ST STM32F105R8, STM32F105V8, STM32F105RB, STM32F105VB, STM32F105RC User Manual

...
STM32F105xx
FBGA
LQFP64 10 × 10 mm,
LQFP100 14 × 14 mm,
LFBGA100 10 × 10 mm
STM32F107xx
Connectivity line, ARM-based 32-bit MCU with 64/256 KB Flash, USB
OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces
Preliminary Data
Core: ARM 32-bit Cortex™-M3 CPU
– 72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 64 to 256 Kbytes of Flash memory – up to 64 Kbytes of SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 3-to-25 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
2 × 12-bit, 1 µs A/D converters (16 channels)
supply for RTC and backup registers
BAT
– Conversion range: 0 to 3.6 V – Sample and hold capability – Temperature sensor – up to 2 MSps in interleaved mode
2 × 12-bit D/A converters
DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
2
I
Ss, SPIs, I2Cs and USARTs
Debug mode
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
Up to 80 fast I/O ports
– 51/80 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
Up to 10 timers
– Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 1 × 16-bit motor control PWM timer with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 14 communication interfaces
– Up to 2 × I
2
C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with a
multiplexed I
2
S interface that offers audio
class accuracy via advanced PLL schemes – 2 × CAN interfaces (2.0B Active) with
512 bytes of dedicated SRAM – USB 2.0 full-speed device/host/OTG
controller with on-chip PHY that supports
HNP/SRP/ID with 1.25 Kbytes of dedicated
SRAM – 10/100 Ethernet MAC with dedicated DMA
and SRAM (4 Kbytes): IEEE1588 hardware
support, MII/RMII available on all packages
CRC calculation unit, 96-bit unique ID

Table 1. Device summary

Reference Part number
STM32F105R8, STM32F105V8
STM32F105xx
STM32F107xx
STM32F105RB, STM32F105VB STM32F105RC, STM32F105VC
STM32F107RB, STM32F107VB STM32F107RC, STM32F107VC
February 2009 Rev 2 1/90
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
1
Contents STM32F105xx, STM32F107xx
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 ARM® CortexTM-M3 core with embedded Flash and SRAM . . . . . . . . 11
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 12
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 12
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.7 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.8 Universal synchronous/asynchronous receiver transmitters (USARTs) 17
2.4.9 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.10 Inter-integrated sound (I
2.4.11 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 17
2.4.12 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2
S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.13 Universal serial bus on-the-go full-speed (USB OTG FS) . . . . . . . . . . . 18
2/90
STM32F105xx, STM32F107xx Contents
2.4.14 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.15 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.16 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.17 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.18 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.19 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 35
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 35
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 53
5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3/90
Contents STM32F105xx, STM32F107xx
5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendix A Applicative block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1 USB OTG FS interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4 USB OTG FS interface + Ethernet/I
2
S interface solutions . . . . . . . . . . . . 87
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4/90
STM32F105xx, STM32F107xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F105xx and STM32F107xx features and peripheral counts . . . . . . . . . . . . . . . . . . 10
Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family . . . . . . . . . . . . . . 11
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 12. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 39
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 40
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Typical current consumption in Sleep mode, code with data processing
code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSE 3-25 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. LSE oscillator characteristics (f
Table 24. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. PLL1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 28. PLL2 and PLL3 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 32. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 33. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 36. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 37. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 38. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 39. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 40. I Table 41. SCL frequency (f
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
PCLK1
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 43. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 44. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LSE
5/90
List of tables STM32F105xx, STM32F107xx
Table 45. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 46. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 47. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 48. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 49. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 50. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 51. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ADC
Table 52. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 53. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 54. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 55. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 56. LFBGA100 - low profile fine pitch ball grid array package mechanical data. . . . . . . . . . . . 76
Table 57. LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 78
Table 58. LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 79
Table 59. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 60. PLL configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 61. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6/90
STM32F105xx, STM32F107xx List of figures
List of figures
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram . . . . . . . . . . . . . . . . . 21
Figure 2. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout . . . . . . . . . . . . . . 22
Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout . . . . . . . . . . . . . . . 23
Figure 4. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout. . . . . . . . . . . . . . . 24
Figure 5. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 8. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 9. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 10. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 38
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 38
Figure 12. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at different V Figure 13. Current consumption in Stop mode with regulator in Low-power mode versus
temperature at different V Figure 14. Current consumption in Standby mode versus temperature at different V
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 19. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 20. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 21. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 22. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 23. SPI timing diagram - slave mode and CPHA = 1 Figure 24. SPI timing diagram - master mode Figure 25. I Figure 26. I
2
S slave timing diagram
2
S master timing diagram
Figure 27. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 66
Figure 28. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 29. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 30. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 31. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 33. Power supply and reference decoupling (V Figure 34. Power supply and reference decoupling (V
Figure 35. LFBGA100 - low profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . 76
Figure 36. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 77
Figure 37. LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 38. Recommended footprint
Figure 39. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 40. Recommended footprint
Figure 41. USB OTG FS device mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 42. Host connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 43. OTG connection (any protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 44. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DD
(1)
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
REF+
REF+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
not connected to V connected to V
DDA
). . . . . . . . . . . . . . . . . 72
DDA
values . . . . . 41
DD
). . . . . . . . . . . . . . 72
7/90
List of figures STM32F105xx, STM32F107xx
Figure 45. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 46. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 47. RMII with a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 48. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 49. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 50. USB OTG FS + Ethernet solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 51. USB OTG FS + I
2
S (Audio) solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8/90
STM32F105xx, STM32F107xx Introduction

1 Introduction

This datasheet provides the description of the STM32F105xx and STM32F107xx connectivity line microcontrollers. For more details on the whole STMicroelectronics STM32F10xxx family, please refer to Section 2.2: Full compatibility throughout the family.
The STM32F105xx and STM32F107xx datasheet should be read in conjunction with the STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F105xx and STM32F107xx connectivity line family incorporates the high­performance ARM speed embedded memories (Flash memory up to 256 Kbytes and SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, four general-purpose 16-bit timers plus a PWM timer, as well as standard and advanced communication interfaces: up to two I five USARTs, an USB OTG FS and two CANs. Ethernet is available on the STM32F107xx only.
The STM32F105xx and STM32F107xx connectivity line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power­saving mode allows the design of low-power applications.
The STM32F105xx and STM32F107xx connectivity line family offers devices in three different package types: from 64 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
®
Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-
2
Cs, three SPIs, two I2Ss,
9/90
Description STM32F105xx, STM32F107xx
These features make the STM32F105xx and STM32F107xx connectivity line microcontroller family suitable for a wide range of applications:
Motor drive and application control
Medical and handheld equipment
Industrial applications: PLC, inverters, printers, and scanners
Alarm systems, Video intercom, and HVAC
Car audio, home audio equipment
Figure 1 shows the general block diagram of the device family.

2.1 Device overview

Table 2. STM32F105xx and STM32F107xx features and peripheral counts

Peripherals STM32F105Rx STM32F107Rx STM32F105Vx STM32F107Vx
Flash memory in Kbytes 64 128 256 128 256 64 128 256 128 256
SRAM in Kbytes 20 32 64 48 64 20 32 64 48 64
Ethernet No Yes No Yes
General-purpose 4
Timers
Advanced-control 1
Basic 2
Communication interfaces
2S)(1)
SPI(I
2
I
C2
USART 5
3(2)
USB OTG FS Yes
CAN 2
GPIOs 51 80
12-bit ADC Number of channels
12-bit DAC Number of channels
2
16
2 2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64 LQFP100, BGA100
1. The SPI2 and SPI3 interfaces give the flexibility to work in either the SPI mode or the I2S audio mode.
10/90
STM32F105xx, STM32F107xx Description

2.2 Full compatibility throughout the family

The STM32F105xx and STM32F107xx constitute the connectivity line family whose members are fully pin-to-pin, software and feature compatible.
The STM32F105xx and STM32F107xx are a drop-in replacement for the low-density (STM32F103x4/6), medium-density (STM32F103x8/B) and high-density (STM32F103xC/D/E) performance line devices, allowing the user to try different memory densities and peripherals providing a greater degree of freedom during the development cycle.

Table 3. STM32F105xx and STM32F107xx family versus STM32F103xx family

STM32 device
Low-density
STM32F103xx
devices
Medium-density
STM32F103xx devices
High-density
STM32F103xx devices
STM32F105xx STM32F107xx
Flash
size (KB)
RAM
size (KB)
144 pins
100 pins
64 pins
48 pins
36 pins
1. Ports F and G are not available in devices delivered in 100-pin packages.
16 32 32 64 128 256 384 512 64 128 256 128 256
610 10 202048646420326448 64
5 × USARTs
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I USB, CAN, 1 × PWM timer 2 × ADCs
2
C,
2 × USARTs 2 × 16-bit timers 1 × SPI,
2
1 × I
C, USB, CAN, 1 × PWM timer 2 × ADCs
3 × USARTs 3 × 16-bit timers 2 × SPIs,
2
2 × I
Cs, USB, CAN, 1 × PWM timer 2 × ADCs
4 × 16-bit timers, 2 × basic timers, 3 × SPIs,
2
2 × I
Ss, 2 × I2Cs, USB, CAN, 2 × PWM timers 3 × ADCs, 1 × DAC, 1 × SDIO, FSMC (100­and 144-pin packages
5 × USARTs, 4 × 16-bit timers, 2 × basic timers, 3 × SPIs,
2
2 × I
Ss, 2 × I2Cs, USB OTG FS, 2 × CANs, 1 × PWM timer,
(1)
)
2 × ADCs, 1 × DAC

2.3 Overview

2.3.1 ARM® CortexTM-M3 core with embedded Flash and SRAM

5 × USARTs, 4 × 16-bit timers, 2 × basic timers, 3 × SPIs, 2 × I 2 × I2Cs, USB OTG FS, 2 × CANs, 1 × PWM timer, 2 × ADCs, 1 × DAC, Ethernet
2
Ss,
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
With its embedded ARM core, STM32F105xx and STM32F107xx connectivity line family is compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
11/90
Description STM32F105xx, STM32F107xx

2.3.2 Embedded Flash memory

64 to 256 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

20 to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F105xx and STM32F107xx connectivity line embeds a nested vectored interrupt controller able to handle up to 67 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 20 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however, the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 3-25 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
12/90
STM32F105xx, STM32F107xx Description
interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
A single 25 MHz crystal can clock the entire system including the ethernet and USB OTG FS peripherals. Several prescalers and PLLs allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. Refer to Figure 50: USB OTG FS +
Ethernet solution on page 87.
The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In order to achieve audio class performance, an audio crystal can be used. In this case, the I 96 kHz with less than 0.5% accuracy error. Refer to Figure 51: USB OTG FS + I
2
S master clock can generate all standard sampling frequencies from 8 kHz to
2
S (Audio)
solution on page 87.
To configure the PLLs, please refer to Table 60 on page 88, which provides PLL configurations according to the application type.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1, USART2 (remapped), CAN2 (remapped), USB OTG FS in device mode (DFU: device firmware upgrade) and Ethernet.

