ST STM32G4A1xE User Manual

STM32G4A1xE
LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) LQFP80 (12 x 12 mm)
UFBGA64
(5 x 5 mm)
UFQFPN32 (5 x 5 mm) UFQFPN48 (7 x 7 mm)
WLCSP64 (Pitch 0.4)
FBGA
LQFP80 (14 x 14 mm)
LQFP100 (14 x 14 mm)
Arm® Cortex®-M4 32-bit MCU+FPU, 170 MHz / 213 DMIPS, up to
512 KB Flash, 112 KB SRAM, rich analog, math accelerator, AES
Features
Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 170 MHz with 213 DMIPS, MPU, DSP instructions
Operating conditions: –V
Mathematical hardware accelerators – CORDIC for trigonometric functions
– FMAC: filter mathematical accelerator
Memories – 512 Kbytes of Flash memory with ECC
– 96 Kbytes of SRAM, with hardware parity
– Routine booster: 16 Kbytes of SRAM on
– Quad-SPI memory interface
Reset and supply management – Power-on/power-down reset
– Programmable voltage detector (PVD) – Low-power modes: sleep, stop, standby
–V
Clock management –4 – 32 kHz oscillator with calibration – Internal 16 MHz RC with PLL option (± 1%) –
Up to 86 fast I/Os – All mappable on external interrupt vectors
, V
DD
voltage range:
DDA
1.71 V to 3.6 V
acceleration
support, proprietary code readout protection (PCROP), securable memory area, 1 Kbyte OTP
check implemented on the first 32 Kbytes
instruction and data bus, with hardware parity check (CCM SRAM)
(POR/PDR/BOR)
and shutdown
supply for RTC and backup registers
BAT
to 48 MHz crystal oscillator
Internal 32 kHz RC oscillator (± 5%)
– Several I/Os with 5 V tolerant capability
Interconnect matrix
16-channel DMA controller
3 x ADCs 0.25 µs (up to 36 channels).
Resolution up to 16-bit with hardware oversampling, 0 to 3.6 V conversion range
4 x 12-bit DAC channels – 2 x buffered external channels 1 MSPS – 2 x unbuffered internal channels 15 MSPS
4 x ultra-fast rail-to-rail analog comparators
4 x operational amplifiers that can be used in
PGA mode, all terminals accessible
Internal voltage reference buffer (VREFBUF) supporting three output voltages (2.048 V,
2.5 V, 2.9 V)
15 timers: – 1 x 32-bit timer and 2 x 16-bit timers with up
to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 3 x 16-bit 8-channel advanced motor
control timers, with up to 8 x PWM channels, dead time generation and emergency stop
– 1 x 16-bit timer with 2 x IC/OCs, one
OCN/PWM, dead time generation and emergency stop
– 2 x 16-bit timers with IC/OC/OCN/PWM,
dead time generation and emergency stop – 2 x watchdog timers (independent, window) – 1 x SysTick timer: 24-bit downcounter – 2 x 16-bit basic timers
November 2020 DS13268 Rev 2 1/200
This is information on a product in full production.
www.st.com
STM32G4A1xE
– 1 x low-power timer
Calendar RTC with alarm, periodic wakeup from stop/standby
Communication interfaces – 2 x FDCAN controller supporting flexible
data rate
– 3 x I
2
C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from stop
– 5 x USART/UARTs (ISO 7816 interface,
LIN, IrDA, modem control)
–1 x LPUART – 3 x SPIs, 4 to 16 programmable bit frames,
2 x with multiplexed half duplex I
2
S
– 1 x SAI (serial audio interface) – USB 2.0 full-speed interface with LPM and
BCD support – IRTIM (infrared interface) – USB Type-C™ /USB power delivery
controller (UCPD)
True random number generator (RNG)
CRC calculation unit, 96-bit unique ID
AES: 128/256-bit key encryption hardware
accelerator
Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™
interface
Table 1. Device summary
Reference Part number
STM32G4A1xE STM32G4A1CE, STM32G4A1KE, STM32G4A1ME, STM32G4A1RE, STM32G4A1VE
2/200 DS13268 Rev 2
STM32G4A1xE Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART accelerator) . . . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 CORDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.11 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16 DMA request router (DMAMux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 28
3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 28
3.18 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DS13268 Rev 2 3/200
6
Contents STM32G4A1xE
3.18.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.4 Operational amplifier internal output (OPAMPxINT): . . . . . . . . . . . . . . . 30
3.19 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.24 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 32
3.25 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.25.1 Advanced motor control timer (TIM1, TIM8, TIM20) . . . . . . . . . . . . . . . 34
3.25.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.25.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.25.6 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.25.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.26 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 37
3.27 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.30 Universal synchronous/asynchronous receiver transmitter (USART) . . . 40
3.31 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 41
3.32 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.33 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.33.1 SAI peripheral supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.34 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 43
3.35 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.36 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 43
3.37 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.38 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.39 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.39.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.39.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4/200 DS13268 Rev 2
STM32G4A1xE Contents
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 UFQFPN32 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 LQFP48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 WLCSP64 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 UFBGA64 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 LQFP80 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 75
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 75
5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
DS13268 Rev 2 5/200
6
Contents STM32G4A1xE
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 120
5.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.18 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 121
5.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 136
5.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.24 V
5.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 153
5.3.27 QUADSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.3.28 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
BAT
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.1 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.6 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.7 LQFP80 12 x 12 mm package information . . . . . . . . . . . . . . . . . . . . . . . 185
6.8 LQFP80 14 x 14 mm package information . . . . . . . . . . . . . . . . . . . . . . . 188
6.9 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 196
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6/200 DS13268 Rev 2
STM32G4A1xE List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32G4A1xE features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. STM32G4A1xE peripherals interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 10. SAI implementation for the features implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 12. STM32G4A1xE pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 13. Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 18. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 20. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) . . 79
Table 22. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 23. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 83
Table 24. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 25. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 26. Typical current consumption in Run and Low-power run modes, with different codes
running from CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 27. Current consumption in Sleep and Low-power sleep mode Flash ON . . . . . . . . . . . . . . . . 87
Table 28. Current consumption in low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . . 88
