ST STM32F105R8, STM32F105V8, STM32F105RB, STM32F105VB, STM32F105RC User Manual

...
STM32F105xx
LQFP100 14 × 14 mm
LQFP64 10 × 10 mm
FBGA
LFBGA100 10 × 10 mm
STM32F107xx
Connectivity line, ARM-based 32-bit MCU with 64/256 KB Flash, USB OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3 CPU
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 64 to 256 Kbytes of Flash memory – 64 Kbytes of general-purpose SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 3-to-25 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
2 × 12-bit, 1 µs A/D converters (16 channels)
supply for RTC and backup registers
BAT
– Conversion range: 0 to 3.6 V – Sample and hold capability – Temperature sensor – up to 2 MSPS in interleaved mode
2 × 12-bit D/A converters
DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
2
I
Ss, SPIs, I2Cs and USARTs
Debug mode
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
Up to 80 fast I/O ports
– 51/80 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
CRC calculation unit, 96-bit unique ID
Up to 10 timers with pinout remap capability
– Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 1 × 16-bit motor control PWM timer with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 14 communication interfaces with pinout
remap capability – Up to 2 × I
2
C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with a
multiplexed I
2
S interface that offers audio
class accuracy via advanced PLL schemes – 2 × CAN interfaces (2.0B Active) with
512 bytes of dedicated SRAM – USB 2.0 full-speed device/host/OTG
controller with on-chip PHY that supports
HNP/SRP/ID with 1.25 Kbytes of dedicated
SRAM – 10/100 Ethernet MAC with dedicated DMA
and SRAM (4 Kbytes): IEEE1588 hardware
support, MII/RMII available on all packages

Table 1. Device summary

Reference Part number
STM32F105R8, STM32F105V8
STM32F105xx
STM32F107xx
STM32F105RB, STM32F105VB STM32F105RC, STM32F105VC
STM32F107RB, STM32F107VB STM32F107RC, STM32F107VC
August 2011 Doc ID 15274 Rev 6 1/103
www.st.com
1
Contents STM32F105xx, STM32F107xx
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 13
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 13
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 16
2.3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.16 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs) 18
2.3.18 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 Inter-integrated sound (I
2
S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 19
2.3.21 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.22 Universal serial bus on-the-go full-speed (USB OTG FS) . . . . . . . . . . . 20
2.3.23 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24 Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.25 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.26 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.27 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.28 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/103 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Contents
2.3.29 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 36
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 36
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.8 PLL, PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 54
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Doc ID 15274 Rev 6 3/103
Contents STM32F105xx, STM32F107xx
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 87
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1 USB OTG FS interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 USB OTG FS interface + Ethernet/I
2
S interface solutions . . . . . . . . . . . . 96
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4/103 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F105xx and STM32F107xx features and peripheral counts . . . . . . . . . . . . . . . . . . 10
Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family . . . . . . . . . . . . . . 11
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 39
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 39
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSE 3-25 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. LSE oscillator characteristics (f
Table 24. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 27. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 31. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 35. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 36. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 37. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 38. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 40. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 41. I Table 42. SCL frequency (f
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
PCLK1
Table 43. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 44. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LSE
Doc ID 15274 Rev 6 5/103
List of tables STM32F105xx, STM32F107xx
Table 45. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 46. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 47. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 48. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 49. Dynamic characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 50. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 51. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 52. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 53. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ADC
Table 54. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 55. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 56. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 57. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 58. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 59. LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 84
Table 60. LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 85
Table 61. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 62. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 63. PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 64. Applicative current consumption in Run mode, code with data
processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 65. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6/103 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx List of figures
List of figures
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram . . . . . . . . . . . . . . . . . 12
Figure 2. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout top view. . . . . . . . 23
Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout . . . . . . . . . . . . . . 24
Figure 4. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout . . . . . . . . . . . . . . . 25
Figure 5. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 6. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 9. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. Typical current consumption on V
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
BAT
Figure 11. Typical current consumption in Stop mode with regulator in Run mode
versus temperature at different V Figure 12. Typical current consumption in Stop mode with regulator in Low-power
mode versus temperature at different V Figure 13. Typical current consumption in Standby mode versus temperature at
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DD
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 15. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 18. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 19. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 20. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 21. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 22. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 23. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 24. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 26. SPI timing diagram - slave mode and CPHA = 1 Figure 27. SPI timing diagram - master mode Figure 28. I Figure 29. I
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
Figure 30. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 70
Figure 31. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 33. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 34. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 36. Power supply and reference decoupling (V Figure 37. Power supply and reference decoupling (V
Figure 38. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 39. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
Figure 40. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 83
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 41. LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 42. Recommended footprint
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 43. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
with RTC on vs. temperature at
BAT
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DD
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(1)
(1)
REF+
REF+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
not connected to V connected to V
DDA
). . . . . . . . . . . . . . 77
DDA
). . . . . . . . . . . . . . . . . 77
Doc ID 15274 Rev 6 7/103
List of figures STM32F105xx, STM32F107xx
Figure 44. Recommended footprint Figure 45. LQFP100 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 46. USB OTG FS device mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 47. Host connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 48. OTG connection (any protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 49. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 50. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 51. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 52. RMII with a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 53. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 54. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 55. USB OTG FS + Ethernet solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 56. USB OTG FS + I
2
S (Audio) solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8/103 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Introduction