2.3.9 Power supply schemes

V
V
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V and V
BAT
must be connected to VDD and VSS, respectively.
SSA
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when V

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
is below a specified threshold, V
DD
drops below the V
DD
pins.
is 2.4 V when the ADC is used). V
DDA
is not present.
DD
POR/PDR
threshold. An interrupt can be
PVD
threshold and/or when VDD/V
PVD
, without the need for an
is higher
DDA
DDA
13/90
Description STM32F105xx, STM32F107xx

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.12 Low-power modes

The STM32F105xx and STM32F107xx connectivity line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB OTG FS wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.13 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I and advanced control timers TIMx, DAC, I
14/90
2
S and ADC.
2
C, USART, general-purpose, basic
STM32F105xx, STM32F107xx Description

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 84 bytes of user application data when V
pin. The backup registers are forty-two 16-bit
BAT
power is not present.
DD
They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.4 Timers and watchdogs

The STM32F105xx and STM32F107xx devices include six general-purpose timers, two basic timers and two watchdog timers.
Ta bl e 4 compares the features of the general-purpose and basic timers.

Table 4. Timer feature comparison

Timer
TIM1 16-bit
TIMx
(TIM2,
TIM3, TIM4,
TIM5)
TIM6,
TIM7
Counter
resolution
16-bit
16-bit Up
Counter
type
Up,
down,
up/down
Up,
down,
up/down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536

2.4.1 Advanced-control timer (TIM1)

The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
DMA request
generation
Ye s 4 Ye s
Ye s 4 N o
Ye s 0 N o
Capture/compare
channels
Complementary
outputs
15/90
Description STM32F105xx, STM32F107xx
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

2.4.2 General-purpose timers (TIMx)

There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F105xx and STM32F107xx connectivity line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. They can work together with the Advanced Control timer via the Timer Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations.

2.4.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

2.4.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

2.4.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.4.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
16/90
STM32F105xx, STM32F107xx Description

2.4.7 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.

2.4.8 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F105xx and STM32F107xx connectivity line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.4.9 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
All SPIs can be served by the DMA controller.

2.4.10 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 96 kHz are supported. When either or both of the I mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency with less than 0.5% accuracy error owing to the advanced clock controller (see Section 2.3.7: Clocks and startup).
Please refer to the “Audio frequency precision” tables provided in the “Serial peripheral interface (SPI)” section of the STM32F10xxx reference manual.
2
S interfaces is/are configured in master

2.4.11 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral not available on STM32F105xx devices.
The STM32F107xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard media-independent interface (MII) or a reduced media-independent interface (RMII). The STM32F107xx requires an external physical interface device (PHY) to connect to the physical LAN bus
17/90
Description STM32F105xx, STM32F107xx
(twisted-pair, fiber, etc.). the PHY is connected to the STM32F107xx MII port using as many as 17 signals (MII) or 9 signals (RMII) and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F107xx.
The STM32F107xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA channel
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and group
addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes (512 × 35 bits), that is 4 Kbytes in total
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 1.0
with the timestamp comparator connected to the TIM2 trigger input
Triggers interrupt when system time becomes greater than target time

2.4.12 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN (512 bytes in total) are not shared with any other peripheral.

2.4.13 Universal serial bus on-the-go full-speed (USB OTG FS)

The STM32F105xx and STM32F107xx connectivity line devices embed a USB OTG full­speed (12 Mb/s) device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:
1.25 KB of SRAM used exclusively by the endpoints (not shared with any other
peripheral)
4 bidirectional endpoints
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
the SOF output can be used to synchronize the external audio DAC clock in
isochronous mode
in accordance with the USB 2.0 Specification, the supported transfer speeds are:
in Host mode: full speed and low speed
in Device mode: full speed
18/90
STM32F105xx, STM32F107xx Description

2.4.14 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed

2.4.15 ADCs (analog-to-digital converters)

Two 12-bit analog-to-digital converters are embedded into STM32F105xx and STM32F107xx connectivity line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the standard timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.4.16 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
REF+
19/90
Description STM32F105xx, STM32F107xx
Eight DAC trigger inputs are used in the STM32F105xx and STM32F107xx connectivity line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.4.17 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
< 3.6 V. The temperature sensor is internally
DDA

2.4.18 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.4.19 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB OTG FS, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
20/90
PA[1 5:0]
EXT.IT
WWDG
12bit ADC1
16 ADC12_INs common to ADC1 & ADC2
JTDI JTCK /SWCLK JTMS/SWDIO
JNTRST
JTDO
NRST
VDD = 2 to 3.6 V
80 AF
PB[1 5:0]
PC[15:0 ]
AHB2
CAN1_RX as AF
2x(8x16bi t)
WKUP
GPIO port AP
GPIO port BP
F
max
: 48 / 72 MHz
V
SS
SCL,SDA,SM BAL
I2C2
GP DMA1
TIM2
TIM3
XT
AL osc
3-25 MHz
XTAL 32kH z
OSC_IN OSC_OUTC_O
OSC32_OUT
OSC32_IN
APB1 : F
max
=24 / 36 MHz
HCLK
MANAGT
as AF
Flash 256 KB
Voltage reg.
3.3 V to 1.8 V
V
DD18
Power
Backup interface
as AF
TIM4
Bus Matrix
64 bit
Int erfa ce
RTC
RC HS
Cortex-M3 CPU
Ibus
Dbus
obl
Flashl
SRAM 512B
USART1
USART2
SPI2 / I2S2
bxCAN1 dev ice
7 ch ann els
Back up register
4 Channels
TIM1
4 compl. Channels
SCL,SDA,SMBAL
I2C1
as AF
RX,TX, CTS, RTS,
USART3
Temp se nsor
PD[15:0 ]
PE[15:0 ]
BKIN, ETR input as AF
4 Channe ls , ETR
4 Channe ls , ETR
4 Channe ls , ETR
FCLK
RC LS
Standby
IWDG
@V
DD
@V
BAT
POR / PDR
Supply
supervision
@V
DDA
V
DDA
V
SSA
@VDDA
V
BAT
=1.8 V to 3.6 V
CK as A F
RX,TX, CTS, RTS, CK as AF
RX,TX, CTS, RTS, CK as AF
APB2 : F
max
=48 / 72 MHz
NVIC
SPI1
MOSI,MISO,
SCK,NSS as AF
12bit ADC2
IF
IF
interface
PVD
Reset
Int
@V
DD
AHB2
APB2
APB1
AWU
POR
TAMPER-RTC/ ALARM/SECOND OUT
System
2x(8x16bi t)
SPI3 / I2S3
UART4
RX,TX as AF
UART5
RX,TX as AF
TIM5
4 Channel s, ETR
Reset & clock control
12bit DAC1
IFIF
IF
12bit DAC 2
@VDDA
USB OTG FS
SOF
VBUS
ID
DM
DP
SRAM
64 KB
GP DMA2
5 ch ann els
TIM6
TIM7
CAN1_TX as AF
SW/JTAG
TPIU
ETM
Trac e/Tri g
TRACECLK
TRACED[ 0:3]
as AF
as AF
as AF
as AF
as AF
Ethernet MAC
10/100
SRAM 1.25KB
DPRAM 2KB DPRAM 2KB
MII_TXD[3:0]/RMII_TXD[1:0]
MII_TX_CLK/RMII_TX_CLK
MII_TX_EN/RMII_TX_EN
MII_RXD[3:0]/RMII_RXD[1:0]
MII_RX_ER/RMII_RX_ER
MII_RX_CLK/RMII_REF_CLK
MII_RX_DV/RMII_CRS_DV
MII_CRS
MII_COL/RMII_COL
MDC
MDIO
PPS_OUT
bxCA N2 device
CAN2_RX as AF
CAN2_TX as AF
ai15411
DAC_OUT1 as AF
DAC_OUT2 as AF
@V
DDA
PLL1
GPIO port C
GPIO port D
GPIO port E
V
REF+
V
REF–
V
REF+
MOSI/SD, MISO, MCK, SCK/CK, NSS/WS as AF
MOSI/SD, MISO, MCK, SCK/CK, NSS/WS as AF
PCLK1 PCLK2
PLL2
PLL3
STM32F105xx, STM32F107xx Description
Figure 1. STM32F105xx and STM32F107xx connectivity line block diagram
1. TA = –40 °C to +85 °C (suffix 6, see Table 59) or –40 °C to +105 °C (suffix 7, see Table 59), junction temperature up to 105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
21/90
Pin descriptions STM32F105xx, STM32F107xx
100
9998979695949392919089888786858483828180797877
76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100

3 Pin descriptions

Figure 2. STM32F105xxx and STM32F107xxx connectivity line LQFP100 pinout

22/90
STM32F105xx, STM32F107xx Pin descriptions
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46
45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2 3
4
5 6
7
8
9
10 11 12
13
14 15
16
V
BAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2 PC3
V
SSA
V
DDA
PA 0- W K UP
PA 1 PA 2
V
DD_3
V
SS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
V
DD_2
V
SS_2
PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
V
SS_4
V
DD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
V
SS_1
V
DD_1
LQFP64
ai14392

Figure 3. STM32F105xxx and STM32F107xxx connectivity line LQFP64 pinout

23/90
Pin descriptions STM32F105xx, STM32F107xx
AI16001c
PE10
PC14-
OSC32_IN
PC5PA5
PC3
PB4
PE15
PB2
PC4PA4
H
PE14
PE11PE7
D PD4
PD3
PB8PE3
C
PD0
PC12
PE5
PB5
PC0
PE2
B PC11PD2
PC15-
OSC32_OUT
PB7
PB6
A
87654321
V
SS_5
OSC_IN
OSC_OUT V
DD_5
G
F
E
PC1
V
REF–
PC13-
TAMPER-RTC
PB9
PA15
PB3
PE4
PE1
PE0
V
SS_1
PD1PE6NRST
PC2
V
SS_3
V
SS_4
NCV
DD_3
V
DD_4
PB15
V
BAT
PD5
PD6
BOOT0 PD7
V
SS_2
V
SSA
PA1
V
DD_2
V
DD_1
PB14
PA0-WKUP
109
K
J
PD10
PD11
PA8
PA9
PA10
PA11
PA12
PC10
PA13
PA14
PC9
PC7
PC6
PD15
PC8
PD14
PE12
PB1PA7
PB11
PE8
PB0PA6
PB10
PE13PE9V
DDA
PB13
V
REF+
PA3
PB12
PA2
PD8
PD9 PD13
PD12

