ST TSV321, TSV358, TSV324 User Manual

TSV321-TSV358-TSV324
General purpose input/output rail-to-rail
low power operational amplifiers
Features
Operating range V
Rail-to-rail input and output
Extended V
icm
Capable of driving a 32 Ω load resistor
High stability: 500 pF
Available in SOT23-5 micropackage
Operating temperature range: -40° C, +125° C
CC
(VDD - 0.2 V to VCC + 0.2 V)
Applications
Battery-powered applications
Audio driver (headphone driver)
Sensor signal conditioning
Laptop/notebook computers
Description
The TSV358 and TSV324 (dual and quad) are low voltage versions of the LM358 and LM324 commodity operational amplifiers . The TSV321 is the single version. The TSV321/358/324 are able to operate with voltages as low as 2.5 V and feature both I/O rail-to-rail.
Pin connections (top view)
TSV321RILT (SOT23-5)
VCC
Output
Output
Non Inverting Input Inverting Input
Non Inverting Input Inverting Input
VDD
VDD
1
1 2
2
3
3
VCC
5
5
4
4
TSV321ID-TSV321IDT (SO-8)
N.C.
N.C.
Inverting Input
Inverting Input
Non Inverting Input
Non Inverting Input
VDD
VDD
1
1
_
2
2 3
3 4
4
_ +
+
8
N.C.
8
N.C. VCC
VCC
7
7
Output
Output
6
6
N.C.
N.C.
5
5
TSV358IST-TSV358ID-TSV358IDT-TSV358IPT
(SO-8, miniSO-8, TSSOP8)
Output 1
Output 1
Inverting Input 1
Inverting Input 1
Non Inverting Input 1
Non Inverting Input 1
VDD
VDD
1
1
_
_
2
2
+
+
3
3 4
4
VCC
VCC
8
8 7
7
Output 2
Output 2
_
_
Inverting Input 2
Inverting Input 2
6
6
+
+
Non Inverting Input 2
Non Inverting Input 2
5
5
The common mode input voltage e xtends 200 mV beyond the supply voltages at 25° C while the output voltage swing is within 100 mV of each rail with a 600 Ω load resistor. At V
= 3 V, these
CC
TSV324ID-TSV324IDT-TSV324IPT
(SO-14, TSSOP14)
devices offer 1.3 MHz of gain-bandwidth product and provide high output current capability with a typical value of 80 mA.
These features make the TSV3xx family ideal for active filters, general purpose low-voltage applications, and general purpose portable devices.
Output 1
Output 1
Inverting Input 1
Inverting Input 1
Non Inverting Input 1
Non Inverting Input 1
Non Inverting Input 2
Non Inverting Input 2
Inverting Input 2
Inverting Input 2
Output 2
Output 2
VCC
VCC
1
1
_
_
2
2
+
+
3
3 4
4 5
5
+
+ _
_
6
6 7
7
February 2008 Rev 5 1/17
Output 4
Output 4
14
14
_
_
13
13
Inverting Input 4
Inverting Input 4
+
+
Non Inverting Input 4
Non Inverting Input 4
12
12
VDD
VDD
11
11 10
10
Non Inverting Input 3
Non Inverting Input 3
+
+ _
_
Inverting Input 3
Inverting Input 3
9
9
Output 3
Output 3
8
8
www.st.com
17
Absolute maximum ratings and operating conditions TSV321-TSV358-TSV324

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC
V
id
V
in
T
stg
T
R
thja
R
thjc
ESD
Supply voltage Differential input voltage Input voltage VDD-0.3 to VCC +0.3 V Storage temperature -65 to +150 °C Maximum junction temperature 150 °C
j
Thermal resistance junction to ambient
SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14 MiniSO-8
Thermal resistance junction to case
SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14
MiniSO-8 HBM: human body model MM: machine model CDM: charged device model
(1)
(5)
(2)
(4)
(6)
(3)
(3)
7V
±1 V
250
°C/W
125 105 120 100 190
81
°C/W
40 31 37 32 39
2kV
200 V
1.5 kV Latch-up immunity 200 mA Lead temperature (soldering, 10s) 250 °C Output short-circuit duration See note
1. All voltages values, except differential voltage are with respect to network terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If V
> ±1 V, the maximum input current must not exceed ±1 mA. When Vid > ±1 V, an input series resistor
id
must be added to limit input current.
3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
4. Human body model: 100pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
5. Machine model: a 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 combinations with other pins floating.
6. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
7. Short-circuits from the output to VCCcan cause excessive heating. The maximum output current is approximately 80 mA, independent of the magnitude of V simultaneous short-circuits on all amplifiers.
2/17
(7)
Ω), done for all couples of pin
. Destructive dissipation can result from
CC
TSV321-TSV358-TSV324 Absolute maximum ratings and operating conditions