1 Introduction

This datasheet provides the description of the STM32F105xx and STM32F107xx connectivity line microcontrollers. For more details on the whole STMicroelectronics STM32F10xxx family, please refer to Section 2.2: Full compatibility throughout the family.
The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F105xx and STM32F107xx connectivity line family incorporates the high­performance ARM speed embedded memories (Flash memory up to 256 Kbytes and SRAM 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well as standard and advanced communication interfaces: up to two I five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx only.
The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F105xx and STM32F107xx connectivity line family offers devices in three different package types: from 64 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make the STM32F105xx and STM32F107xx connectivity line microcontroller family suitable for a wide range of applications such as motor drives and application control, medical and handheld equipment, industrial applications, PLCs, inverters, printers, and scanners, alarm systems, video intercom, HVAC and home audio equipment.
®
Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-
2
Cs, three SPIs, two I2Ss,
Doc ID 15274 Rev 6 9/104
Description STM32F105xx, STM32F107xx

2.1 Device overview

Figure 1 shows the general block diagram of the device family.

Table 2. STM32F105xx and STM32F107xx features and peripheral counts

Flash memory in Kbytes 64 128 256 128 256 64 128 256 128 256
SRAM in Kbytes 64
Package LQFP64
Ethernet No Yes No Yes
Peripherals
(1)
STM32F105Rx STM32F107Rx STM32F105Vx STM32F107Vx
General-purpose 4
LQFP
100
LQFP100,
BGA100
LQFP100
Timers
Advanced-control 1
Basic 2
Communication interfaces
2S)(2)
SPI(I
2
C2121
I
USART 5
3(2) 3(2) 3(2) 3(2)
USB OTG FS Yes
CAN 2
GPIOs 51 80
12-bit ADC Number of channels
12-bit DAC Number of channels
2
16
2 2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required by
the application.
2. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
2
S audio mode.
10/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description

2.2 Full compatibility throughout the family

The STM32F105xx and STM32F107xx constitute the connectivity line family whose members are fully pin-to-pin, software and feature compatible.
The STM32F105xx and STM32F107xx are a drop-in replacement for the low-density (STM32F103x4/6), medium-density (STM32F103x8/B) and high-density (STM32F103xC/D/E) performance line devices, allowing the user to try different memory densities and peripherals providing a greater degree of freedom during the development cycle.

Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family

STM32 device
Low-density
STM32F103xx devices
Medium-density
STM32F103xx devices
High-density
STM32F103xx devices
STM32F105xx STM32F107xx
(1)
Flash
size (KB)
RAM
size (KB)
16 32 32 64 128 256 384 512 64 128 256 128 256
6101020204864646464646464
144 pins
100 pins
64 pins
48 pins
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I
2
CAN, 1 × PWM timer 2 × ADCs
C, USB,
2 × USARTs 2 × 16-bit timers 1 × SPI,
2
1 × I
C, USB, CAN, 1 × PWM timer 2 × ADCs
3 × USARTs 3 × 16-bit timers 2 × SPIs,
2
2 × I
Cs, USB, CAN, 1 × PWM timer 2 × ADCs
5 × USARTs 4 × 16-bit timers, 2 × basic timers, 3 × SPIs,
2
2 × I
Ss, 2 × I2Cs, USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO, FSMC (100­and 144-pin packages
(2)
5 × USARTs, 4 × 16-bit timers, 2 × basic timers, 3 × SPIs,
2
2 × I
Ss, 2 × I2Cs, USB OTG FS, 2 × CANs,
)
1 × PWM timer, 2 × ADCs, 2 × DACs
5 × USARTs, 4 × 16-bit timers, 2 × basic timers, 3 × SPIs,
2
2 × I
S, 1 × I2C, USB OTG FS, 2 × CANs, 1 × PWM timer, 2 × ADCs, 2 × DACs, Ethernet
36 pins
1. Please refer to Table 5: Pin definitions for peripheral availability when the I/O pins are shared by the peripherals required by the application.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Doc ID 15274 Rev 6 11/104
Description STM32F105xx, STM32F107xx

2.3 Overview

Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram

TRACECLK
TRACED[ 0:3]
as AF
NJTRST
JTDI
JTCK /SWCLK
JTMS/SWDIO
JTDO as AF
MII_TXD[3:0]/RMII_TXD[1:0]
MII_TX_CLK/RMII_TX_CLK
MII_TX_EN/RMII_TX_EN
MII_RXD[3:0]/RMII_RXD[1:0]
MII_RX_ER/RMII_RX_ER
MII_RX_CLK/RMII_REF_CLK
MII_RX_DV/RMII_CRS_DV
MII_CRS
MII_COL/RMII_COL
MDC
MDIO
PPS_OUT
SOF
VBUS
ID
DM
DP
80 AF
PA[1 5:0]
PB[1 5:0]
PC[15:0 ]
PD[15:0 ]
PE[15:0 ]
4 Channels 4 compl. Channels
BKIN, ETR input as AF
MOSI,MISO,
SCK,NSS as AF
RX,TX, CTS, RTS, CK as AF
16 ADC12_INs common to ADC1 & ADC2
V
REF–
V
REF+
TPIU
ETM
Trace/Trig
SW/JTAG
Cortex-M3 CPU
F
: 72 MHz
max
NVIC
GP DMA1
7 ch annels
GP DMA2
5 channels
Ethernet MAC
10/100
DMA Ethernet
DPRAM 2 KB DPRAM 2 KB
USB OTG FS
SRAM 1.25 KB
EXT.IT WKUP
GPIO port AP
GPIO port BP
GPIO port C
GPIO port D
GPIO port E
TIM1
SPI1
USART1
Temp sensor
12bit ADC1
12bit ADC2
IF
IF
@VDDA
Dbus
System
Ibus
= 72 MHz
max
APB2 : F
Bus Matri x
AHB to APB2
obl
Flashl
AHB
AHB to APB1
Flash 256 KB
Int erface
SRAM
64 KB
Reset & clock control
64 bit
WWDG
TIM6
TIM7
PCLK1 PCLK2
HCLK FCLK PLL3
PLL
@V
RC HS
RC LS
PLL3
PLL2
DDA
V
Reset
= 36 MHz
max
APB1 : F
DD18
POR
Int
@V
RTC
AWU
Backup interface
2x(8x16bit)
2x(8x16bit)
SRAM 512B
IFIF
IF
Power
Voltage reg.
3.3 V to 1.8 V
@V
DD
Supply
supervision
POR / PDR
PVD
DDA
@V
XT
AL osc
3-25 MHz
IWDG
Standby
interface
@V
XTAL 32kHz
Backup register
TIM2
TIM3
TIM4
TIM5
USART2
USART3
UART4
UART5
SPI2 / I2S2
SPI3 / I2S3
I2C1
I2C2
bxCAN1
bxCAN2
12bit DAC1
12bit DAC 2
@VDDA
DD
BAT
(1)
VDD = 2 to 3.6 V
V
SS
NRST V
DDA
V
SSA
OSC_IN OSC_OUTC_O
V
=1.8 V to 3.6 V
BAT
OSC32_IN
OSC32_OUT
TAMPER-RTC/ ALARM/SECOND OUT
4 Channels, ETR
as AF
4 Channels, ETR
as AF
4 Channels, ETR
as AF
4 Channel s, ETR
as AF RX,TX, CTS, RTS, CK as AF
RX,TX, CTS, RTS,
CK as AF
RX,TX as AF
RX,TX as AF
MOSI/SD, MISO, MCK, SCK/CK, NSS/WS as AF
MOSI/SD, MISO, MCK,
SCK/CK, NSS/WS as AF
SCL,SDA,SMBA as AF
SCL,SDA,SMBA as AF
CAN1_TX as AF
CAN1_RX as AF
CAN2_TX as AF
CAN2_RX as AF
DAC_OUT1 as AF
DAC_OUT2 as AF
ai15411
1. TA = –40 °C to +85 °C (suffix 6, see Table 62) or –40 °C to +105 °C (suffix 7, see Table 62), junction temperature up to 105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
12/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. With its embedded ARM core, STM32F105xx and STM32F107xx connectivity line family is compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