Figure 4. STM32F105xxx and STM32F107xxx connectivity line BGA100 ballout

24/90
STM32F105xx, STM32F107xx Pin descriptions

Table 5. Pin definitions

Pins
BGA100
A3 - 1 PE2 I/O
B3 - 2 PE3 I/O
C3 - 3 PE4 I/O
D3 - 4 PE5 I/O
E3 - 5 PE6 I/O
B2 1 6 V
A2 2 7
A1 3 8
B1 4 9
C2 - 10 V
D2 - 11 V
LQFP64
LQFP100
PC13-TAMPER-
OSC32_OUT
Pin name
BAT
(4)
RTC
PC14-
OSC32_IN
PC15-
SS_5
DD_5
(2)
(1)
Typ e
function
(after reset)
I / O Level
FT
FT
FT
FT
FT
SV
I/O PC13
I/O PC14
(4)
I/O PC15
(4)
SV
SV
Main
(3)
Default Remap
PE2 TRACECK
PE3 TRACED0
PE4 TRACED1
PE5 TRACED2
PE6 TRACED3
BAT
(5)
(5)
(5)
SS_5
DD_5
TAMPER-RTC
OSC32_IN
OSC32_OUT
Alternate functions
C1 5 12 OSC_IN I OSC_IN
D1 6 13 OSC_OUT O OSC_OUT
E1 7 14 NRST I/O NRST
F1 8 15 PC0 I/O PC0 ADC12_IN10
F2 9 16 PC1 I/O PC1
ADC12_IN11/ ETH_MII_MDC/
ETH_RMII_MDC
E2 10 17 PC2 I/O PC2 ADC12_IN12/ ETH_MII_TXD2
F3 11 18 PC3 I/O PC3
G1 12 19 V
H1 - 20 V
J1 - 21 V
K1 13 22 V
SSA
REF-
REF+
DDA
SV
SV
SV
SV
SSA
REF-
REF+
DDA
G2 14 23 PA0-WKUP I/O PA0
ADC12_IN0/TIM2_CH1_ETR
ADC12_IN13/
ETH_MII_TX_CLK
WKUP/USART2_CTS
TIM5_CH1/
(6)
ETH_MII_CRS_WKUP
(6)
/ ADC12_IN1/
(6)
H 2 15 2 4 PA 1 I / O PA 1
USART2_RTS
TIM5_CH2 /TIM2_CH2
ETH_MII_RX_CLK/
ETH_RMII_REF_CLK
/
25/90
Pin descriptions STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(after reset)
I / O Level
J 2 1 6 25 PA 2 I / O PA2
(3)
USART2_TX
TIM5_CH3/ADC12_IN2/
TIM2_CH3
Alternate functions
Default Remap
(6)
/
(6)
/ ETH_MII_MDIO/
ETH_RMII_MDIO
(6)
/
/ ETH_MII_COL
(6)
/DAC_OUT1
(6)
ADC12_IN4
(6)
(6)
/ADC12_IN6
(6)
(6)
/ADC12_IN7
(6)
/
TIM1_BKIN
TIM1_CH1N
K 2 1 7 2 6 PA 3 I / O PA 3
E4 18 27 V
F4 19 28 V
SS_4
DD_4
SV
SV
SS_4
DD_4
G 3 2 0 2 9 PA 4 I /O PA 4
H 3 2 1 3 0 PA 5 I / O PA5
J 3 2 2 31 PA 6 I / O PA6
K 3 2 3 32 PA 7 I /O PA 7
USART2_RX
TIM5_CH4/ADC12_IN3
TIM2_CH4
(6)
SPI1_NSS
USART2_CK
SPI1_SCK
DAC_OUT2 ADC12_IN5
SPI1_MISO
TIM3_CH1
SPI1_MOSI
TIM3_CH2
ETH_MII_RX_DV/
ETH_RMII_CRS_DV
ADC12_IN14/
G4 24 33 PC4 I/O PC4
ETH_MII_RXD0/
ETH_RMII_RXD0
ADC12_IN15/
H4 25 34 PC5 I/O PC5
ETH_MII_RXD1/
ETH_RMII_RXD1
J4 26 35 PB0 I/O PB0
K4 27 36 PB1 I/O PB1
G5 28 37
PB2 I/O FT PB2/BOOT1
ADC12_IN8/TIM3_CH3/
ETH_MII_RXD2
ADC12_IN9/TIM3_CH4
ETH_MII_RXD3
(6)
TIM1_CH2N
/
TIM1_CH3N
H5 - 38 PE7 I/O FT PE7 TIM1_ETR
J5 - 39 PE8 I/O FT PE8 TIM1_CH1N
K5 - 40 PE9 I/O FT PE9 TIM1_CH1
--- V
--- V
SS_7
DD_7
S
S
G6 - 41 PE10 I/O FT PE10 TIM1_CH2N
H6 - 42 PE11 I/O FT PE11 TIM1_CH2
J6 - 43 PE12 I/O FT PE12 TIM1_CH3N
26/90
STM32F105xx, STM32F107xx Pin descriptions
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
LQFP100
Pin name
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O Level
Alternate functions
Default Remap
K6 - 44 PE13 I/O FT PE13 TIM1_CH3
G7 - 45 PE14 I/O FT PE14 TIM1_CH4
H7 - 46 PE15 I/O FT PE15 TIM1_BKIN
J7 29 47 PB10 I/O FT PB10
K7 30 48 PB11 I/O FT PB11
I2C2_SCL/USART3_TX
ETH_MII_RX_ER
I2C2_SDA/USART3_RX
ETH_MII_TX_EN/
(6)
(6)
/
TIM2_CH3
/
TIM2_CH4
ETH_RMII_TX_EN
E7 31 49 V
F7 32 50 V
SS_1
DD_1
K8 33 51 PB12 I/O FT PB12
SV
SV
SS_1
DD_1
SPI2_NSS/I2S2_WS/
I2C2_SMBAL// USART3_CK
TIM1_BKIN
(6)
/CAN2_RX/
(6)
/
ETH_MII_TXD0/
ETH_RMII_TXD0
J8 34 52 PB13 I/O FT PB13
SPI2_SCK/I2S2_CK
USART3_CTS
TIM1_CH1N/CAN2_TX/
(6)
/
ETH_MII_TXD1/
ETH_RMII_TXD1
H8 35 53 PB14 I/O FT PB14
G8 36 54 PB15 I/O FT PB15
K9 - 55 PD8 I/O FT PD8
J9 - 56 PD9 I/O FT PD9
H9 - 57 PD10 I/O FT PD10
G9 - 58 PD11 I/O FT PD11
SPI2_MISO/TIM1_CH2N
USART3_RTS
SPI2_MOSI/I2S2_SD
TIM1_CH3N
(6)
(6)
USART3_TX/
ETH_MII_RX_DV
USART3_RX/
ETH_MII_RX_D0
USART3_CK/
ETH_MII_RX_D1
USART3_CTS/
ETH_MII_RX_D2
TIM4_CH1 /
K10 - 59 PD12 I/O FT PD12
USART3_RTS/
ETH_MII_RX_D3
J10 - 60 PD13 I/O FT PD13 TIM4_CH2
H10 - 61 PD14 I/O FT PD14 TIM4_CH3
G10 - 62 PD15 I/O FT PD15 TIM4_CH4
F10 37 63 PC6 I/O FT PC6 I2S2_MCK/ TIM3_CH1
27/90
Pin descriptions STM32F105xx, STM32F107xx
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
LQFP100
Pin name
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O Level
Alternate functions
Default Remap
E10 38 64 PC7 I/O FT PC7 I2S3_MCK/ TIM3_CH2
F9 39 65 PC8 I/O FT PC8 TIM3_CH3
E9 40 66 PC9 I/O FT PC9 TIM3_CH4
D 9 4 1 6 7 PA 8 I / O FT PA 8
C 9 4 2 6 8 PA 9 I / O FT PA 9
D10 43 69 PA10 I/O FT PA10
C10 44 70 PA11 I/O FT PA11
B10 45 71 PA12 I/O FT PA12
A10 46 72 PA13 I/O FT JTMS-SWDIO
USART1_CK/OTG_FS_SOF
TIM1_CH1
USART1_TX
(6)
/MCO
(6)
/ TIM1_CH2
OTG_FS_VBUS
USART1_RX
TIM1_CH3
USART1_CTS/CAN1_RX
TIM1_CH4
USART1_RTS/OTG_FS_DP
CAN1_TX
(6)
(6)
(6)
(6)
/
/OTG_FS_ID
/OTG_FS_DM
/TIM1_ETR
(6)
(6)
/
PA 1 3
F8 - 73 Not connected
E6 47 74
F6 48 75
A9 49 76
A8 50 77
B9 51 78
B8 52 79
C8 53 80
D8 5 81
E8 6 82
B7 54 83
C7 - 84
D7 - 85
B6 - 86
C6 - 87
D6 - 88
A7 55 89
V
V
SS_2
DD_2
SV
SV
SS_2
DD_2
PA14 I/O FT JTCK-SWCLK PA14
PA15 I/O FT JTDI SPI3_NSS/
PC10 I/O FT PC10 UART4_TX
PC11 I/O FT PC11 UART4_RX
PC12 I/O FT PC12 UART5_TX
PD0 I/O FT OSC_IN
PD1 I/O FT OSC_OUT
(7)
(7)
TIM2_CH1_ETR
SPI1_NSS
USART3_TX/ SPI3_SCK
USART3_RX/
SPI3_MISO
USART3_CK/
SPI3_MOSI
CAN1_RX
CAN1_TX
PD2 I/O FT PD2 TIM3_ETR/UART5_RX
PD3 I/O FT PD3
PD4 I/O FT PD4
PD5 I/O FT PD5
PD6 I/O FT PD6
PD7 I/O FT PD7
PB3 I/O FT JTDO SPI3_SCK
USART2_CTS
USART2_RTS
USART2_TX
USART2_RX
USART2_CK
PB3 / TRACESWO/
TIM2_CH2 / SPI1_SCK
/ PA15
28/90
STM32F105xx, STM32F107xx Pin descriptions
Table 5. Pin definitions (continued)
Pins
LQFP64
BGA100
A6 56 90
Pin name
LQFP100
PB4 I/O FT JNTRST SPI3_MISO
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O Level
I2C1_SMBAl/ SPI3_MOSI/
C5 57 91 PB5 I/O PB5
ETH_MII_PPS_OUT/
ETH_RMII_PPS_OUT
B5 58 92 PB6 I/O FT PB6 I2C1_SCL
A5 59 93 PB7 I/O FT PB7 I2C1_SDA
Alternate functions
Default Remap
TIM3_CH1/
PB4 /
SPI1_MISO
TIM3_CH2/SPI1_MOSI/
CAN2_RX
(6)
/TIM4_CH1
(6)
/TIM4_CH2
(6)
USART1_TX/CAN2_TX
(6)
USART1_RX
D5 60 94 BOOT0 I BOOT0
B4 61 95 PB8 I/O FT PB8 TIM4_CH3
A4 62 96 PB9 I/O FT PB9 TIM4_CH4
(6)
/ ETH_MII_TXD3 I2C1_SCL/CAN1_RX
(6)
I2C1_SDA / CAN1_TX
D4 - 97 PE0 I/O FT PE0 TIM4_ETR
C4 - 98 PE1 I/O FT PE1
E5 63 99 V
F5 64 100 V
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device.
4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
6. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and BGA100 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
SS_3
DD_3
SV
SV
SS_3
DD_3
29/90
Memory mapping STM32F105xx, STM32F107xx
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
512-Mbyte
block 6
Not used
512-Mbyte
block 5
Not used
512-Mbyte
block 4
Not used
512-Mbyte
block 3
Not used
512-Mbyte
block 2
Peripherals
512-Mbyte
block 1
SRAM
0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
0x6000 0000
0x7FFF FFFF
0x8000 0000
0xAFFF FFFF
0xB000 0000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFF FFFF
512-Mbyte
block 0
Code
Flash
0x0804 0000
0x1FFF 7FFF
0x1FFF 8000 - 0x1FFF F7FF
0x0800 0000
0x0803 FFFF
0x0008 0000
0x07FF FFFF
0x0000 0000
0x0007 FFFF
System memory
Reserved
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
SRAM (aliased by bit-banding)
Reserved
0x2000 0000
0x2000 FFFF
0x2001 0000
0x3FFF FFFF
RTC
WWDG
0x4000 2800 - 0x4000 2BFF
IWDG
Reserved
SPI2/I2S2
SPI3/I2S1
Reserved
0x4000 2C00 - 0x4000 2FFF
0x4000 3000 - 0x4000 33FF
0x4000 3400 - 0x4000 37FF
0x4000 3800 - 0x4000 3BFF
0x4000 3C00 - 0x4000 3FFF
0x4000 4000 - 0x4000 43FF
USART2
0x4000 4400 - 0x4000 47FF
USART3
0x4000 4800 - 0x4000 4BFF
UART4
0x4000 4C00 - 0x4000 4FFF
UART5
0x4000 5000 - 0x4000 53FF
I2C1
0x4000 5400 - 0x4000 57FF
I2C2
0x4000 5800 - 0x4000 5BFF
Reserved
0x4000 5C00 - 0x4000 63FF
0x4000 6400 - 0x4000 67FF
bxCAN1
bxCAN2
0x4000 6800 - 0x4000 6BFF
BKP
0x4000 6C00 - 0x4000 6FFF
PWR
0x4000 7000 - 0x4000 73FF
DAC
0x4000 7400 - 0x4000 77FF
AFIO 0x4001 0000 - 0x4001 3FFF
EXTI 0x4001 0400 - 0x4001 07FF
Por t A
0x4001 0800 - 0x4001 0BFF
Port B 0x4001 0C00 - 0x4001 0FFF
Por t C
0x4001 1000 - 0x4001 13FF
Por t D
0x4001 1400 - 0x4001 17FF
Por t E
0x4001 1800 - 0x4001 1BFF
Reserved
0x4001 1C00 - 0x4001 23FF
ADC1
0x4001 2400 - 0x4001 27FF
ADC2
0x4001 2800 - 0x4001 2BFF
TIM1
0x4001 2C00 - 0x4001 2FFF
SPI1
0x4001 3000 - 0x4001 33FF
Reserved 0x4001 3400 - 0x4001 37FF
USART1 0x4001 3800 - 0x4001 3BFF
Reserved
0x4001 3C00 - 0x4001 FFFF
DMA2
0x4002 0400 - 0x4002 07FF
Reserved
0x4002 1400 - 0x4002 1FFF
Flash interface
0x4002 2000 - 0x4002 23FF
Reserved
0x4002 2400 - 0x4002 2FFF
CRC
0x4002 3000 - 0x4002 33FF
Reserved
0x4002 3400 - 0x4002 7FFF
Ethernet
0x4002 8000 - 0x4002 9FFF
Reserved
0x4003 0000 - 0x4FFF FFFF
USB OTG FS
0x5000 0000 - 0x5000 03FF
Reserved
0x5000 0400 - 0x5FFF FFFF
ai15412
0x4002 0800 - 0x4002 0FFF
0x4002 1000 - 0x4002 13FF
Reserved
RCC
DMA1
0x4002 0000 - 0x4002 03FF
Reserved
0x4000 7800 - 0x4000 FFFF
APB2
AHB
0x4000 1800 - 0x4000 27FF
0x4000 0800 - 0x4000 0BFF
0x4000 0C00 - 0x4000 0FFF
0x4000 1000 - 0x4000 13FF
0x4000 1400 - 0x4000 17FF
0x4000 0000 - 0x4000 03FF
0x4000 0400 - 0x4000 07FF
Reserved
TIM7
TIM6
TIM5
TIM4
TIM3
TIM2
APB1
Option bytes 0x1FFF F800 - 0x1FFF FFFF

