent Oxygen Analyzer is sophisticated yet
simple to use. The main features of the analyzer include:
•A 2-line alphanumeric display screen, driven by microprocessor
electronics, that continuously prompts and informs the operator.
•High resolution, accurate readings of oxygen content from low
percent levels through 100 %. Large, bright, meter readout.
Teledyne Analytical Instruments
1-1
1 Introduction Model 3000PA
•Advanced Micro-Fuel Cell, designed for percent oxygen
analysis. Several options are available.
•Versatile analysis over a wide range of applications.
•Microprocessor based electronics: 8-bit CMOS microprocessor
with 32 kB RAM and 128 kB ROM.
•Three user definable output ranges (from 0-1% through 0-100 %)
allow best match to users process and equipment.
•Air-calibration range for convenient spanning at 20.9 %.
•Auto Ranging allows analyzer to automatically select the proper
preset range for a given measurement. Manual override allows
the user to lock onto a specific range of interest.
•Two adjustable concentration alarms and a system failure alarm.
•Extensive self-diagnostic testing, at startup and on demand, with
continuous power-supply monitoring.
•Two way RFI protection.
•RS-232 serial digital port for use with a computer or other digital
communication device.
•Analog outputs for percent-of-range and for range identification.
0–1 V dc. (Isolated 4–20 mA dc optional)
•Convenient and versatile, steel, flush-panel or rack-mountable
case with slide-out electronics drawer.
1.4Model Designations
3000PA:Standard model.
3000PA-C:In addition to all standard features, this model also has
separate ports for zero and span gases, and built-in control
valves. The internal valves are entirely under the control of
the 3000PA electronics, to automatically switch between
gases in synchronization with the analyzer’s operations.
3000PA-M:This model has current output signals (4-20 mA) for percent-
of-range and range ID, in addition to voltage outputs.
3000PA-S:A Stainless Steel Probe and Probe Holder are used in this
model, for use where resistance to corrosion is important.
1-2
Teledyne Analytical Instruments
Percent Oxygen AnalyzerIntroduction 1
All of the above options are available in combination. For example, the
-C and -V options are combined as Model 3000PA-C-V.
Figure 1-1: Model 3000PA Front Panel
1.5Front Panel (Operator Interface)
The standard 3000PA is housed in a rugged metal case with all controls
and displays accessible from the front panel. See Figure 1-1. The front panel
has thirteen buttons for operating the analyzer, a digital meter, an alphanumeric display, and a window for viewing the sample flowmeter.
Teledyne Analytical Instruments
1-3
1 Introduction Model 3000PA
Function Keys: Six touch-sensitive membrane switches are used to
change the specific function performed by the analyzer:
•AnalyzePerform analysis for oxygen content of a sample gas.
•SystemPerform system-related tasks (described in detail in
chapter 4, Operation.).
•SpanSpan calibrate the analyzer.
•ZeroZero calibrate the analyzer.
•AlarmsSet the alarm setpoints and attributes.
•RangeSet up the 3 user definable ranges for the instrument.
Data Entry Keys: Six touch-sensitive membrane switches are used to
input data to the instrument via the alphanumeric VFD display:
•Left & Right ArrowsSelect between functions currently
displayed on theVFD screen.
•Up & Down ArrowsIncrement or decrement values of
functions currently displayed.
•EnterMoves VFD display on to the next screen in a series. If
none remains, returns to the
•Escape Moves VFD display back to the previous screen in a
series. If none remains, returns to the
Digital Meter Display: The meter display is a LED device that
produces large, bright, 7-segment numbers that are legible in any lighting
environment. It produces a continuous readout from 0-100 %. It is accurate
across all ranges without the discontinuity of analog range switching.
Alphanumeric Interface Screen: The VFD screen is an easy-to-use
interface from operator to analyzer. It displays values, options, and messages
that give the operator immediate feedback.
Flowmeter: Monitors the flow of gas past the sensor. Readout is 0.2 to
2.4 standard liters per minute (SLPM).
Standby Button: The Standby turns off the display and outputs,
but circuitry is still operating.
Analyze
screen.
Analyze
screen.
CAUTION: The power cable must be unplugged to fully
disconnect power from the instrument. When
chassis is exposed or when access door is open
and power cable is connected, use extra care to
avoid contact with live electrical circuits.