Table 2. Operating conditions

Symbol Parameter Value Unit
V
V
T
Supply voltage 2.5 to 6 V
CC
Common mode input voltage range
V
= 25°C, 2.5 ≤ VCC ≤ 6V
icm
oper
T
amb
T
< T
< T
min
amb
, 2.5 VCC 5.5V
max
Operating free air temperature range -40 to + 125 °C
- 0.2 to VCC + 0.2
DD
VDD to V
V
CC
3/17
Electrical characteristics TSV321-TSV358-TSV324

2 Electrical characteristics

Table 3. Electrical characteristics at VCC = +3V, VDD = 0V, RL, CL connected to VCC/2,
and T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
= V
= V
V
Input offset voltage
io
icm
out
TSV321/358/324
≤ T
T
min
amb
TSV321A/358A/324A T
≤ T
min
amb
≤ T
≤ T
CC
max
max
/2
0.2
0.1
3 6
mV
1 3
ΔVioInput offset voltage drift 2 µV/°C
Input offset current
I
io
I
Input bias current
ib
CMR
V
V
Common mode rejection ratio 20 log (ΔVic/ΔVio)
A
Large signal voltage gain
vd
High level output voltage
OH
Low level output voltage
OL
Output source current Vid = 100mV, VO = V
I
o
Output sink current V
I
Supply current (per amplifier)
CC
GBP Gain bandwidth product R
SR Slew rate R
φm Phase margin C
V
= V
icm
T
min
V
icm
T
min
0 ≤ V
V
out
R
= V
out
≤ T
≤ T
amb
= V
= V
out
≤ T
≤ T
amb
≤ VCC, V
icm
= 0.5V to 2.5V
= 2kΩ
L
RL = 600Ω
V
= 100mV
id
= 2kΩ
R
L
RL = 600Ω T
≤ T
min
T
V
id
R
amb
≤ T
min
amb
= -100mV
= 2kΩ
L
RL = 600Ω T
≤ T
min
amb
≤ T
min
amb
= -100mV, VO = V
= 1, no load
≤ T
≤ T
amb
=10kΩ, CL= 100pF, f = 100kHz 1 1.3 MHz =10kΩ, CL= 100pF 0.42 0.6 V/µs = 100pF 53 Degrees
A T
T
id VCL
min L L L
CC
max
CC
max
≤ T ≤ T
≤ T ≤ T
max
(1)
/2
(1)
/2
= V
out
max, RL max, RL
max, RL max, RL
DD
330
40 125
150
/2 60 80 dB
CC
= 2kΩ = 600Ω
= 2kΩ = 600Ω
80 74
2.82
2.80
2.82
2.80
92 95
2.95
2.95
88
115
120 160
120 160
20 80
CC
20 80
420 650
690
60
nA
nA
dB
mV
mA
µA
en Input voltage noise 27 nV/√Hz
THD Total harmonic distortion 0.01 %
1. Maximum values include unavoidable inaccuracies of the industrial tests.
V
4/17
TSV321-TSV358-TSV324 Electrical characteristics
T ab le 4. Electrical characteristics at VCC = +5V, VDD = 0V, RL, CL connected to VCC/2,
and T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
V
= V
= V
V
Input offset voltage
io
icm
out
TSV321/358/324
≤ T
T
min
amb
TSV321A/358A/324A
≤ T
T
min
amb
≤ T
≤ T
CC
max
max
/2
0.2
0.1
3 6
mV
1 3
ΔVioInput offset voltage drift 2 µV/°C
I
Input offset current
io
I
Input bias current
ib
CMR
SVR
V
V
Common mode rejection ratio 20 log (ΔVic/ΔVio)
Supply voltage rejection ratio 20 log (ΔV
Large signal voltage gain
A
vd
High level output voltage
OH
Low level output voltage
OL
CC
/ΔVio)
Output source current Vid = 100mV, VO = V
I
o
Output sink current V
Supply current (per amplifier)
I
CC
GBP Gain bandwidth product R