64 to 256 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F105xx and STM32F107xx connectivity line embeds a nested vectored interrupt controller able to handle up to 67 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
Doc ID 15274 Rev 6 13/104
Description STM32F105xx, STM32F107xx

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 20 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. Refer to Figure 55: USB OTG FS +
Ethernet solution on page 96.
The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In order to achieve audio class performance, an audio crystal can be used. In this case, the I 96 kHz with less than 0.5% accuracy error. Refer to Figure 56: USB OTG FS + I2S (Audio)
solution on page 96.
To configure the PLLs, please refer to Table 63 on page 97, which provides PLL configurations according to the application type.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1, USART2 (remapped), CAN2 (remapped) or USB OTG FS in device mode (DFU: device firmware upgrade). For remapped signals refer to Table 5: Pin definitions.
The USART peripheral operates with the internal 8 MHz oscillator (HSI), however the CAN and USB OTG FS can only function if an external 8 MHz, 14.7456 MHz or 25 MHz clock (HSE) is present.
For full details about the boot loader, please refer to AN2606.
2
S master clock can generate all standard sampling frequencies from 8 kHz to
14/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description

2.3.9 Power supply schemes

V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
V
SSA
, V
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V
V
and V
BAT
must be connected to VDD and VSS, respectively.
SSA
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when V

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V
is below a specified threshold, V
DD
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
drops below the V
message and/or put the MCU into a safe state. The PVD is enabled by software.

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
DD
pins.
is 2.4 V when the ADC is used). V
DDA
is not present.
DD
POR/PDR
threshold. An interrupt can be
PVD
threshold and/or when VDD/V
PVD
, without the need for an
is higher
DDA
DDA
This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.12 Low-power modes

The STM32F105xx and STM32F107xx connectivity line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB OTG FS wakeup.
Doc ID 15274 Rev 6 15/104
Description STM32F105xx, STM32F107xx
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.13 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I and advanced control timers TIMx, DAC, I
2
S and ADC.
2
C, USART, general-purpose, basic
In the STM32F107xx, there is a DMA controller dedicated for use with the Ethernet (see
Section 2.3.20: Ethernet MAC interface with dedicated DMA and IEEE 1588 support for
more information).

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 84 bytes of user application data when V They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
For more information, please refer to AN2604: “STM32F101xx and STM32F103xx RTC calibration”, available from www.st.com.
BAT
pin. The backup registers are forty-two 16-bit
power is not present.
DD
16/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description

2.3.15 Timers and watchdogs

The STM32F105xx and STM32F107xx devices include an advanced-control timer, four general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Ta bl e 4 compares the features of the general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
Counter
resolution
TIM1 16-bit
Counter
type
Up,
down,
up/down
Prescaler
factor
Any integer
between 1
and 65536
DMA request
generation
Capture/compare
channels
Ye s 4 Ye s
Complementary
outputs
TIMx
(TIM2,
TIM3, TIM4,
16-bit
Up,
down,
up/down
Any integer
between 1 and 65536
Ye s 4 N o
TIM5)
TIM6,
TIM7
16-bit Up
Any integer
between 1 and 65536
Ye s 0 N o
Advanced-control timer (TIM1)
The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F105xx and STM32F107xx connectivity line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. They can work together with the Advanced Control timer via the Timer Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
Doc ID 15274 Rev 6 17/104
Description STM32F105xx, STM32F107xx
Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.17 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F105xx and STM32F107xx connectivity line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.
18/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.18 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC/SDHC
(a)
modes.
All SPIs can be served by the DMA controller.

