ST STPS20L15D, STPS20L15G User Manual

®
LOW DROP OR-ing POWER SCHOTTKY DIODE
MAIN PRODUCT CHARACTERISTICS
STPS20L15D/G
I
F(AV)
RRM
20 A 15 V
Tj (max) 125°C
(max) 0.33 V
F
FEATURES AND BENEFITS
VERY LOW FORWARD VOLTAGE DROP FOR
n
K
K
LESS POWER DISSIPATION AND REDUCED HEATSINK SIZE
REVERSEVOLTAGESUITEDTOOR-ingOF 3V,
n
5V and 12V RAILS AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Packaged in TO-220AC or D
2
PAK, this device is
especially intended for use as an OR-ing diode in
TO-220AC
STPS20L15D
A
K
2
D
PAK
STPS20L15G
A
NC
fault tolerant power supply equipments.
ABSOLUTE RATINGS (limiting values)
Symbol Parameter Value Unit
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
ARM
T
stg
Repetitive peak reverse voltage 15 V RMS forward current 30 A Average forward current Tc = 115°C δ = 1 20 A Surge non repetitive forward current tp = 10 ms Sinusoidal 310 A Repetitive peak reverse current tp=2µs F=1kHz 2 A Non repetitive peak reverse current tp = 100 µs 3 A Repetitive peak avalanche power tp = 1µs Tj = 25°C 13500 W Storage temperature range - 65 to + 150 °C
Tj Maximum operating junction temperature * 125 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
*:
<
dTj Rth j a
thermal runaway condition for a diode on its own heatsink
−1()
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
July 2003 - Ed: 3B
Junction to case 1.6 °C/W
1/5
STPS20L15D/G
STATIC ELECTRICAL CHARACTERISTICS
Symbol Tests Conditions Tests Conditions Min. Typ. Max. Unit
I
* Reverse leakage
R
current
* Forward voltage drop Tj = 25°CI
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation : P=0.18xI
F(AV)
+ 8.10-3xI
F2(RMS)
Fig. 1: Average forward power dissipation versus average forward current.
PF(av)(W)
8 7
δ = 0.05
6 5 4 3 2 1 0
0 2 4 6 8 10121416182022
δ = 0.1
δ = 0.2
IF(av) (A)
Tj=25°CV Tj = 100°CV
Tj=25°CI Tj = 125°CI Tj = 125°CI
Fig. 2: Average forward current versus ambient temperature ( δ = 1).
22
δ = 0.5
δ
=tp/T
δ = 1
T
tp
20 18 16 14 12 10
= 15V 6 mA
R
= 15V 200 500
R
= 19 A 0.41 V
F
= 40 A 0.52
F
= 19 A 0.28 0.33
F
= 40 A 0.42 0.50
F
IF(av)(A)
Rth(j-a)=Rth(j-c)
Rth(j-a)=35°C/W
Rth(j-a)=15°C/W
8 6
T
4 2
=tp/T
δ
0
0 25 50 75 100 125
tp
Tamb(°C)
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values).
IM(A)
250
200
150
100
IM
50
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
2/5
Tc=50°C
Tc=75°C
Tc=110°C
Fig. 4: Normalized avalanche power derating versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2 1
0.8
0.6
0.4
0.2 0
0 25 50 75 100 125 150
T (°C)
j
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration.
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0
Single pulse
tp (s)
δ
=tp/T
T
tp
Loading...
+ 3 hidden pages