Table 29. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 30. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 31. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 32. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 33. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 34. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 35. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 36. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 37. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 38. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 39. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 40. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 41. LSE oscillator characteristics (f
Table 42. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
LSE
DS13268 Rev 2 7/200
9
List of tables STM32G4A1xE
Table 43. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 44. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 45. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 46. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 47. Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 48. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 49. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 52. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 53. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 54. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 55. I/O (except FT_c) AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 56. I/O FT_c AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 58. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 59. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 60. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 61. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 62. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 63. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 64. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 65. ADC accuracy (Multiple ADCs operation) - limited test conditions 1 . . . . . . . . . . . . . . . . 132
Table 66. ADC accuracy (Multiple ADCs operation) - limited test conditions 2 . . . . . . . . . . . . . . . . 133
Table 67. ADC accuracy (Multiple ADCs operation) - limited test conditions 3 . . . . . . . . . . . . . . . . 134
Table 68. DAC 1MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 69. DAC 1MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 70. DAC 15MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 71. DAC 15MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 72. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 73. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 74. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 75. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 76. V Table 77. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
BAT
Table 78. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 79. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 80. WWDG min/max timeout value at 170 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 81. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 82. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 83. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 84. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 85. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 86. USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 87. USART electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 88. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 89. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 90. UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 91. UFQFPN32 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 92. UFQFPN48 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 93. LQFP48 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 94. WLCSP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8/200 DS13268 Rev 2
STM32G4A1xE List of tables
Table 95. WLCSP64 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 96. LQFP64 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 97. UFBGA64 – Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 98. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 183
Table 99. LQFP80 12 x 12 mm - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 100. LQFP80 14 x 14 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 101. LQPF100 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 102. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 103. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 104. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
DS13268 Rev 2 9/200
9
List of figures STM32G4A1xE
List of figures
Figure 1. STM32G4A1xE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5. STM32G4A1xE UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 6. STM32G4A1xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 7. STM32G4A1xE LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 8. STM32G4A1xE WLCSP64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 9. STM32G4A1xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10. STM32G4A1xE UFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 11. STM32G4A1xE LQFP80 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 12. STM32G4A1xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 13. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 14. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 15. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 16. Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 17. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 19. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 22. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 23. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 24. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 25. I/O AC characteristics definition
Figure 26. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 27. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 28. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 29. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 30. VREFOUT_TEMP in case VRS = 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 31. VREFOUT_TEMP in case VRS = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 32. VREFOUT_TEMP in case VRS = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 33. OPAMP noise density @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 37. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 38. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 39. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 40. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 41. UFQFPN32 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 42. UFQFPN32 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 43. UFQFPN32 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 44. UFQFPN48 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 45. UFQFPN48 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 46. UFQFPN48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 47. LQFP48 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 48. LQFP48 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10/200 DS13268 Rev 2
STM32G4A1xE List of figures
Figure 49. LQFP48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 50. WLCSP64 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 51. WLCSP64 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 52. WLCSP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 53. LQFP64 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 54. LQFP64 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 55. LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 56. UFBGA64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 57. UFBGA64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 58. UFBGA64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 59. LQFP80 12 x 12 mm - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 60. LQFP80 12 x 12 mm - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 61. LQFP80 12 x 12 mm top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 62. LQFP80 14 x 14 mm - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 63. LQFP80 14 x 14 mm- recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 64. LQFP80 14 x 14 mm - top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 65. LQFP100 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 66. LQFP100 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 67. LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
DS13268 Rev 2 11/200
11
Introduction STM32G4A1xE