2.3.19 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 96 kHz are supported. When either or both of the I mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency with less than 0.5% accuracy error owing to the advanced clock controller (see Section 2.3.7: Clocks and startup).
2
S interfaces is/are configured in master
Please refer to the “Audio frequency precision” tables provided in the “Serial peripheral interface (SPI)” section of the STM32F10xxx reference manual.

2.3.20 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral not available on STM32F105xx devices.
The STM32F107xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard media-independent interface (MII) or a reduced media-independent interface (RMII). The STM32F107xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F107xx MII port using as many as 17 signals (MII) or 9 signals (RMII) and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F107xx.
The STM32F107xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F105xx/STM32F107xx reference manual for details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
a. SDHC = Secure digital high capacity.
Doc ID 15274 Rev 6 19/104
Description STM32F105xx, STM32F107xx
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and group
addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes, that is 4 Kbytes in total
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 with
the timestamp comparator connected to the TIM2 trigger input
Triggers interrupt when system time becomes greater than target time

2.3.21 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total) are not shared with any other peripheral.

2.3.22 Universal serial bus on-the-go full-speed (USB OTG FS)

The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG full­speed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:
1.25 KB of SRAM used exclusively by the endpoints (not shared with any other
peripheral)
4 bidirectional endpoints
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
the SOF output can be used to synchronize the external audio DAC clock in
isochronous mode
in accordance with the USB 2.0 Specification, the supported transfer speeds are:
in Host mode: full speed and low speed
in Device mode: full speed

2.3.23 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
20/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Description

2.3.24 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.
For details refer to Table 5: Pin definitions; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the STM32F10xxx reference manual for software considerations.

2.3.25 ADCs (analog-to-digital converters)

Two 12-bit analog-to-digital converters are embedded into STM32F105xx and STM32F107xx connectivity line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the standard timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.26 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
REF+
Doc ID 15274 Rev 6 21/104
Description STM32F105xx, STM32F107xx
Eight DAC trigger inputs are used in the STM32F105xx and STM32F107xx connectivity line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.3.27 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V
< 3.6 V. The temperature sensor is internally
DDA
connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.28 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.29 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
22/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Pinouts and pin description

3 Pinouts and pin description

Figure 2. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout top view

87654321
109
PC14-
A
OSC32_IN
PC15-
B PC11PD2
OSC32_OUT
C
OSC_IN
D PD4
OSC_OUT V
E
F
G
PC0
V
SSA
PC13-
TAMPER-RTC
V
BAT
V
SS_5
DD_5
PC2
PC1
PA0-WKUP
PE2
PE4
PE5
PC3
PB9
PB8PE3
PE1
PE0
V
SS_4
V
DD_4
PC4PA4
PB7
PB6
PB5
PB4
PD5
PD6
BOOT0 PD7
V
SS_3
DD_3
PB2
V
V
DD_2
PE10
SS_2
PB3
PD3
V
SS_1
V
DD_1
PE14
PA15
PC12
PD0
PD1PE6NRST
NCV
PB15
PA14
PC10
PA9
PA8
PC9
PC8
PD11
PA13
PA12
PA11
PA10
PC7
PC6
PD15
H
V
REF–
J
V
REF+
K
DDA
PA1
PA2
PA3
PC5PA5
PB0PA6
PE8
PB1PA7
PE11PE7
PE12
PE13PE9V
PE15
PB10
PB11
PB14
PB13
PB12
PD10
PD14
PD9 PD13
PD8
PD12
AI16001c
Doc ID 15274 Rev 6 23/104
Pinouts and pin description STM32F105xx, STM32F107xx
100
9998979695949392919089888786858483828180797877
76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100

Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout

24/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
V
BAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2 PC3
V
SSA
V
DDA
PA 0- W K UP
PA 1 PA 2
V
DD_3
V
SS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
V
DD_2
V
SS_2
PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
V
SS_4
V
DD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
V
SS_1
V
DD_1
LQFP64
ai14392