1-4
Teledyne Analytical Instruments
Percent Oxygen AnalyzerIntroduction 1
Access Door: To provide access to the Micro-Fuel Cell, the front panel
swings open when the latch in the upper right corner of the panel is pressed
all the way in with a narrow gauge tool. Accessing the main circuit board
requires unfastening the rear panel screws and sliding the unit out of the
case.
1.6 Recognizing Difference Between LCD &
VFD
LCD has GREEN background with BLACK characters. VFD has
DARK background with GREEN characters. In the case of VFD - NO
CONTRAST ADJUSTMENT IS NEEDED.
1.7Rear Panel (Equipment Interface)
The rear panel, shown in Figure 1-2, contains the gas and electrical
connectors for external inlets and outlets. The Zero and Span gas connectors,
and the Current signal outputs are optional and may not appear on your
instrument. The connectors are described briefly here and in detail in the
Installation chapter of this manual.
Figure 1-2: Model 3000PA Rear Panel
•Power ConnectionUniversal AC power source.
•Gas Inlet and OutletOne inlet (must be externally valved)
and one exhaust out.
•Analog Outputs0-1 V dc concentration output, plus
0-1 V dc range ID.
Teledyne Analytical Instruments
1-5
1 Introduction Model 3000PA
•Alarm Connections2 concentration alarms and 1 system
alarm.
•RS-232 PortSerial digital concentration signal output
and control input.
•Remote ProbeUsed in the 3000PA for controlling
external solenoid valves only.
•Remote Span/ZeroDigital inputs allow external control of
analyzer calibration. (See Note, below.)
•Calibration ContactTo notify external equipment that
instrument is being calibrated and
readings are not monitoring sample.
•Range ID ContactsFour separate, dedicated, range relay
contacts. Low, Medium, High, Cal.
•NetworkFor future expansion. Not implemented
at this printing.
Optional:
•Calibration Gas PortsSeparate fittings for zero, span and
sample gas input, and internal valves
for automatically switching the gases.
•Current Signal OutputAdditional isolated 4-20 mA dc plus
4-20 mA dc range ID.
Note: If you require highly accurate Auto-Cal timing, use external
Auto-Cal control where possible. The internal clock in the
Model 3000PA is accurate to 2-3 %. Accordingly, internally
scheduled calibrations can vary 2-3 % per day.
1-6
Teledyne Analytical Instruments
Percent Oxygen Analyzer Operational Theory 2
Operational Theory
2.1Introduction
The analyzer is composed of three subsystems:
1. Micro-Fuel Cell Sensor
2. Sample System
3. Electronic Signal Processing, Display and Control
The sample system is designed to accept the sample gas and transport it
through the analyzer without contaminating or altering the sample prior to
analysis. The Micro-Fuel Cell is an electrochemical galvanic device that
translates the amount of oxygen present in the sample into an electrical
current. The electronic signal processing, display and control subsystem
simplifies operation of the analyzer and accurately processes the sampled
data. The microprocessor controls all signal processing, input/output and
display functions for the analyzer.
2.2Micro-Fuel Cell Sensor
2.2.1 Principles of Operation
The oxygen sensor used in the Model 3000P series is a Micro-Fuel Cell
designed and manufactured by Analytical Instruments. It is a sealed plastic
disposable electrochemical transducer.
The active components of the Micro-Fuel Cell are a cathode, an anode,
and the 15% aqueous KOH electrolyte in which they are immersed. The cell
converts the energy from a chemical reaction into an electrical current in an
external electrical circuit. Its action is similar to that of a battery.
There is, however, an important difference in the operation of a battery
as compared to the Micro-Fuel Cell: In the battery, all reactants are stored
within the cell, whereas in the Micro-Fuel Cell, one of the reactants (oxygen)
comes from outside the device as a constituent of the sample gas being
Teledyne Analytical Instruments
2-1
2 Operational Theory Model 3000PA
analyzed. The Micro-Fuel Cell is therefore a hybrid between a battery and a
true fuel cell. (All of the reactants are stored externally in a true fuel cell.)
2.2.2 Anatomy of a Micro-Fuel Cell
The Micro-Fuel Cell is a cylinder only 1¼ inches in diameter and 1
inch thick. It is made of extremely inert plastic, which can be placed confidently in practically any environment or sample stream. It is effectively
sealed, although one end is permeable to oxygen in the sample gas. The
other end of the cell is a contact plate consisting of two concentric foil rings.
The rings mate with spring-loaded contacts in the sensor block assembly and
provide the electrical connection to the rest of the analyzer. Figure 2-1
illustrates the external features.