4 Memory mapping

The memory map is shown in Figure 5.

Figure 5. Memory map

30/90
STM32F105xx, STM32F107xx Electrical characteristics
ai15664
C = 50 pF
STM32F10xxx pin

5 Electrical characteristics

5.1 Test conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2V≤V tested.
3.6 V voltage range). They are given only as design guidelines and are not
DD
= 25 °C and TA = TAmax (given by
A
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.
Figure 6. Pin loading conditions Figure 7. Pin input voltage
(mean±2Σ).
STM32F10xxx pin
V
IN
ai15665
31/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14125d
V
DD
1/2/3/4/5
Analo g:
RCs, PLL,
...
Power switch
V
BAT
GP I/O s
OUT
IN
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(OSC32K,RTC,
Backup registers)
Wake-up logic
5 × 100 nF + 1 × 4.7 µF
1.8-3.6V
Regulator
V
SS
1/2/3/4/5
V
DDA
V
REF+
V
REF-
V
SSA
ADC
Level shifter
IO
Logic
V
DD
10 nF
+ 1 µF
V
REF
10 nF
+ 1 µF
V
DD
ai14126
V
BAT
V
DD
V
DDA
IDD_V
BAT
I
DD

5.1.6 Power supply scheme

Figure 8. Power supply scheme
Caution: In Figure 8, the 4.7 µF capacitor must be connected to V

5.1.7 Current consumption measurement

Figure 9. Current consumption measurement scheme
DD3
.
32/90
STM32F105xx, STM32F107xx Electrical characteristics

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 6. Voltage characteristics

Symbol Ratings Min Max Unit
VDD–V
External main supply voltage (including V
SS
and VDD)
(1)
Input voltage on five volt tolerant pin
V
IN
|ΔV
DDx
VSS| Variations between all the different ground pins 50
|V
SSX
V
ESD(HBM)
1. All main power (VDD, V supply, in the permitted range.
2. I
INJ(PIN)
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the I induced by V

Table 7. Current characteristics

Input voltage on any other pin
| Variations between different VDD power pins 50
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
must never be exceeded (see Table 7: Current characteristics). This is implicitly insured if VIN
value. A positive injection is induced by VIN> VINmax while a negative injection is
INJ(PIN)
< VSS.
IN
(2)
) pins must always be connected to the external power
SSA
(2)
DDA
–0.3 4.0
V
0.3 +5.5
SS
VSS − 0.3 VDD+0.3
see Section 5.3.11:
Absolute maximum ratings (electrical sensitivity)
Symbol Ratings Max. Unit
(1)
(1)
150
150
I
VDD
I
VSS
Total current into VDD/V
Total current out of V
SS
power lines (source)
DDA
ground lines (sink)
Output current sunk by any I/O and control pin 25
I
IO
Output current source by any I/Os and control pin − 25
Injected current on NRST pin ± 5
(2)(3)
I
INJ(PIN)
ΣI
INJ(PIN)
1. All main power (VDD, V supply, in the permitted range.
2. I
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC
4. When several inputs are submitted to a current injection, the maximum ΣI
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by V
characteristics.
positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI
Injected current on HSE OSC_IN and LSE OSC_IN pins ± 5
Injected current on any other pin
(2)
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
> VDD while a negative injection is induced by V
IN
maximum current injection on four I/O port pins of the device.
INJ(PIN)
(4)
(4)
) pins must always be connected to the external power
SSA
INJ(PIN)
< VSS.
IN
INJ(PIN)
± 5
± 25
value. A positive
is the absolute sum of the
V
mV
mA
33/90
Electrical characteristics STM32F105xx, STM32F107xx

Table 8. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
V
DDA
V
P
DD
BAT
T
D
A
Internal AHB clock frequency 0 72
Internal APB1 clock frequency 0 36
Internal APB2 clock frequency 0 72
Standard operating voltage 2 3.6 V
Analog operating voltage (ADC not used)
(1)
Analog operating voltage (ADC used)
Backup operating voltage 1.8 3.6 V
Power dissipation at T for suffix 6 or TA = 105 °C for
(3)
suffix 7
= 85 °C
A
Ambient temperature for 6 suffix version
Ambient temperature for 7 suffix version
Must be the same potential
(2)
as V
DD
2.4 3.6
LFBGA100 487
LQFP100 434
LQFP64 444
LQFP48 363
VFQFPN36 1110
Maximum power dissipation –40 85
23.6
Low power dissipation
(4)
–40 105
Maximum power dissipation –40 105
Low power dissipation
(4)
–40 125
MHzf
V
mW
°C
°C
T
J Junction temperature range
1. When the ADC is used, refer to Table 50: ADC characteristics.
2. It is recommended to power VDD and V between V
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 8: Thermal
characteristics on page 34).
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 8: Thermal characteristics on page 34).
DD
and V
can be tolerated during power-up and operation.
DDA
from the same source. A maximum difference of 300 mV
DDA
34/90
6 suffix version –40 105
°C
7 suffix version –40 125
STM32F105xx, STM32F107xx Electrical characteristics

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for TA.
Table 10. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
t
VDD
fall time rate 20
V
DD

5.3.3 Embedded reset and power control block characteristics

The parameters given in Tab l e 1 1 are derived from tests performed under ambient
VDD rise time rate 0
temperature and V
Table 11. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
PVD
supply voltage conditions summarized in Tab l e 9 .
DD
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
Programmable voltage detector level selection
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
µs/V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
(2)
V
PVDhyst
V
POR/PDR
V
PDRhyst
T
RSTTEMPO
1. The product behavior is guaranteed by design down to the minimum V
2. Guaranteed by design, not tested in production.
PVD hysteresis 100 mV
Power on/power down reset threshold
(2)
PDR hysteresis 40 mV
(2)
Reset temporization 1 2.5 4.5 ms
Falling edge
Rising edge 1.84 1.92 2.0 V
35/90
POR/PDR
(1)
1.8
value.
1.88 1.96 V
Electrical characteristics STM32F105xx, STM32F107xx