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32G4A1xE microcontrollers.
This document should be read in conjunction with the reference manual RM0440
“STM32G4 Series advanced Arm
®
32-bit MCUs”. The reference manual is available from
the STMicroelectronics website www.st.com.
For information on the Arm
®(a)
Cortex®-M4 core, refer to the Cortex®-M4 technical
reference manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/200 DS13268 Rev 2
STM32G4A1xE Description

2 Description

The STM32G4A1xE devices are based on the high-performance Arm® Cortex®-M4 32-bit
RISC core. They operate at a frequency of up to 170 MHz.
The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all
the Arm single-precision data-processing instructions and all the data types. It also
implements a full set of DSP (digital signal processing) instructions and a memory protection
unit (MPU) which enhances the application’s security.
These devices embed high-speed memories (512 Kbytes of Flash memory, and 112 Kbytes
of SRAM), a Quad SPI Flash memory interface, an extensive range of enhanced I/Os and
peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus
matrix.
The devices also embed several protection mechanisms for embedded Flash memory and
SRAM: readout protection, write protection, securable memory area and proprietary code
readout protection.
The devices embed peripherals allowing mathematical/arithmetic function acceleration
(CORDIC for trigonometric functions and FMAC unit for filter functions).
They offer three fast 12-bit ADCs (5 Msps), four comparators, four operational amplifiers,
four DAC channels (2 external and 2 internal), an internal voltage reference buffer, a low-
power RTC, one general-purpose 32-bit timers, three 16-bit PWM timers dedicated to motor
control, seven general-purpose 16-bit timers, and one 16-bit low-power timer.
They also feature standard and advanced communication interfaces such as:
- Three I2Cs
- Three SPIs multiplexed with two half duplex I2Ss
- Three USARTs, two UARTs and one low-power UART.
- Two FDCANs
- One SAI
- USB device
- UCPD
The STM32G4A1xE devices embed an AES.
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C
junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
Some independent power supplies are supported including an analog independent supply
input for ADC, DAC, OPAMPs and comparators. A V
the registers.
The STM32G4A1xE family offers 9 packages from 32-pin to 100-pin.
input allows backup of the RTC and
BAT
DS13268 Rev 2 13/200
45
Description STM32G4A1xE
Peripheral STM32G4A1KE STM32G4A1CE STM32G4A1RE STM32G4A1ME STM32G4A1VE
Table 2. STM32G4A1xE features and peripheral counts
Flash memory 512 KB 512 KB 512 KB 512 KB 512 KB
SRAM1 80 KB
SRAM2 16 KB
CCM SRAM 16 KB
QUADSPI 1
Advanced motor control
General purpose
3 (16-bit)
5 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
Low power 1 (16-bit)
SysTick timer 1
Timers
Watchdog timers (independent,
2
window)
PWM channels (all)
23 32 38 38 44
PWM channels (except compl
23 26 28 28 29