Figure 2-1: Micro-Fuel Cell
Refer to Figure 2-2, Cross Section of a Micro-Fuel Cell, which illustrates the following internal description.
Figure 2-2. Cross Section of a Micro-Fuel Cell (not to scale)
At the top end of the cell is a diffusion membrane of Teflon, whose
thickness is very accurately controlled. Beneath the diffusion membrane lies
2-2
Teledyne Analytical Instruments
Percent Oxygen Analyzer Operational Theory 2
the oxygen sensing element—the cathode—with a surface area almost 4 cm2.
The cathode has many perforations to ensure sufficient wetting of the upper
surface with electrolyte, and it is plated with an inert metal.
The anode structure is below the cathode. It is made of lead and has a
proprietary design which is meant to maximize the amount of metal available
for chemical reaction.
At the rear of the cell, just below the anode structure, is a flexible
membrane designed to accommodate the internal volume changes that occur
throughout the life of the cell. This flexibility assures that the sensing membrane remains in its proper position, keeping the electrical output constant.
The entire space between the diffusion membrane, above the cathode,
and the flexible rear membrane, beneath the anode, is filled with electrolyte.
Cathode and anode are submerged in this common pool. They each have a
conductor connecting them to one of the external contact rings on the contact
plate, which is on the bottom of the cell.
2.2.3 Electrochemical Reactions
The sample gas diffuses through the Teflon membrane. Any oxygen in
the sample gas is reduced on the surface of the cathode by the following
HALF REACTION:
O2 + 2H2O + 4e
––
–
––
→ 4OH
––
–
––
(cathode)
(Four electrons combine with one oxygen molecule—in the presence of
water from the electrolyte—to produce four hydroxyl ions.)
When the oxygen is reduced at the cathode, lead is simultaneously
oxidized at the anode by the following HALF REACTION:
Pb + 2OH
––
–
––
→ Pb+2 + H2O + 2e
––
–
––
(anode)
(Two electrons are transferred for each atom of lead that is oxidized.
Therefore it takes two of the above anode reactions to balance one cathode
reaction and transfer four electrons.)
The electrons released at the surface of the anode flow to the cathode
surface when an external electrical path is provided. The current is proportional to the amount of oxygen reaching the cathode. It is measured and used
to determine the oxygen concentration in the gas mixture.
The overall reaction for the fuel cell is the SUM of the half reactions
above, or:
2Pb + O2 → 2PbO
Teledyne Analytical Instruments
2-3
2 Operational Theory Model 3000PA
(These reactions will hold as long as no gaseous components capable of
oxidizing lead—such as iodine, bromine, chlorine and fluorine—are present
in the sample.)
The output of the fuel cell is limited by (1) the amount of oxygen in the
cell at the time and (2) the amount of stored anode material.
In the absence of oxygen, no current is generated.
2.2.4 The Effect of Pressure
In order to state the amount of oxygen present in the sample as a percentage of the gas mixture, it is necessary that the sample diffuse into the cell
under constant pressure.
If the total pressure increases, the rate that oxygen reaches the cathode
through the diffusing membrane will also increase. The electron transfer, and
therefore the external current, will increase, even though the oxygen concentration of the sample has not changed. It is therefore important that the
sample pressure at the fuel cell (usually vent pressure) remain constant
between calibrations.
2.2.5 Calibration Characteristics
Given that the total pressure of the sample gas at the surface of the
Micro-Fuel Cell input is constant, a convenient characteristic of the cell is
that the current produced in an external circuit is directly proportional to the
rate at which oxygen molecules reach the cathode, and this rate is directly
proportional to the concentration of oxygen in the gaseous mixture. In other
words it has a linear characteristic curve, as shown in Figure 2-3. Measuring
circuits do not have to compensate for nonlinearities.
In addition, since there is zero output in the absence oxygen, the characteristic curve has close to an absolute zero. In the percent ranges, the cell
itself does not need to be zeroed. In practical application zeroing is still used
to compensate for zero offsets in the electronics. (The electronics is zeroed
automatically when the instrument power is turned on.)
2-4
Teledyne Analytical Instruments
Percent Oxygen Analyzer Operational Theory 2
Figure 2-3. Characteristic Input/Output Curve for a Micro-Fuel Cell
2.2.6 Micro-Fuel Cell “Class”
TBE manufactures Micro-Fuel Cells with a variety of characteristics to
give the best possible performance for any given sample conditions. A few
typical Micro-Fuel Cells are listed below with their typical use and electrical
specifications.