5.3.4 Embedded reference voltage

The parameters given in Tab l e 1 2 are derived from tests performed under ambient temperature and V
Table 12. Embedded internal reference voltage
Symbol Parameter Conditions Min
supply voltage conditions summarized in Tab l e 9 .
DD
Typ
Max Unit
V
REFINT
T
S_vrefint
Internal reference voltage
ADC sampling time when
(1)
reading the internal reference voltage
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 9: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the f
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
The parameters given in Tab l e 1 3, Ta bl e 1 4 and Ta bl e 1 5 are derived from tests performed under ambient temperature and V
supply voltage conditions summarized in Ta bl e 9 .
DD
–40 °C < T
–40 °C < T
PCLK1
= f
< +105 °C 1.16 1.20 1.26 V
A
< +85 °C 1.16 1.20 1.24 V
A
5.1
17.1
or VSS (no load)
DD
frequency (0 wait state from 0
HCLK
HCLK
/2, f
PCLK2
= f
HCLK
(2)
µs
36/90
STM32F105xx, STM32F107xx Electrical characteristics
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash
(1)
Max
Symbol Parameter Conditions f
HCLK
= 85 °C TA = 105 °C
T
A
Unit
72 MHz 69 70
48 MHz 50 50.5
External clock
(2)
peripherals enabled
36 MHz 39 39.5
, all
24 MHz 27 28
16 MHz 20 20.5
I
DD
Supply current in Run mode
8 MHz 11 11.5
mA
72 MHz 37 37.5
48 MHz 28 28.5
External clock
(2)
peripherals disabled
36 MHz 22 22.5
, all
24 MHz 16.5 17
16 MHz 12.5 13
8 MHz 8 8
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when f
Table 14. Maximum current consumption in Run mode, code with data processing
HCLK
> 8 MHz.
running from RAM
(1)
Max
Symbol Parameter Conditions f
72 MHz 66 67
48 MHz 43.5 45.5
External clock
(2)
peripherals enabled
36 MHz 33 35
, all
24 MHz 23 24.5
16 MHz 16 18
Supply
I
DD
current in Run mode
8 MHz 9 10.5
72 MHz 33 33.5
48 MHz 23 23.5
External clock
(2)
peripherals disabled
36 MHz 18 18.5
, all
24 MHz 13 13.5
16 MHz 10 10.5
8 MHz 6 6.5
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when f
HCLK
> 8 MHz.
HCLK
T
= 85 °C TA = 105 °C
A
Unit
mA
37/90
Electrical characteristics STM32F105xx, STM32F107xx
0
10
20
30
40
50
60
70
-45 25 70 85 105
8 MHz 16 MHz 24 MHz 36 MHz 48 MHz 72 MHz
0
5
10
15
20
25
30
35
-45 25 70 85 105
Consumption
16 MHz 24 MHz 36 MHz 48 MHz 72 MHz
Figure 10. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Consumption (mA)
Temperature (°C)
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
8 MHz
(mA)
Temperature (°C)
38/90
STM32F105xx, STM32F107xx Electrical characteristics
Table 15. Maximum current consumption in Sleep mode, code running from Flash
or RAM
(1)
Max
Symbol Parameter Conditions f
72 MHz 66 67
48 MHz 43.5 45.5
External clock
(2)
peripherals enabled
36 MHz 33 35
, all
24 MHz 23 24.5
16 MHz 16 18
I
DD
Supply current in Sleep mode
8 MHz 9 10.5
72 MHz 33 33.5
48 MHz 23 23.5
External clock
(2)
peripherals disabled
36 MHz 18 18.5
, all
24 MHz 13 13.5
16 MHz 10 10.5
8 MHz 6 6.5
HCLK
T
= 85 °C TA = 105 °C
A
Unit
mA
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
HCLK
max and f
DD
> 8 MHz.
max with peripherals enabled.
HCLK
39/90
Electrical characteristics STM32F105xx, STM32F107xx
0
100
200
300
400
500
600
700
-45257085105
2.4V
2.7V
3.0V
3.3V
3.6V
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
(1)
V
DD/VBAT
= 2.4 V
Typ
VDD/V
BAT
= 3.3 V
Max
TA =
85 °C
Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no
Supply current in Stop mode
independent watchdog)
Regulator in Low Power mode, low­speed and high-speed internal RC oscillators and high-speed oscillator
I
DD
OFF (no independent watchdog)
Low-speed internal RC oscillator and independent watchdog ON
Supply current in Standby mode
Low-speed internal RC oscillator ON, independent watchdog OFF
Low-speed internal RC oscillator and independent watchdog OFF, low-speed
34.5 35 379 1130
24.5 25 365 1110
33.8--
2.8 3.6 - -
1.9 2.1 5
(2)
oscillator and RTC OFF
I
DD_VBAT
Backup domain supply current
Low-speed oscillator and RTC ON 1.1 1.4 2
(2)
TA =
105 °C
(2)
6.5
(2)
2.3
Unit
µA
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
Figure 12. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at different V
Consumption (µA)
values
DD
Temperature (°C)
40/90
STM32F105xx, STM32F107xx Electrical characteristics
0
100
200
300
400
500
600
700
-45257085105
2.4V
2.7V
3.0V
3.3V
3.6V
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
-45257085105
2.4V
2.7V
3.0V
3.3V
3.6V
Figure 13. Current consumption in Stop mode with regulator in Low-power mode versus
temperature at different V
Consumption (µA)
values
DD
Temperature (°C)
Figure 14. Current consumption in Standby mode versus temperature at different V
Consumption (µA)
Temperature (°C)
values
DD
41/90
Electrical characteristics STM32F105xx, STM32F107xx
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned.
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 48 MHz and 2 wait states above).
Ambient temperature and V
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
f
/4
PCLK2
Table 17. Typical current consumption in Run mode, code with data processing
supply voltage conditions summarized in Tab le 9 .
DD
= f
PCLK1
HCLK
running from Flash
Symbol Parameter Conditions f
External clock
(3)
Supply
I
DD
current in Run mode
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
HCLK
All peripherals
72 MHz 51 30.5
48 MHz 34.6 20.7
36 MHz 26.6 16.2
24 MHz 18.5 11.4
16 MHz 12.8 8.2
8 MHz 7.2 5
4 MHz 4.2 3.1
2 MHz 2.7 2.1
1 MHz 2 1.7
500 kHz 1.6 1.4
125 kHz 1.3 1.2
64 MHz 45 27
48 MHz 34 20.1
36 MHz 26 15.6
24 MHz 17.9 10.8
16 MHz 12.2 7.6
8 MHz 6.6 4.4
4 MHz 3.6 2.5
2 MHz 2.1 1.5
1 MHz 1.4 1.1
500 kHz 1 0.8
125 kHz 0.7 0.6
> 8 MHz.
HCLK
or VSS (no load).
DD
/4, f
enabled
PCLK
2 = f
(2)
/2, f
HCLK
(1)
Typ
All peripherals
disabled
ADCCLK
=
Unit
mA
mA
42/90
STM32F105xx, STM32F107xx Electrical characteristics
Table 18. Typical current consumption in Sleep mode, code with data processing
code running from Flash or RAM
(1)
Typ
Symbol Parameter Conditions f
72 MHz 29.5 6.4
48 MHz 20 4.6
36 MHz 15.1 3.6
24 MHz 10.4 2.6
16 MHz 7.2 2
External clock
(3)
8 MHz 3.9 1.3
4 MHz 2.6 1.2
2 MHz 1.85 1.15
1 MHz 1.5 1.1
500 kHz 1.3 1.05
Supply
I
DD
current in Sleep mode
125 kHz 1.2 1.05
64 MHz 25.6 5.1
48 MHz 19.4 4
HCLK
All peripherals
enabled
(2)
All peripherals
disabled
Unit
mA
36 MHz 14.5 3
24 MHz 9.8 2
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
16 MHz 6.6 1.4
8 MHz 3.3 0.7
4 MHz 2 0.6
2 MHz 1.25 0.55
1 MHz 0.9 0.5
500 kHz 0.7 0.45
125 kHz 0.6 0.45
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
HCLK
> 8 MHz.
43/90
Electrical characteristics STM32F105xx, STM32F107xx
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta bl e 1 9 . The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at V
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and V
supply voltage conditions summarized in
DD
Ta bl e 6
Table 19. Peripheral current consumption
(1)
Peripheral Typical consumption at 25 °C Unit
TIM2 1.2
TIM3 1.2
TIM4 0.9
SPI2 0.2
APB1
USART2 0.35
USART3 0.35
I2C1 0.39
I2C2 0.39
or VSS (no load)
DD
mA
USB OTG FS 0.65
CAN 0.72
GPIO A 0.47
GPIO B 0.47
GPIO C 0.47
GPIO D 0.47
GPIO E 0.47
APB2
ADC1
ADC2 1.78
TIM1 1.6
SPI1 0.43
USART1 0.85
1. f
2. Specific conditions for ADC: f
= 72 MHz, f
HCLK
in the ADC_CR2 register is set to 1.
APB1
= f
HCLK
(2)
/2, f
HCLK
= f
APB2
HCLK
= 56 MHz, f
1.81
, default prescaler value for each peripheral.
= f
/2, f
= f
APB1
HCLK
APB2
HCLK
, f
ADCCLK
= f
APB2/4
mA
, ADON bit
44/90
STM32F105xx, STM32F107xx Electrical characteristics