ementary)
SPI(I2S)
2
I
(1)
C3
3 (2)
USART 2 3
Comm. interfac es
UART 0 2
LPUART 1
FDCANs 2
USB device Yes
UCPD Yes
SAI Yes
RTC Yes
Tamper pins 1 2 2 3
Random number generator
Yes
AES Yes
CORDIC Yes
FMAC Yes
14/200 DS13268 Rev 2
STM32G4A1xE Description
Table 2. STM32G4A1xE features and peripheral counts (continued)
Peripheral
GPIOs
Wakeup pins
STM32G4A1KE STM32G4A1CE STM32G4A1RE STM32G4A1ME STM32G4A1VE
26
2
38 in LQFP48
42 in
UFQFPN48
3
52
66
4
4
3
12-bit ADCs Number of channels
11
18 in LQFP48
19 in
24 32 36
UFQFPN48
12-bit DAC Number of channels
Internal voltage reference buffer
4 (2 external + 2 internal)
2
Yes
Analog comparator 4
Operational amplifiers 4
Max. CPU frequency 170 MHz
Operating voltage 1.71 V to 3.6 V
Operating temperature Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Packages UFQFPN32
1. The SPI2/3 interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
LQFP48/
UFQFPN48
LQFP64/ UFBGA4
WLCSP64
LQFP80 LQFP100
86
5
DS13268 Rev 2 15/200
45
GPIO PORT A
AHB/APB2
USART 2MBps
EXT IT. WKUP
86 AFP
USART 2MBps
GPIO PORT B
PB(15:0)
USART 2MBps
GPIO PORT C
PC(15:0)
USART 2MBps
RX, TX, SCK,CTS,
RTS as AF
USART 2MBps
GPIO PORT D
PD(15:0)
USART 2MBps
GPIO PORT E
PE(15:0)
USART 2MBps
SPI 1
MOSI, MISO
SCK, NSS as AF
APB2 60MHzAPB1
4 CH, ETR as AF
TIMER2
4 CH, ETR as AF
TIMER3&4
RX, TX, SCK, CTS, RTS as AF
USART2&3
UART4&5
MOSI, MISO, SCK
SPI2&3
NSS, as AF
OUT1/OUT2
DAC1
TIMER6
RTC_OUT RTC_TS RTC_TAMPx
OSC_IN
OSC_OUT
VDD, VSS, VDDA, VSSA, RESET
VBAT = 1.55 to 3.6V
AHB/APB1
JTAG & SW
Arm
®
Cortex-M4
170 MHz
S-BUS
ETM
MPU
TRACECK
TRACED(3:0)
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
GP-DMA2
GP-DMA1
8 Chan
FLASH 512 KB
ACCEL/
CACHE
AHB1
@VDDA
POR / BOR
SUPPLY
@VDD
SUPERVISION
Reset
Int
POR
XTAL OSC
4-48MHz
XTAL 32kHz
RTC
AWU
BKPREG
LSI
Standby Interface
IWDG
@VBAT
@VDD
RESET&
CLOCKCTRL
PLL
VDD = 1.71 to 3.6V VSS
VOLT. REG.
3.3V TO 1.2V
VDD12
POWER MNGT
AHB BUS-MATRIX 5M / 8S
APB2
peripheralclocks
RTC Interface
FPU
WinWATCHDOG
and system
LP timer1
AHB2
SAR ADC2
Ain ADC
SysCfg
CRC
LP_UART1
I2C1&2&3
SCL, SDA, SMBAL as AF
RNG
RNB1
analog
COMP 1,2,3,4
SRAM2 16 KB
PWRCTRL
CAN1&2
FIFO
RX,TX as AF
Vref_Buf
CRS
8 Chan
SRAM1 80 KB
CCM SRAM 16 KB
DMAMUX
HSI
SAR ADC1
IF
@VDDA
16b trigg
TIMER7
16b trigg
USBPD
PHY
CC1 CC2
HSI48
CH2
USB
Device
PHY
D+ D-
FIFO
I2S half
duplex
CH1
OPAMP
1,2,3,6
USART 2MBps
GPIO PORT F
PF(10:9,2:0)
DAC3
CH2
CH1
USART 2MBps
GPIO PORT G
PG(10:10)
CORDIC
FMAC
SAI1
FS, SCK, SD,
MCLK as AF
MSv63469V1
irDA
Smcard
irDA
RX, TX, CTS, RTS as AF
RX, TX as AF
OSC32_IN
OSC_OUT
@VDDA
NVIC
I-BUS
D-BUS
PVD, PWM
PA(15:0)
TIMER1
16b PWM
TIMER8
16b PWM
USART 2MBps
CH as AF
TIMER15
16b
USART 2MBps
CH as AF
TIMER16
16b
USART 2MBps
TIMER17
CH as AF16b
16b
4 PWM,4PWM, ETR,BKIN as F
4 PWM,4PWM, ETR,BKIN as F
USART1
Smcard
irDA
QUADSPI
CLK, NCS, BK1_IO[3:0]
SAR ADC3
IF
TIMER20
16b PWM
4 PWM,4PWM, ETR,BKIN as F
TinyAES
Description STM32G4A1xE
Figure 1. STM32G4A1xE block diagram
1. AF: alternate function on I/O pins.
16/200 DS13268 Rev 2
STM32G4A1xE Functional overview