Figure 4. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout

Doc ID 15274 Rev 6 25/104
Pinouts and pin description STM32F105xx, STM32F107xx

Table 5. Pin definitions

Pins
BGA100
A3 - 1 PE2 I/O
B3 - 2 PE3 I/O
C3 - 3 PE4 I/O
D3 - 4 PE5 I/O
E3 - 5 PE6 I/O
B2 1 6 V
A2 2 7
A1 3 8
B1 4 9
C2 - 10 V
D2 - 11 V
LQFP64
LQFP100
PC13-TAMPER-
OSC32_OUT
Pin name
BAT
(5)
RTC
PC14-
OSC32_IN
PC15-
SS_5
DD_5
(2)
(1)
Typ e
function
(after reset)
I / O Level
FT
FT
FT
FT
FT
SV
I/O PC13
I/O PC14
(5)
I/O PC15
(5)
SV
SV
Main
(3)
Default Remap
PE2 TRACECK
PE3 TRACED0
PE4 TRACED1
PE5 TRACED2
PE6 TRACED3
BAT
(6)
(6)
(6)
SS_5
DD_5
TAMPER-RTC
OSC32_IN
OSC32_OUT
C1 5 12 OSC_IN I OSC_IN
D1 6 13 OSC_OUT O OSC_OUT
E1 7 14 NRST I/O NRST
F1 8 15 PC0 I/O PC0 ADC12_IN10
F2 9 16 PC1 I/O PC1
ADC12_IN11/ ETH_MII_MDC/
ETH_RMII_MDC
E2 10 17 PC2 I/O PC2 ADC12_IN12/ ETH_MII_TXD2
F3 11 18 PC3 I/O PC3
G1 12 19 V
H1 - 20 V
J1 - 21 V
K1 13 22 V
SSA
REF-
REF+
DDA
SV
SV
SV
SV
SSA
REF-
REF+
DDA
ADC12_IN13/
ETH_MII_TX_CLK
WKUP/USART2_CTS
G2 14 23 PA0-WKUP I/O PA0
ADC12_IN0/TIM2_CH1_ETR
TIM5_CH1/
ETH_MII_CRS_WKUP
USART2_RTS
H 2 15 2 4 PA 1 I / O PA 1
TIM5_CH2 /TIM2_CH2
ETH_MII_RX_CLK/
ETH_RMII_REF_CLK
Alternate functions
(7)
(7)
/ ADC12_IN1/
(7)
/
(4)
26/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Pinouts and pin description
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(after reset)
I / O Level
J 2 1 6 25 PA 2 I /O PA 2
(3)
USART2_TX
TIM5_CH3/ADC12_IN2/
TIM2_CH3
Alternate functions
Default Remap
(7)
/
(7)
/ ETH_MII_MDIO/
ETH_RMII_MDIO
(7)
/
/ ETH_MII_COL
/DAC_OUT1 /
(7)
/ ADC12_IN4
(7)
/
(7)
/ADC12_IN6 /
(7)
(7)
/ADC12_IN7 /
(7)
/
(8)
/
K 2 1 7 2 6 PA 3 I / O PA 3
E4 18 27 V
F4 19 28 V
SS_4
DD_4
SV
SV
SS_4
DD_4
G 3 2 0 2 9 PA 4 I /O PA 4
H 3 2 1 3 0 PA 5 I / O PA 5
J 3 2 2 31 PA 6 I /O PA 6
K 3 2 3 32 PA 7 I/ O PA 7
USART2_RX
TIM5_CH4/ADC12_IN3 /
TIM2_CH4
SPI1_NSS
(7)
(7)
USART2_CK
SPI1_SCK
DAC_OUT2 / ADC12_IN5
SPI1_MISO
TIM3_CH1
SPI1_MOSI
TIM3_CH2
ETH_MII_RX_DV
ETH_RMII_CRS_DV
G4 24 33 PC4 I/O PC4
ADC12_IN14/
ETH_MII_RXD0
(8)
/
ETH_RMII_RXD0
H4 25 34 PC5 I/O PC5
ADC12_IN15/
ETH_MII_RXD1
(8)
/
ETH_RMII_RXD1
J4 26 35 PB0 I/O PB0
K4 27 36 PB1 I/O PB1
G5 28 37
PB2 I/O FT PB2/BOOT1
ADC12_IN8/TIM3_CH3/
ETH_MII_RXD2