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source
The characteristics given in Tab l e 2 0 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 9 .
Table 20. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSE)
t
w(HSE)
t
r(HSE)
t
f(HSE)
C
in(HSE)
DuCy
I
1. Guaranteed by design, not tested in production.
User external clock source frequency
(1)
OSC_IN input pin high level voltage 0.7V
OSC_IN input pin low level voltage V
OSC_IN high or low time
OSC_IN rise or fall time
OSC_IN input capacitance
Duty cycle 45 55 %
(HSE)
OSC_IN Input leakage current VSS≤VIN≤V
L
(1)
(1)
(1)
DD
0825MHz
DD
SS
16
5pF
V
DD
0.3V
DD
20
±1 µA
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 1 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 9 .
Table 21. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
ns
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSE)
t
w(LSE)
t
r(LSE)
t
f(LSE)
C
in(LSE)
DuCy
I
1. Guaranteed by design, not tested in production.
User External clock source frequency
(1)
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
OSC32_IN input capacitance
Duty cycle 30 70 %
(LSE)
OSC32_IN Input leakage current VSS≤VIN≤V
L
(1)
(1)
(1)
45/90
DD
0.7V
V
450
32.768 1000 kHz
DD
SS
5pF
V
DD
0.3V
DD
50
±1 µA
V
ns
Electrical characteristics STM32F105xx, STM32F107xx
ai14127b
OS C _I N
External
STM32F10xxx
clock source
V
HSEH
t
f(HSE)
t
W(HSE)
I
L
90%
10%
T
HSE
t
t
r(HSE)
t
W(HSE)
f
HSE_ext
V
HSEL
ai14140c
OSC32_IN
External
STM32F10xxx
clock source
V
LSEH
t
f(LSE)
t
W(LSE)
I
L
90%
10%
T
LSE
t
t
r(LSE)
t
W(LSE)
f
LSE_ext
V
LSEL
Figure 15. High-speed external clock source AC timing diagram
Figure 16. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 2 . In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
46/90
STM32F105xx, STM32F107xx Electrical characteristics
ai14128b
OSC_OUT
OSC_IN
f
HSE
C
L1
R
F
STM32F10xxx
8 MHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
R
EXT
(1)
C
L2
Table 22. HSE 3-25 MHz oscillator characteristics
(1) (2)
Symbol Parameter Conditions Min Typ Max Unit
f
OSC_IN
R
C
C
L2
g
t
SU(HSE
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. For CL1 and C designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and C capacitance which is the series combination of C included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2.
4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
5. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator frequency 3 25 MHz
Feedback resistor 200 kΩ
F
Recommended load capacitance
L1
versus equivalent serial
(3)
resistance of the crystal (R
i
HSE driving current
2
Oscillator transconductance Startup 25 mA/V
m
(5)
Startup time VDD is stabilized 2 ms
it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.),
L2
are usually the same size. The crystal manufacturer typically specifies a load
L2,
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
(4)
)
S
RS = 30 Ω 30 pF
= 3.3 V, VIN=V
V
DD
SS
with 30 pF load
and CL2. PCB and MCU pin capacitance must be
L1
1mA
Figure 17. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS.
EXT
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 3 . In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
47/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14129b
OSC32_OUT
OSC32_IN
f
LSE
C
L1
R
F
STM32F10xxx
32.768 KHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
C
L2
Note: For CL1 and C
it is recommended to use high-quality ceramic capacitors in the 5 pF to
L2
15 pF range selected to match the requirements of the crystal or resonator. C usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C Load capacitance C C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
stray
has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + C
L
and CL2.
L1
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of C
to use a resonator with a load capacitance C capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of C then C
Table 23. LSE oscillator characteristics (f
Symbol Parameter Conditions Min Typ Max Unit
t
SU(LSE)
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs above the table.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
4. t
= CL2 = 8 pF.
L1
R
C
C
L2
g
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
SU(LSE)
kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Feedback resistor 5 MΩ
F
Recommended load capacitance
L1
versus equivalent serial
(2)
resistance of the crystal (R
I
LSE driving current V
2
Oscillator Transconductance 5 µA/V
m
(4)
startup time VDD is stabilized 3 s
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768
(3)
)
S
and C
L1
stray
and CL2 (15 pF) it is strongly recommended
L1
7 pF. Never use a resonator with a load
L
= 32.768 kHz)
LSE
= 6 pF, and C
L
(1)
stray
= 2 pF,
RS = 30 kΩ 15 pF
= 3.3 V, V
DD
IN
= V
SS
1.4 µA
are
L2,
where

5.3.7 Internal clock source characteristics

48/90
Figure 18. Typical application with a 32.768 kHz crystal
The parameters given in Tab l e 2 4 are derived from tests performed under ambient temperature and V
supply voltage conditions summarized in Tab l e 9 .
DD
STM32F105xx, STM32F107xx Electrical characteristics
High-speed internal (HSI) RC oscillator
Table 24. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1) (2)
f
ACC
t
su(HSI)
I
DD(HSI)
1. Guaranteed by design, not tested in production.
2. V
Frequency 8 MHz
HSI
= –40 to 105 °C ±1 ±3%
T
A
T
= –10 to 85 °C ±1 ±2.5 %
Accuracy of HSI oscillator
HSI
A
= 0 to 70 °C ±1 ±2.2 %
T
A
= 25 °C ±1 ±2%
T
A
HSI oscillator start up time 1 2 µs
HSI oscillator power consumption
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
DD
Low-speed internal (LSI) RC oscillator
Table 25. LSI oscillator characteristics
Symbol Parameter
(2)
f
LSI
t
su(LSI)
I
DD(LSI)
= 3 V, TA = –40 to 105 °C unless otherwise specified.
1. V
DD
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Frequency 30 40 60 kHz
(3)
LSI oscillator startup time 85 µs
(3)
LSI oscillator power consumption 0.65 1.2 µA
(1)
Min
80 100 µA
Typ Max Unit
Wakeup time from low-power mode
The wakeup times given in Ta bl e 2 6 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and V voltage conditions summarized in Tabl e 9 .
49/90
supply
DD
Electrical characteristics STM32F105xx, STM32F107xx
Table 26. Low-power mode wakeup timings
Symbol Parameter Conditions Typ Unit
(1)
t
WUSLEEP
t
WUSTOP
t
WUSTDBY
1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.
Wakeup from Sleep mode Wakeup on HSI RC clock 1.8 µs
Wakeup from Stop mode (regulator in run mode)
(1)
Wakeup from Stop mode (regulator in low power mode)
(1)
Wakeup from Standby mode
HSI RC wakeup time = 2 µs 3.6
HSI RC wakeup time = 2 µs, Regulator wakeup from LP mode time = 5 µs
HSI RC wakeup time = 2 µs, Regulator wakeup from power down time = 38 µs
µs
5.4
50 µs

5.3.8 PLL characteristics

The parameters given in Tab l e 2 7 and Ta bl e 2 8 are derived from tests performed under temperature and V
Table 27. PLL1 characteristics
Symbol Parameter
f
PLL_IN
supply voltage conditions summarized in Tab l e 9 .
DD
Val ue
Unit
PLL input clock
(2)
Min
(1)
Max
(1)
812MHz
Pulse width at high level 30 ns
f
PLL_OUT
f
VCO_OUT
t
LOCK
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
Table 28. PLL2 and PLL3 characteristics
PLL multiplier output clock 48 72 MHz
PLL VCO output 96 144 MHz
PLL lock time 350 µs
.
PLL_OUT
Val ue
Symbol Parameter
f
PLL input clock
PLL_IN
f
PLL_OUT
f
VCO_OUT
t
LOCK
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
Pulse width at high level 30 ns
PLL multiplier output clock 40 74 MHz
PLL VCO output 80 148 MHz
PLL lock time 350 µs
PLL_OUT
(2)
.
Min
(1)
Max
(1)
35MHz
Unit
50/90
STM32F105xx, STM32F107xx Electrical characteristics

5.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
Table 29. Flash memory characteristics
Symbol Parameter Conditions Min
(1)
Typ Max
(1)
Unit
t
t
ERASE
16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs
prog
Page (1 KB) erase time TA = –40 to +105 °C 20 40 ms
Mass erase time TA = –40 to +105 °C 20 40 ms
t
ME
Read mode
= 72 MHz with 2 wait
f
HCLK
states, VDD = 3.3 V
I
DD
Supply current
Write / Erase modes f
= 72 MHz, VDD = 3.3 V
HCLK
Power-down mode / Halt,
= 3.0 to 3.6 V
V
DD
V
1. Guaranteed by design, not tested in production.
Programming voltage 2 3.6 V
prog
Table 30. Flash memory endurance and data retention
Symbol Parameter Conditions
N
t
RET
END
Endurance
Data retention
TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions)
1 kcycle
10 kcycles
(2)
at TA = 85 °C
(2)
at TA = 105 °C 10
(2)
at TA = 55 °C 20
Min
30
10
(1)
20 mA
5mA
50 µA
Val ue
Unit
Typ Max
kcycles
Years1 kcycle
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 1000-4-4 standard.
and
DD
51/90
Electrical characteristics STM32F105xx, STM32F107xx
A device reset allows normal operations to be resumed.
The test results are given in Tab l e 3 1. They are based on the EMS levels and classes defined in application note AN1709.
Table 31. EMS characteristics
Symbol Parameter Conditions
= 3.3 V, TA = +25 °C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V pins to induce a functional disturbance
SS
DD
f
= 72 MHz
HCLK
conforms to IEC 1000-4-2
VDD = 3.3 V, TA = +25 °C, f
= 72 MHz
HCLK
conforms to IEC 1000-4-4
Level/
Class
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading.
52/90
STM32F105xx, STM32F107xx Electrical characteristics
Table 32. EMI characteristics
Symbol Parameter Conditions
Monitored
frequency band
0.1 to 30 MHz 12 12
= 3.3 V, TA = 25 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with SAE J 1752/3
130 MHz to 1GHz 23 29
SAE EMI Level 4 4 -

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.
Table 33. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value
Max vs. [f
HSE/fHCLK
8/48 MHz 8/72 MHz
(1)
]
Unit
dBµV30 to 130 MHz 22 19
Unit
= +25 °C
T
V
ESD(HBM)
Electrostatic discharge voltage (human body model)
Electrostatic discharge
V
ESD(CDM)
voltage (charge device model)
1. Based on characterization results, not tested in production.
A
conforming to JESD22-A114
TA = +25 °C conforming to JESD22-C101
2 2000
II 500
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 34. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class T
= +105 °C conforming to JESD78A II level A
A
V
53/90
Electrical characteristics STM32F105xx, STM32F107xx

5.3.12 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Ta bl e 3 5 are derived from tests performed under the conditions summarized in Tab l e 9 . All I/Os are CMOS and TTL compliant.
Table 35. I/O static characteristics
Symbol Parameter Conditions Min Typ
V
Input low level voltage
IL
Standard IO input high level voltage
V
IH
V
IL
V
IH
V
hys
I
lkg
(1)
IO FT
input high level voltage
Input low level voltage
Input high level voltage 0.65 V
Standard IO Schmitt trigger voltage hysteresis
IO FT Schmitt trigger voltage hysteresis
(2)
Input leakage current
(2)
(4)
TTL ports
CMOS ports
V
SS≤VIN≤VDD
Standard I/Os
= 5 V
V
IN
–0.5 0.8
2V
25.5V
–0.5 0.35 V
DD
200 mV
DD
(3)
5% V
I/O FT
Max Unit
DD
VDD+0.5
+0.5
±1
3
DD
V
V
mV
µA
R
R
1. FT = Five-volt tolerant.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable
Weak pull-up equivalent
PU
PD
C
IO
production.
PMOS/NMOS. This MOS/NMOS contribution
(5)
resistor
Weak pull-down equivalent
(5)
resistor
I/O pin capacitance 5 pF
V
= V
IN
SS
V
= V
IN
DD
to the series resistance is minimum (~10% order).
30 40 50 kΩ
30 40 50 kΩ
All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:
For V
–if V
–if V
For V
–if V
–if V
:
IH
is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included
DD
is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included
DD
:
IL
is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included
DD
is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included
DD
54/90
STM32F105xx, STM32F107xx Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed V
OL
).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V I
(see Ta bl e 7 ).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V I
(see Ta bl e 7 ).
VSS
cannot exceed the absolute maximum rating
DD,
cannot exceed the absolute maximum rating
SS
plus the maximum Run
DD,
plus the maximum Run
SS
Output voltage levels
Unless otherwise specified, the parameters given in Ta bl e 3 6 are derived from tests performed under ambient temperature and V
Ta bl e 9 . All I/Os are CMOS and TTL compliant.
Table 36. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
supply voltage conditions summarized in
DD
Output low level voltage for an I/O pin
(1)
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed I
3. Based on characterization data, not tested in production.
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(2)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(2)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(3)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(2)(3)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(3)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(2)(3)
when 8 pins are sourced at same time
(I/O ports and control pins) must not exceed I
IO
TTL port
= +8 mA
I
IO
2.7 V < V
< 3.6 V
DD
CMOS port
=+ 8mA
I
IO
2.7 V < V
I
IO
2.7 V < V
I
DD
= +20 mA
DD
= +6 mA
IO
< 3.6 V
< 3.6 V
2 V < VDD < 2.7 V
.
VSS
VDD
–0.4
V
DD
2.4
–1.3
V
DD
–0.4
V
DD
.
0.4
0.4
1.3
0.4
V
V
V
V
55/90
Electrical characteristics STM32F105xx, STM32F107xx
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 19 and
Ta bl e 3 7 , respectively.
Unless otherwise specified, the parameters given in Ta bl e 3 7 are derived from tests performed under the ambient temperature and V in Ta bl e 9 .
Table 37. I/O AC characteristics
(1)
supply voltage conditions summarized
DD
MODEx[1:0]
bit value
10
01
11
Symbol Parameter Conditions Min Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
(2)
CL = 50 pF, V
= 50 pF, V
C
L
(2)
CL = 50 pF, V
= 50 pF, V
C
L
CL = 30 pF, V
(2)
= 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
C
L
= 50 pF, V
C
L
= 30 pF, V
C
L
= 50 pF, V
C
L
CL = 50 pF, V
= 30 pF, V
C
L
CL = 50 pF, V
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
= 2 V to 3.6 V
DD
= 2 V to 3.6 V 10 MHz
DD
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V 50 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
125
125
25
25
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Pulse width of
-t
EXTIpw
external signals detected by the EXTI
10 ns
controller
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 19.
3. Guaranteed by design, not tested in production.
ns
ns
ns
56/90
STM32F105xx, STM32F107xx Electrical characteristics
ai14131
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum fr equency is achieved if (tr + tf) £ 2/3) T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
t
r(IO)out
Figure 19. I/O AC characteristics definition