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
the MCU implementation, with a reduced pin count and with low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm
efficiency, delivering the expected high-performance from an Arm core in a memory size
usually associated with 8-bit and 16-bit devices.
The processor supports a set of DSP instructions which allows an efficient signal processing
and a complex algorithm execution. Its single precision FPU speeds up the software
development by using metalanguage development tools to avoid saturation.
With its embedded Arm core, the STM32G4A1xE family is compatible with all Arm tools and
software.
Figure 1 shows the general block diagram of the STM32G4A1xE devices.
®
Cortex®-M4 with FPU 32-bit RISC processor features an exceptional code-

3.2 Adaptive real-time memory accelerator (ART accelerator)

The ART accelerator is a memory accelerator that is optimized for the STM32 industry-
standard Arm
the Arm
processor to wait for the Flash memory at higher frequencies.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory
and to prevent one task to accidentally corrupt the memory or the resources used by any
other active task. This memory area is organized into up to 8 protected areas, which can be
divided in up into 8 subareas each. The protection area sizes range between 32 bytes and
the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

The STM32G4A1xE devices feature 512 kbytes of embedded Flash memory which is
available for storing programs and data.
Flexible protections can be configured thanks to the option bytes:
DS13268 Rev 2 17/200
45
Functional overview STM32G4A1xE
Readout protection (RDP) to protect the whole memory. Three levels of protection are available:
– Level 0: no readout protection – Level 1: memory readout protection; the Flash memory cannot be read from or written
to if either the debug features are connected or the boot in RAM or bootloader are selected
– Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible.
Write protection (WRP): the protected area is protected against erasing and
programming.
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only and it can only be reached by the STM32 CPU as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
Securable memory area: a part of Flash memory can be configured by option bytes to
be securable. After reset this securable memory area is not secured and it behaves like the remainder of main Flash memory (execute, read, write access). When secured, any access to this securable memory area generates corresponding read/write error. Purpose of the Securable memory area is to protect sensitive code and data (secure keys storage) which can be executed only once at boot, and never again unless a new reset occurs.
The Flash memory embeds the error correction code (ECC) feature supporting:
Single error detection and correction
Double error detection
The address of the ECC fail can be read in the ECC register
1 Kbyte (128 double word) OTP (one-time programmable) bytes for user data. The
OTP area is available in Bank 1 only. The OTP data cannot be erased and can be written only once.