ADC12_IN9/TIM3_CH4
ETH_MII_RXD3
(8)
(8)
(7)
/
H5 - 38 PE7 I/O FT PE7 TIM1_ETR
J5 - 39 PE8 I/O FT PE8 TIM1_CH1N
K5 - 40 PE9 I/O FT PE9 TIM1_CH1
--- V
--- V
G6 - 41 PE10 I/O FT PE10 TIM1_CH2N
SS_7
DD_7
S
S
H6 - 42 PE11 I/O FT PE11 TIM1_CH2
J6 - 43 PE12 I/O FT PE12 TIM1_CH3N
(4)
SPI3_NSS/I2S3_WS
TIM1_BKIN
TIM1_CH1N
TIM1_CH2N
TIM1_CH3N
Doc ID 15274 Rev 6 27/104
Pinouts and pin description STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
LQFP100
Pin name
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O Level
Alternate functions
Default Remap
K6 - 44 PE13 I/O FT PE13 TIM1_CH3
G7 - 45 PE14 I/O FT PE14 TIM1_CH4
H7 - 46 PE15 I/O FT PE15 TIM1_BKIN
J7 29 47 PB10 I/O FT PB10
K7 30 48 PB11 I/O FT PB11
I2C2_SCL
ETH_MII_RX_ER
I2C2_SDA
ETH_MII_TX_EN/
(8)
/USART3_TX
(8)
/USART3_RX
(7)
(7)
/
/
ETH_RMII_TX_EN
E7 31 49 V
F7 32 50 V
SS_1
DD_1
K8 33 51 PB12 I/O FT PB12
SV
SV
SS_1
DD_1
SPI2_NSS
I2C2_
USART3_CK
(8)
/I2S2_WS
(8)
SMBA
(7)
/ TIM1_BKIN
(8)
/
/
(7)
/
CAN2_RX/ ETH_MII_TXD0/
ETH_RMII_TXD0
J8 34 52 PB13 I/O FT PB13
SPI2_SCK
(8)
/ I2S2_CK
USART3_CTS
TIM1_CH1N/CAN2_TX/
(7)
(8)
/
/
ETH_MII_TXD1/
ETH_RMII_TXD1
(8)
H8 35 53 PB14 I/O FT PB14
G8 36 54 PB15 I/O FT PB15
SPI2_MISO
SPI2_MOSI
/ TIM1_CH2N /
USART3_RTS
(8)
/ I2S2_SD
TIM1_CH3N
(7)
(7)
(8)
/
K9 - 55 PD8 I/O FT PD8
J9 - 56 PD9 I/O FT PD9
H9 - 57 PD10 I/O FT PD10
G9 - 58 PD11 I/O FT PD11
K10 - 59 PD12 I/O FT PD12
J10 - 60 PD13 I/O FT PD13 TIM4_CH2
H10 - 61 PD14 I/O FT PD14 TIM4_CH3
(4)
TIM2_CH3
TIM2_CH4
USART3_TX/
ETH_MII_RX_DV/
ETH_RMII_CRS_DV
USART3_RX/
ETH_MII_RXD0/
ETH_RMII_RXD0
USART3_CK/
ETH_MII_RXD1/
ETH_RMII_RXD1
USART3_CTS/
ETH_MII_RXD2
TIM4_CH1 /
USART3_RTS/
ETH_MII_RXD3
28/104 Doc ID 15274 Rev 6
STM32F105xx, STM32F107xx Pinouts and pin description
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
LQFP100
Pin name
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O Level
Alternate functions
Default Remap
G10 - 62 PD15 I/O FT PD15 TIM4_CH4
F10 37 63 PC6 I/O FT PC6 I2S2_MCK/ TIM3_CH1
E10 38 64 PC7 I/O FT PC7 I2S3_MCK TIM3_CH2
F9 39 65 PC8 I/O FT PC8 TIM3_CH3
E9 40 66 PC9 I/O FT PC9 TIM3_CH4
D 9 4 1 6 7 PA 8 I / O F T PA8
C 9 4 2 6 8 PA 9 I / O F T PA9
D10 43 69 PA10 I/O FT PA10
C10 44 70 PA11 I/O FT PA11