2.2.6.1 Class A-3 Cell
The class A-3 cell is for use in applications where it is exposed continuously to carbon dioxide concentrations between 1 % and 100 % in the
sample gas.
Nominal output in air is 0.20 mA, and 90 % response time is 45 s.
Expected life in flue gas is 8 months.
2.2.6.2 Class A-5 Cell
The class A-5 cell is for use in applications where it is exposed intermittently to carbon dioxide concentrations up to 100 % in the sample gas.
Teledyne Analytical Instruments
2-5
2 Operational Theory Model 3000PA
Nominal output in air is 0.19 mA, and 90 % response time is 45 s.
Expected life in flue gas is 8 months.
2.2.6.3 Class B-1 Cell
The class B-1 cell is for use in applications where it is exposed to less
than 0.1 % of carbon dioxide, and where fast response is important.
Nominal output in air is 0.50 mA, and 90 % response time is 7 s.
Expected life in air is 8 months.
2.2.6.4 Class B-3 Cell
The class B-3 cell is for use in applications where a slightly longer
response time is acceptable in order to have a longer cell life.
Nominal output in air is 0.30 mA, and 90 % response time is 13 s.
Expected life in air is 12 months.
2.2.6.5 Class C-3 Cell
The class B-1 cell is for use in applications where it is exposed to less
than 0.1 % of carbon dioxide, and where a longer response time is acceptable in order to have a longer cell life.
Nominal output in air is 0.20 mA, and 90 % response time is 30 s.
Expected life in air is 18 months.
2.2.6.6 Hydrogen and/or Helium Service
If the sample gas contains 10 % or more hydrogen and/or helium,
“clamp” cells are used. These Micro-Fuel cells are identified by the suffix -C
added to the cell class number.
2.3Sample System
The sample system delivers gases to the Micro-Fuel Cell sensor from
the analyzer rear panel inlet. Depending on the mode of operation either
sample or calibration gas is delivered.
The Model 3000P sample system is designed and fabricated to ensure
that the oxygen concentration of the gas is not altered as it travels through the
sample system. The sample encounters almost no dead space. This mini-
2-6
Teledyne Analytical Instruments
Percent Oxygen Analyzer Operational Theory 2
mizes residual gas pockets that can interfere with very low level oxygen
analysis.
The sample system for the standard instrument incorporates ¼ inch tube
fittings for sample inlet and outlet connections at the rear panel. For metric
system installations, 6 mm adapters are supplied with each instrument. The
sample or calibration gas flow through the system is monitored by a flowmeter downstream from the cell. Figure 2-4 shows the piping layout for the
standard model.
Figure 2-4: Piping Layout and Flow Diagram for Standard Model
Figure 2-5 is the flow diagram for the sampling system. In the standard
instrument, calibration gases (zero and span) can be connected directly to the
Sample In port by teeing to the port with appropriate valves. The shaded
portion of the diagram shows the components added when the –C option is
ordered. The valving is installed inside the 3000PA-C enclosure and is
regulated by the instrument's internal electronics.
Teledyne Analytical Instruments
2-7
2 Operational Theory Model 3000PA
Span I n
Zero In
Sample In
In vacuum service the
restrictor should be
placed here .
In normal service the
restrictor should be
placed here .
Solenoid
Valves
Components in the shaded area are in
the -C option (inter nal control valves)
only and are not shown in the piping
diagram above.
Cell
Exhaust Ou t
Restrictor
Figure 2-5: Flow Diagram
2.4Electronics and Signal Processing
The Model 3000P Percent Oxygen Analyzer uses an 8031 microcontroller with 32 kB of RAM and 128 kB of ROM to control all signal processing, input/output, and display functions for the analyzer. System power
is supplied from a universal power supply module designed to be compatible
with any international power source. Figure 2-6 shows the location of the
power supply and the main electronic PC boards.
Flowmeter
2-8
Figure 2-6: Location of Electronic Components
Teledyne Analytical Instruments
Percent Oxygen Analyzer Operational Theory 2
The signal processing electronics including the microprocessor, analog
to digital, and digital to analog converters are located on the motherboard at
the bottom of the case. The preamplifier board is mounted on top of the
motherboard as shown in the figure. These boards are accessible after removing the back panel. Figure 2-7 is a block diagram of the Analyzer
electronics.
Figure 2-7: Block Diagram of the Model 3000P Electronics
Teledyne Analytical Instruments
2-9
Loading...
+ 48 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.