3.5 Embedded SRAM

STM32G4A1xE devices feature 112 Kbytes of embedded SRAM. This SRAM is split into three blocks:
80 Kbytes mapped at address 0x2000 0000 (SRAM1). The CM4 can access the
SRAM1 through the System Bus (or through the I-Code/D-Code buses when boot from SRAM1 is selected or when physical remap is selected by SYSCFG_MEMRMP register). The first 32 Kbytes of SRAM1 support hardware parity check.
16 Kbytes mapped at address 0x2001 4000 (SRAM2). The CM4 can access the
SRAM2 through the System bus. SRAM2 can be kept in stop and standby modes.
16 Kbytes mapped at address 0x1000 0000 (CCM SRAM). It is accessed by the CPU
through I-Code/D-Code bus for maximum performance. It is also aliased at 0x2001 8000 address to be accessed by all masters (CPU, DMA1, DMA2) through SBUS contiguously to SRAM1 and SRAM2.The CCM SRAM supports hardware parity check and can be write-protected with 1-Kbyte granularity.
The memory can be accessed in read/write at max CPU clock speed with 0 wait states.
18/200 DS13268 Rev 2
STM32G4A1xE Functional overview
MS52814V1
Cortex
®
-M4
with FPU
DMA1 DMA2
AHB2
peripherals
AHB1
peripherals
CCM
SRAM
SRAM1
FLASH
512 KB
ACCEL
S-bus
D-bus
ICode
DCode
I-bus
BusMatrix-S
SRAM2
QUADSPI

3.6 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, QUADSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.
Figure 2. Multi-AHB bus matrix

3.7 Boot modes

At startup, a BOOT0 pin (or nBOOT0 option bit)and an nBOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The BOOT0 value may come from the PB8-BOOT0 pin or from an nBOOT0 option bit depending on the value of a user nBOOT_SEL option bit to free the GPIO pad if needed.
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, and USB through the DFU (device firmware upgrade).
DS13268 Rev 2 19/200
45
Functional overview STM32G4A1xE

3.8 CORDIC

The CORDIC provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications.
It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks.
Cordic features
24-bit CORDIC rotation engine
Circular and Hyperbolic modes
Rotation and Vectoring modes
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,
Natural logarithm
Programmable precision up to 20-bit
Fast convergence: 4 bits per clock cycle
Supports 16-bit and 32-bit fixed point input and output formats
Low latency AHB slave interface
Results can be read as soon as ready without polling or interrupt
DMA read and write channels

3.9 Filter mathematical accelerator (FMAC)

The filter mathematical accelerator unit performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic, which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks.
20/200 DS13268 Rev 2
STM32G4A1xE Functional overview
FMAC features
16 x 16-bit multiplier
24+2-bit accumulator with addition and subtraction
16-bit input and output data
256 x 16-bit local memory
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
Input and output sample buffers can be circular
Buffer “watermark” feature reduces overhead in interrupt mode
Filter functions: FIR, IIR (direct form 1)
AHB slave interface
DMA read and write data channels

3.10 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size.
Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity.
The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location.

3.11 Power supply management

3.11.1 Power supply schemes

The STM32G4A1xE devices require a 1.71 V to 3.6 V V Several independent supplies, can be provided for specific peripherals:
V
V
V
= 1.71 V to 3.6 V
DD
V
is the external power supply for the I/Os, the internal regulator and the system
DD
analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.
= 1.62 V to 3.6 V (see Section 5: Electrical characteristics for the minimum V
DDA
voltage required for ADC, DAC, COMP, OPAMP, VREFBUF operation). V
is the external analog power supply for A/D converters, D/A converters, voltage
DDA
reference buffer, operational amplifiers and comparators. The V independent from the V
voltage and should preferably be connected to VDD when
DD
these peripherals are not used.
= 1.55 V to 3.6 V
BAT
V
is the power supply for RTC, external clock 32 kHz oscillator and backup registers
BAT
(through power switch) when V
is not present.
DD
operating voltage supply.
DD
voltage level is
DDA
DDA
DS13268 Rev 2 21/200
45
Functional overview STM32G4A1xE
VREF-, VREF+
V
is the input reference voltage for ADCs and DACs. It is also the output of the
REF+
internal voltage reference buffer when enabled.
When V
When V
DDA
DDA
< 2 V V 2 V V
must be equal to V
REF+
must be between 2 V and V
REF+
DDA
.
.
DDA
The internal voltage reference buffer supports three output voltages, which are configured with VRS bits in the VREFBUF_CSR register:
–V
–V
–V
V
REF-
= 2.048 V
REF+
= 2.5 V
REF+
= 2.9 V
REF+
is double bonded with V
SSA
.

3.11.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the device after power­on and during power down. The device remains in reset mode when the monitored supply voltage V
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
is below a specified threshold, without the need for an external reset circuit.
DD
power supply and compares it to the VPVD threshold. An
DD
drops below the VPVD threshold and/or when VDD is
DD
In addition, the device embeds a peripheral voltage monitor which compares the independent supply voltages V peripheral is in its functional supply range.