SR Slew rate R
φm Phase margin C
V
= V ≤ T
= V ≤ T
icm
= V
out
T
amb
= V
out
≤ T
amb
≤ VCC, V
icm
T
min
V
icm
T
min
0 ≤ V
VCC = 2.5 to 5V 70 90 dB
= 0.5V to 4.5V
V
out
RL = 2kΩ
= 600Ω
R
L
V
= 100mV
id
RL = 2kΩ
= 600Ω
R
L
T
≤ T
min
T
V
id
R
amb
≤ T
min
amb
= -100mV
= 2kΩ
L
RL = 600Ω T
≤ T
min
amb
≤ T
min
amb
= -100mV, VO = V
= 1, no load
≤ T
≤ T
amb
=10kΩ, CL= 100pF, f = 100kHz 1 1.4 MHz =10kΩ, CL= 100pF 0.42 0.6 V/µs = 100pF 55 Degrees
A T
T
id VCL
min L L L
CC
max
CC
max
≤ T ≤ T
≤ T ≤ T
max
(1)
/2
(1)
/2
= V
out
max, RL max, RL
max, RL max, RL
DD
330
70 130
150
/2 65 85 dB
CC
= 2kΩ = 600Ω
= 2kΩ = 600Ω
83 77
4.80
4.75
4.80
4.75
92 85
4.95
4.90
88
115
130 188
130 188
20 80
CC
20 80
500 835
875
60
nA
nA
dB
mV
mA
µA
en Input voltage noise 27 nV/√Hz
THD Total harmonic distortion 0.01 %
V
1. Maximum values include unavoidable inaccuracies of the industrial tests.
5/17
Electrical characteristics TSV321-TSV358-TSV324
Figure 1. Supply current/amplifier vs. supply
600
600
500
500
400
400
300
300
200
200
Supply Current (µA)
Supply Current (µA)
100
100
0
0
Figure 2. Supply current/amplifier vs.
voltage
550
550
500
500
450
450
Tamb = 25°C
Tamb = 25°C
02468
02468
Supply Voltage (V)
Supply Voltage (V)
400
400
350
350
Supply Current (µA)
Supply Current (µA)
300
300
250
250
temperature
Vcc = 5V
Vcc = 5V
Vcc = 3V
Vcc = 3V
-40-200 20406080100120140
-40-200 20406080100120140 Temperature (°C)
Temperature (°C)
Figure 3. Output power vs. supply voltage Figure 4. Input offset voltage drift vs.
temperature
200
60
60
RL = 32 ohms
RL = 32 ohms
50
50
40
40
30
30
20
20
Output Power ( mW)
Output Power ( mW)
10
10
0
0
123456
123456
10% distortion
10% distortion
0.1% distortion
0.1% distortion
Supply Voltage (V)
Supply Voltage (V)
1% distorti o n
1% distorti o n
200
150
150
100
100
50
50
0
0
-50
-50
Input Voltage Drift (µV)
Input Voltage Drift (µV)
-100
-100
-150
-150
-40-200 20406080100120140
-40-200 20406080100120140 Temperature (°C)
Temperature (°C)
Vcc = 3V
Vcc = 3V
Vcc = 5V
Vcc = 5V
Figure 5. Input bias current vs. temperature Figure 6. Open loop gain vs. temperature at
V
=5V
CC
110
10.0
10.0
0.0
0.0
-10.0
-10.0
-20.0
-20.0
Input bias current (nA)
Input bias current (nA)
-30.0
-30.0
-40.0
-40.0
-40 -20 0 20 40 60 80 100 120 140
-40 -20 0 20 40 60 80 100 120 140 Temperature (°C)
Temperature (°C)
Vcc = 3V
Vcc = 3V Vicm = 1.5V
Vicm = 1.5V
6/17
110
Vcc = 5V
Vcc = 5V Vicm = 2.5V
Vicm = 2.5V
100
100
90
90
80
80
Open Loop Gain (dB)
Open Loop Gain (dB)
70
70
-40-200 20406080100120140
-40-200 20406080100120140 Temperature (°C)
Temperature (°C)
RL = 2 kOhms
RL = 2 kOhms
RL = 600 ohms
RL = 600 ohms
Loading...
+ 11 hidden pages