5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Ta bl e 3 8 are derived from tests performed under the ambient temperature and V in Ta bl e 9 .
Table 38. NRST pin characteristics
(see Ta bl e 3 5).
PU
supply voltage conditions summarized
DD
Symbol Parameter Conditions Min Typ Max Unit
(1)
V
IL(NRST)
V
IH(NRST)
V
hys(NRST)
R
PU
V
F(NRST)
V
NF(NRST)
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
NRST Input low level voltage –0.5 0.8
(1)
NRST Input high level voltage 2 VDD+0.5
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
(1)
NRST Input filtered pulse 100 ns
(1)
NRST Input not filtered pulse 300 ns
(2)
V
IN
= V
SS
30 40 50 kΩ
200 mV
V
57/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14132b
STM32F10xxx
R
PU
NRST
(2)
V
DD
FILTER
Internal Reset
0.1 µF
External reset circuit
(1)
Figure 20. Recommended NRST pin protection
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the V
Table 38. Otherwise the reset will not be taken into account by the device.
max level specified in
IL(NRST)

5.3.14 TIM timer characteristics

The parameters given in Tab l e 3 9 are guaranteed by design.
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 39. TIMx
(1)
characteristics
Symbol Parameter Conditions Min Max Unit
1
t
res(TIM)
f
EXT
Res
t
COUNTER
Timer resolution time
f
Timer external clock frequency on CH1 to CH4
Timer resolution 16 bit
TIM
0
f
TIMxCLK
16-bit counter clock period
TIMxCLK
= 72 MHz
= 72 MHz
13.9 ns
f
TIMxCLK
036MHz
1 65536 when internal clock is selected
f
TIMxCLK
= 72 MHz
0.0139 910 µs
/2
65536 × 65536
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
Maximum possible count
f
TIMxCLK
= 72 MHz
59.6 s
t
TIMxCLK
MHz
t
TIMxCLK
t
TIMxCLK
58/90
STM32F105xx, STM32F107xx Electrical characteristics