B10 45 71 PA12 I/O FT PA12
USART1_CK/OTG_FS_SOF /
TIM1_CH1
USART1_TX
(8)
/MCO
(7)
/ TIM1_CH2
(7)
OTG_FS_VBUS
(7)
USART1_RX
TIM1_CH3
USART1_CTS / CAN1_RX /
TIM1_CH4
USART1_RTS / OTG_FS_DP /
CAN1_TX
(7)
(7)
/OTG_FS_DM
(7)
/ TIM1_ETR
/
/OTG_FS_ID
(7)
/
A10 46 72 PA13 I/O FT JTMS-SWDIO
F8 - 73 Not connected
E6 47 74
F6 48 75
A9 49 76
A8 50 77
B9 51 78
B8 52 79
C8 53 80
--81
--82
B7 54 83
C7 - 84
D7 - 85
B6 - 86
C6 - 87
D6 - 88
V
V
SS_2
DD_2
SV
SV
SS_2
DD_2
PA14 I/O FT JTCK-SWCLK PA14
PA15 I/O FT JTDI SPI3_NSS / I2S3_WS
PC10 I/O FT PC10 UART4_TX
PC11 I/O FT PC11 UART4_RX
PC12 I/O FT PC12 UART5_TX
PD0 I/O FT PD0 OSC_IN
PD1 I/O FT PD1 OSC_OUT
PD2 I/O FT PD2 TIM3_ETR / UART5_RX
PD3 I/O FT PD3
PD4 I/O FT PD4
PD5 I/O FT PD5
PD6 I/O FT PD6
PD7 I/O FT PD7
(4)
PA 1 3
TIM2_CH1_ETR
SPI1_NSS
USART3_TX/
SPI3_SCK/I2S3_CK
USART3_RX/
SPI3_MISO
USART3_CK/
SPI3_MOSI/I2S3_SD
(9)
(9)
USART2_CTS
USART2_RTS
USART2_TX
USART2_RX
USART2_CK
/ PA15
/
CAN1_RX
/
CAN1_TX
Doc ID 15274 Rev 6 29/104
Pinouts and pin description STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
A7 55 89
A6 56 90
Pin name
LQFP100
PB3 I/O FT JTDO SPI3_SCK / I2S3_CK
PB4 I/O FT NJTRST SPI3_MISO
(2)
(1)
Typ e
Main
function
(after reset)
I / O Level
C5 57 91 PB5 I/O PB5
(3)
I2C1_
SMBA
ETH_MII_PPS_OUT /
Alternate functions
Default Remap
/ SPI3_MOSI /
I2S3_SD
ETH_RMII_PPS_OUT
B5 58 92 PB6 I/O FT PB6 I2C1_SCL
A5 59 93 PB7 I/O FT PB7 I2C1_SDA
(7)
/TIM4_CH1
(7)
/TIM4_CH2
(7)
(7)
D5 60 94 BOOT0 I BOOT0
B4 61 95 PB8 I/O FT PB8 TIM4_CH3
A4 62 96 PB9 I/O FT PB9 TIM4_CH4
(7)
/ ETH_MII_TXD3 I2C1_SCL/CAN1_RX
(7)
D4 - 97 PE0 I/O FT PE0 TIM4_ETR
C4 - 98 PE1 I/O FT PE1
E5 63 99 V
F5 64 100 V
SS_3
DD_3
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT = 5 V tolerant. All I/Os are V
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
8. SPI2/I2S2 and I2C2 are not available when the Ethernet is being used.
9. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and BGA100 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
SV
SV
capable.
DD
SS_3
DD_3
(4)
PB3 / TRACESWO/
TIM2_CH2 / SPI1_SCK
TIM3_CH1/
PB4 /
SPI1_MISO
TIM3_CH2/SPI1_MOSI/
CAN2_RX
USART1_TX/CAN2_TX
USART1_RX
I2C1_SDA / CAN1_TX
30/104 Doc ID 15274 Rev 6
Loading...
+ 73 hidden pages