3.11.3 Voltage regulator

Two embedded linear voltage regulators, main regulator (MR) and low-power regulator (LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby and Shutdown modes, both regulators are powered down and their outputs set in high­impedance state, such as to bring their current consumption close to zero.
The device supports dynamic voltage scaling to optimize its power consumption in Run mode. the voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency.
The main regulator (MR) operates in the following ranges:
Range 1 boost mode with the CPU running at up to 170 MHz.
Range 1 normal mode with CPU running at up to 150 MHz.
Range 2 with a maximum CPU frequency of 26 MHz.
, with a fixed threshold in order to ensure that the
DDA
22/200 DS13268 Rev 2
STM32G4A1xE Functional overview

3.11.4 Low-power modes

By default, the microcontroller is in Run mode after system or power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode: In Sleep mode, only the CPU is stopped. All peripherals continue to
operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode: This mode is achieved with VCORE supplied by the low-power
regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Stop mode: In Stop mode, the device achieves the lowest power consumption while
retaining the SRAM and register contents. All clocks in the VCORE domain are stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event.
Standby mode: The Standby mode is used to achieve the lowest power consumption
with brown-out reset, BOR. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are also powered down. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The BOR always remains active in Standby mode. For each I/O, the software can determine whether a pull-up, a pull-down or no resistor shall be applied to that I/O during Standby mode. Upon entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and standby circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE (CSS on LSE).
Shutdown mode: The Shutdown mode allows to achieve the lowest power
consumption. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode. Therefore, switching to RTC domain is not supported. SRAM and register contents are lost except for registers in the RTC domain. The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper).

3.11.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal.
3.11.6 V
operation
BAT
The V
pin allows to power the device V
BAT
supercapacitor, or from V supercapacitor is present. The V registers. Three anti-tamper detection pins are available in V
domain from an external battery, an external
when there is no external battery and when an external
DD
BAT
DS13268 Rev 2 23/200
BAT
pin supplies the RTC with LSE and the backup
mode.
BAT
45
Functional overview STM32G4A1xE
The V
operation is automatically activated when VDD is not present. An internal V
BAT
battery charging circuit is embedded and can be activated when V
Note: When the microcontroller is supplied from V
alarm/events exit the microcontroller from the V
is present.
DD
, neither external interrupts nor RTC
BAT
operation.
BAT
BAT
24/200 DS13268 Rev 2
STM32G4A1xE Functional overview

3.12 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop modes.
Table 3. STM32G4A1xE peripherals interconnect matrix
Interconnect source
TIMx
TIM16/TIM17 IRTIM Infrared interface output generation Y Y Y -
COMPx
ADCx TIM1, 8, 20 Timer triggered by analog watchdog Y Y Y -
RTC
All clocks sources (internal and external)
USB TIM2 Timer triggered by USB SOF Y Y - -
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD
Interconnect
destination
TIMx Timers synchronization or chaining Y Y Y -
ADCx DACx
DMA Memory to memory transfer trigger Y Y Y -
COMPx Comparator output blanking Y Y Y -
TIM1, 8, 20 TIM2, 3, 4
LPTIMER1
TIM16
LPTIMER1
TIM15, 16, 17
TIM1, 8, 20 TIM15, 16, 17
TIMx External trigger Y Y Y -
Conversion triggers Y Y Y -
Timer input channel, trigger, break from analog signals comparison
Low-power timer triggered by analog signals comparison
Timer input channel from RTC events
Low-power timer triggered by RTC alarms or tampers
Clock source used as input channel for RC measurement and trimming
Timer break Y Y Y -
Interconnect action
Run
Sleep
Low-power run
YYY -
YYYY
YYY -
YYYY
YYY -
Stop
GPIO
LPTIMER1 External trigger Y Y Y -
ADCx DACx
DS13268 Rev 2 25/200
Conversion external trigger Y Y Y -
45
Functional overview STM32G4A1xE

3.13 Clocks and startup

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: three different sources can deliver SYSCLK system clock:
4 - 48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE).
It can supply clock to system PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
System PLL with maximum output frequency of 170 MHz. It can be fed with HSE
or HSI16 clocks.
RC48 with clock recovery system (HSI48): internal HSIRC48 MHz clock source can
be used to drive the USB or the RNG peripherals.
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an external clock.
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
Peripheral clock sources: several peripherals (I2S, USART, I2C, LPTimer, ADC, SAI,
RNG) have their own clock independent of the system clock.
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE clock failure can also be detected and generate an interrupt.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for external
use by the application
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes.
Several prescalers allow to configure the AHB frequency, the High-speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 170 MHz.
26/200 DS13268 Rev 2
STM32G4A1xE Functional overview

3.14 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.15 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to Table 4: DMA implementation for the features implementation.
Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations.
The two DMA controllers have 16 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests.
The DMA supports:
16 independently configurable channels (requests)
Each channel is connected to a dedicated hardware DMA request, a software
trigger is also supported on each channel. This configuration is done by software.
Priorities between requests from channels of one DMA are both software
programmable (4 levels: very high, high, medium, low) or hardware programmable in case of equality (request 1 has priority over request 2, etc.)
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data size.
Support for circular buffer management
3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error)
logically ORed together in a single interrupt request for each channel
Memory-to-memory transfer
Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
Access to Flash, SRAM, APB and AHB peripherals as source and destination
Programmable number of data to be transferred: up to 65536.
DMA features DMA1 DMA2
Number of regular channels 8 8
Table 4. DMA implementation
DS13268 Rev 2 27/200
45
Functional overview STM32G4A1xE

3.16 DMA request router (DMAMux)

When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product.
An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs.
For simplicity, the functional description is limited to DMA request lines. The other DMA control lines are not shown in figures or described in the text. The DMA request generator produces DMA requests following events on DMA request trigger inputs.

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The STM32G4A1xE devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and to handle up to 71 maskable interrupt channels plus the 16 interrupt lines of the Cortex
®
-M4.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.17.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 40 edge detector lines used to generate interrupt/event requests and to wake-up the system from the Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently.
A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 86 GPIOs can be connected to the 16 external interrupt lines.
28/200 DS13268 Rev 2
STM32G4A1xE Functional overview

3.18 Analog-to-digital converter (ADC)

The device embeds three successive approximation analog-to-digital converters with the following features:
12-bit native resolution, with built-in calibration
4 Msps maximum conversion rate with full resolution
Down to 41.67 ns sampling time
Increased conversion rate for lower resolution (up to 6.66 Msps for 6-bit
resolution)
One external reference pin is available on all packages, allowing the input voltage
range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
Results stored into a data register or in RAM with DMA controller support
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Analog watchdog for automatic voltage monitoring, generating interrupts and
trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Flexible sample time control
Hardware gain and offset compensation

3.18.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
DS13268 Rev 2 29/200
45
Functional overview STM32G4A1xE
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 5. Temperature sensor calibration values
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
DDA
TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V
DDA
3.18.2 Internal voltage reference (V
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN18 and ADC3_IN18 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.
Calibration value name Description Memory address
Table 6. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
temperature of 30 °C (± 5 °C), V
DDA
= V
REF+
= V
REF+
REFINT
= V
REF+
0x1FFF 75A8 - 0x1FFF 75A9
= 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
= 3.0 V (± 10 mV)
)
0x1FFF 75AA - 0x1FFF 75AB
= 3.0 V (± 10 mV)
3.18.3 V
battery voltage monitoring
BAT
This embedded hardware enables the application to measure the V the internal ADC1_IN17 channel. As the V
voltage may be higher than the V
BAT
thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by
3. As a consequence, the converted digital value is one third of the V

3.18.4 Operational amplifier internal output (OPAMPxINT):

The OPAMPx (x = 1,2,3,6) output OPAMPxINT can be sampled using an ADCx (x = 1,2,3) internal input channel. In this case, the I/O on which the OPAMPx output is mapped can be used as GPIO.

3.19 Digital to analog converter (DAC)

Four 12 bit DAC channels (2 external buffered and 2 internal unbuffered) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
battery voltage using
BAT
DDA
voltage.
BAT
, and
30/200 DS13268 Rev 2
Loading...
+ 170 hidden pages