5.3.15 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 0 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 9 .
2
The STM32F105xx and STM32F107xx standard I
2
C communication protocol with the following restrictions: the I/O pins SDA and
I
C interface meets the requirements of the
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V
2
The I
C characteristics are described in Ta b le 4 0 . Refer also to Section 5.3.12: I/O port
characteristics
and SCL)
Table 40. I2C characteristics
Symbol Parameter
for more details on the input/output alternate function characteristics (SDA
.
is disabled, but is still present.
DD
Standard mode I
Min Max Min Max
frequency and VDD supply voltage
PCLK1
2C(1)
Fast mode I2C
(1)(2)
Unit
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
Guaranteed by design, not tested in production.
1.
2. f
PCLK1
higher than 4 MHz to achieve the maximum fast mode I
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
3. period of SCL signal.
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0
(3)
SDA and SCL rise time 1000 20 + 0.1C
(4)
0
900
300
b
SDA and SCL fall time 300 300
Start condition hold time 4.0 0.6
Repeated Start condition setup time
4.7 0.6
Stop condition setup time 4.0 0.6 μs
Stop to Start condition time (bus free)
Capacitive load for each bus
b
line
must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be
4.7 1.3 μs
400 400 pF
2
C frequency.
µs
(3)
ns
µs
59/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14133c
START
SD A
100 Ω
4.7kΩ
I²C bus
4.7kΩ
100 Ω
V
DD
V
DD
STM32F10xxx
SDA
SCL
t
f(SDA)
t
r(SDA)
SCL
t
h(STA)
t
w(SCKH)
t
w(SCKL)
t
su(SDA)
t
r(SCK)
t
f(SCK)
t
h(SDA)
S TART REPEATED
START
t
su(STA)
t
su(STO)
S TOP
t
su(STA:STO)
Figure 21. I2C bus AC waveforms and measurement circuit
Measurement points are done at CMOS levels: 0.3V
1.
Table 41. SCL frequency (f
PCLK1
= 36 MHz.,VDD = 3.3 V)
and 0.7VDD.
DD
(1)(2)
I2C_CCR value
f
(kHz)
SCL
R
= 4.7 kΩ
P
400 0x801E
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
= External pull-up resistance, f
1. R
P
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.
= I2C speed,
SCL
60/90
STM32F105xx, STM32F107xx Electrical characteristics
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 2 for SPI or in Tab l e 4 3 for I2S are derived from tests performed under the ambient temperature, f supply voltage conditions summarized in Ta b le 9 .
frequency and VDD
PCLKx
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I
Table 42. SPI characteristics
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
SPI clock frequency
SPI clock rise and fall time
(2)
NSS setup time Slave mode 4 t
(2)
NSS hold time Slave mode 73
(2)
SCK high and low time
(2)
Data input setup time
(2)
Master mode
Data input setup time
(2)
Slave mode
Data input hold time
(2)
Master mode
(1)
Master mode 0 18
Slave mode 0 18
Capacitive load: C = 30 pF 8
PCLK
Master mode, f presc = 4
= 36 MHz,
PCLK
50 60
SPI1 1
SPI2 5
1
SPI1 1
SPI2 5
2
S).
MHz
ns
Data input hold time
(2)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. Remapped SPI1 characteristics to be determined.
2. Based on characterization, not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
Slave mode
Data output access
(2)(3)
Slave mode, f presc = 4
PCLK
= 36 MHz,
time
Slave mode, f
Data output disable
(2)(4)
time
(2)(1)
Data output valid time Slave mode (after enable edge) 25
(2)(1)
Data output valid time Master mode (after enable edge) 3
(2)
Data output hold time
(2)
Slave mode 10
Slave mode (after enable edge) 25
Master mode (after enable edge) 4
= 24 MHz 0 4 t
PCLK
3
055
PCLK
61/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 22. SPI timing diagram - slave mode and CPHA = 0
Figure 23. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
(1)
62/90
STM32F105xx, STM32F107xx Electrical characteristics
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INP UT
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 24. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
63/90
Electrical characteristics STM32F105xx, STM32F107xx
Table 43. I2S characteristics
(1)
Symbol Parameter Conditions Min Max Unit
f
CK
1/t
c(CK)
t
r(CK)
t
f(CK)
(2)
t
v(WS)
(2)
t
h(WS)
(2)
t
su(WS)
(2)
t
h(WS)
(2)
t
w(CKH)
(2)
t
w(CKL)
t
su(SD_MR)
t
su(SD_SR)
t
h(SD_MR)
t
h(SD_SR)
t
h(SD_MR)
t
h(SD_SR)
t
v(SD_ST)
t
h(SD_ST)
t
v(SD_MT)
t
h(SD_MT)
1. TBD = to be determined.
2. Based on design simulation and/or characterization results, not tested in production.
3. Depends on f
I2S clock frequency
I2S clock rise and fall time
WS valid time Master TBD
WS hold time Master TBD
WS setup time Slave TBD
WS hold time Slave TBD
CK high and low time
(2)
Data input setup time
(2)
(2)(3)
Data input hold time
(2)(3)
(2)
Data input hold time
(2)
(2)(3)
Data output valid time
(2)
Data output hold time
(2)(3)
Data output valid time
(2)
Data output hold time
. For example, if f
PCLK
=8 MHz, then T
PCLK
Master TBD TBD
Slave 0 TBD
capacitive load
= 50 pF
C
L
Master f presc = TBD
Master receiver Slave receiver
Master receiver Slave receiver
Master f Slave f
PCLK
PCLK
PCLK
= TBD,
= TBD
= TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Slave transmitter (after enable edge)
= TBD TBD
f
PCLK
Slave transmitter (after enable edge)
TBD
Master transmitter (after enable edge)
f
= TBD
PCLK
Master transmitter (after enable edge)
= 1/f
PCLK
PLCLK
TBD TBD
TBD
=125 ns.
TBD
TBD
TBD
MHz
ns
64/90
STM32F105xx, STM32F107xx Electrical characteristics
CK Input
CPOL = 0
CPOL = 1
t
c(CK)
WS input
SD
transmit
SD
receive
t
w(CKH)
t
w(CKL)
t
su(WS)
t
v(SD_ST)
t
h(SD_ST)
t
h(WS)
t
su(SD_SR)
t
h(SD_SR)
MSB receive Bit1 receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881
CK output
CPOL = 0
CPOL = 1
t
c(CK)
WS output
SD
receive
SD
transmit
t
w(CKH)
t
w(CKL)
t
su(SD_MR)
t
v(SD_MT)
t
h(SD_MT)
t
h(WS)
t
h(SD_MR)
MSB transmit Bitn transmit LSB transmit
MSB receive Bitn receive LSB receive
ai14884
t
f(CK)
t
r(CK)
t
v(WS)
(1)
Figure 25. I2S slave timing diagram
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
Figure 26. I2S master timing diagram
(1)
1. Based on characterization, not tested in production.
65/90
Electrical characteristics STM32F105xx, STM32F107xx
ai14137
t
f
Differen tial
data lines
V
SS
V
CR S
t
r
Crossover
points
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed).
Table 44. USB OTG FS startup time
Symbol Parameter Max Unit
t
STARTUP
1. Guaranteed by design, not tested in production.
Table 45. USB OTG FS DC electrical characteristics
(1)
USB OTG FS transceiver startup time 1 µs
Symbol Parameter Conditions Min.
(1)
Max.
(1)
Unit
USB OTG FS operating
V
DD
Input
levels
Output
levels
1. All the voltages are measured from the local ground potential.
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
3. The STM32F105xx and STM32F107xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V
4. Guaranteed by design, not tested in production.
is the load connected on the USB OTG FS drivers
R
5.
L
(4)
V
DI
(4)
CM
(4)
V
SE
V
OL
V
OH
(2)
voltage
Differential input sensitivity I(USBDP, USBDM) 0.2
Differential common mode range Includes V
range 0.8 2.5
DI
Single ended receiver threshold 1.3 2.0
SS
(5)
(5)
Static output level low RL of 1.5 kΩ to 3.6 V
Static output level high RL of 15 kΩ to V
(3)
3.0
2.8 3.6
voltage range.
DD
3.6 V
0.3
Figure 27. USB OTG FS timings: definition of data signal rise and fall time
VV
V
Table 46. USB OTG FS electrical characteristics
Symbol Parameter Conditions Min Max Unit
t
t
rfm
V
CRS
1. Guaranteed by design, not tested in production.
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
2. Specification - Chapter 7 (version 2.0).
Rise time
r
t
Fall time
f
Rise/ fall time matching tr/t
Output signal crossover voltage 1.3 2.0 V
(2)
(2)
66/90
(1)
Driver characteristics
CL = 50 pF
CL = 50 pF 4 20 ns
f
420ns
90 110 %
STM32F105xx, STM32F107xx Electrical characteristics
Ethernet dynamic characteristics
Ta bl e 4 7 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 28 shows the corresponding timing diagram.
Figure 28. Ethernet SMI timing diagram
t
MDC
ETH_MII_MDC/ ETH_RMII_MDC
ETH_MII_MDIO(O)/ ETH_RMII_MDIO(O)
ETH_MII_MDIO(I) ETH_RMII_MDIO(I)
t
d(MDIO)
t
su(MDIO)
t
tahz(MDIO)
t
h(MDIO)
ai15666
Table 47. Dynamics characteristics: Ethernet MAC signals for SMI
(1)
Symbol Rating Min Typ Max Unit
t
MDC
t
d(MDIO)
t
tahz(MDIO)
t
su(MDIO)
t
h(MDIO)
1. TBD stands for to be determined.
MDC cycle time TBDTBDTBDns
MDIO write data valid time TBD TBD TBD ns
MDC clock rise time to high impedance (turn around)
TBDTBDTBDns
Read data setup time TBD TBD TBD ns
Read data hold time TBD TBD TBD ns
Ta bl e 4 8 gives the list of Ethernet MAC signals for the RMII and Figure 29 shows the
corresponding timing diagram.
Figure 29. Ethernet RMII timing diagram
RMII_REF_CLK
t
d(TXEN)
t
d(TXD)
RMII_TX_EN RMII_TXD[1:0]
RMII_RXD[1:0] RMII_CRS_DV
t
su(RXD)
t
su(CRS)
t
ih(RXD)
t
ih(CRS)
ai15667
67/90
Electrical characteristics STM32F105xx, STM32F107xx
Table 48. Dynamics characteristics: Ethernet MAC signals for RMII
(1)
Symbol Rating Min Typ Max Unit
t
su(RXD)
t
ih(RXD)
t
su(CRS)
t
ih(CRS)
t
d(TXEN)
t
d(TXD)
1. TBD stands for to be determined.
Receive data setup time TBD TBD TBD ns
Receive data hold time TBD TBD TBD ns
Carrier sense set-up time TBD TBD TBD ns
Carrier sense hold time TBD TBD TBD ns
Transmit enable valid delay time TBD TBD TBD ns
Transmit data valid delay time TBD TBD TBD ns
Ta bl e 4 9 gives the list of Ethernet MAC signals for MII and Figure 29 shows the
corresponding timing diagram.
Figure 30. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0] MII_RX_DV MII_RX_ER
t
su(RXD)
t
su(ER)
t
su(DV)
t
ih(RXD)
t
ih(ER)
t
ih(DV)
MII_TX_CLK
t
d(TXEN)
t
d(TXD)
MII_TX_EN MII_TXD[3:0]
ai15668
Table 49. Dynamics characteristics: Ethernet MAC signals for MII
(1)
Symbol Rating Min Typ Max Unit
t
su(RXD)
t
ih(RXD)
t
su(DV)
t
ih(DV)
t
su(ER)
t
ih(ER)
t
d(TXEN)
t
d(TXD)
1. TBD stands for to be determined.
Receive data setup time TBD TBD TBD ns
Receive data hold time TBD TBD TBD ns
Data valid setup time TBD TBD TBD ns
Data valid hold time TBD TBD TBD ns
Error setup time TBD TBD TBD ns
Error hold time TBD TBD TBD ns
Transmit enable valid delay time TBD TBD TBD ns
Transmit data valid delay time TBD TBD TBD ns
68/90
STM32F105xx, STM32F107xx Electrical characteristics
CAN (controller area network) interface
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Ta bl e 5 0 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 9 .
Note: It is recommended to perform a calibration after each power-up.
Table 50. ADC characteristics
Symbol Parameter Conditions Min Typ
frequency and V
PCLK2
supply voltage
DDA
Max Unit
V
DDA
V
REF+
I
VREF
f
ADC
f
S
f
TRIG
V
AIN
R
AIN
R
ADC
C
ADC
t
CAL
t
lat
t
latr
t
S
t
STAB
t
CONV
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. V
REF+
4. For external triggers, a delay of 1/f
Power supply 2.4 3.6 V
Positive reference voltage 2.4 V
Current on the V
input pin 160
REF
ADC clock frequency 0.6 14 MHz
(2)
Sampling rate 0.05 1 MHz
(2)
External trigger frequency
Conversion voltage range
(2)
External input impedance See Equation 1 and Ta b le 5 1 kΩ
(2)
Sampling switch resistance 1 kΩ
(2)
Internal sample and hold capacitor 12 pF
(2)
Calibration time
(2)
Injection trigger conversion latency
(2)
Regular trigger conversion latency
(2)
Sampling time
(2)
Power-up tim e 0 0 1 µs
Total conversion time (including
(2)
(3)
sampling time)
is internally connected to V
DDA
PCLK2
and V
is internally connected to V
REF-
must be added to the latency specified in Table 50.
DDA
(1)
f
= 14 MHz 823 kHz
ADC
220
(1)
17 1/f
0 (V
f
= 14 MHz 5.9 µs
ADC
or V
SSA
REF-
tied to ground)
V
REF+
83 1/f
f
= 14 MHz 0.214 µs
ADC
(4)
3
f
= 14 MHz 0.143 µs
ADC
(4)
2
= 14 MHz 0.107 17.1 µs
f
ADC
1.5 239.5 1/f
= 14 MHz 1 18 µs
f
ADC
14 to 252 (t
for sampling +12.5 for
S
successive approximation)
.
SSA
1/f
1/f
1/f
V
µA
ADC
V
ADC
ADC
ADC
ADC
ADC
69/90
Electrical characteristics STM32F105xx, STM32F107xx
R
AIN
T
S
f
ADCCADC
2
N2+
()ln××
--------------------------------------------------------------- - R
ADC
<
Equation 1: R
max formula:
AIN
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 51. R
Ts (cycles) tS (µs) R
max for f
AIN
= 14 MHz
ADC
(1)
max (kΩ)
AIN
1.5 0.11 1.2
7.5 0.54 10
13.5 0.96 19
28.5 2.04 41
41.5 2.96 60
55.5 3.96 80
71.5 5.11 104
239.5 17.1 350
1. Based on characterization, not tested in production.
Table 52. ADC accuracy - limited test conditions
Symbol Parameter Test conditions Typ Max
(1) (2)
(3)
Unit
ET Total unadjusted error
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
3. Based on characterization, not tested in production.
f
= 56 MHz,
PCLK2
= 14 MHz, R
f
ADC
V
= 3 V to 3.6 V
DDA
= 25 °C
T
A
< 10 kΩ,
AIN
Measurements made after ADC calibration
and ΣI
INJ(PIN)
±1.3 ±2
in Section 5.3.12 does not
INJ(PIN)
LSB
70/90
STM32F105xx, STM32F107xx Electrical characteristics
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai14395b
V
REF+
4096
(or depending on package)]
V
DDA
4096
[1LSB
IDEAL =
ai14139d
STM32F10xxx
V
DD
AINx
IL±1 µA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
(1)
C
ADC
(1)
12-bit
converter
Sample and hold ADC converter
Table 53. ADC accuracy
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
(1) (2) (3)
f
= 56 MHz,
PCLK2
= 14 MHz, R
f
ADC
V
= 2.4 V to 3.6 V
DDA
< 10 kΩ,
AIN
Measurements made after ADC calibration
(4)
±2 ±5
EL Integral linearity error ±1.5 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted V
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
, frequency and temperature ranges.
DD
INJ(PIN)
and ΣI
in Section 5.3.12 does not
INJ(PIN)
4. Based on characterization, not tested in production.
Figure 31. ADC accuracy characteristics
Unit
LSB
Figure 32. Typical connection diagram using the ADC
1. Refer to Tab l e 5 0 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
, R
AIN
and C
ADC
parasitic
ADC
value will downgrade conversion accuracy. To remedy
71/90
.
Electrical characteristics STM32F105xx, STM32F107xx
c
c
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 33 or Figure 34, depending on whether V ceramic (good quality). They should be placed them as close as possible to the chip.
is connected to V
REF+
or not. The 10 nF capacitors should be
DDA
Figure 33. Power supply and reference decoupling (V
STM32F10xxx
V
REF+
(See note 1)
1. V
REF+
and V
1 µF // 10 nF
1 µF // 10 nF
inputs are available only on 100-pin packages.
REF–
V
DDA
V
SSA/VREF-
(See note 1)
Figure 34. Power supply and reference decoupling (V
not connected to V
REF+
connected to V
REF+
ai14380
DDA
DDA
)
)
1 µF // 10 nF
1. V
REF+
and V
inputs are available only on 100-pin packages.
REF–
72/90
STM32F10xxx
V
REF+/VDDA
(See note 1)
V
REF–/VSSA
(See note 1)
ai14381
STM32F105xx, STM32F107xx Electrical characteristics

5.3.17 DAC electrical specifications

Table 54. DAC characteristics
Symbol Parameter Min Typ Max
V
DD33A
V
DD18D
V
REF+
V
SSA
R
L
C
L
DAC_OUT min
DAC_OUT max
(1)
Analog supply voltage 2.4 3.6 V
Digital supply voltage 1.6 1.8 2 V
Reference supply voltage 2.4 3.6 V
Ground 0 0 V
Resistive load with buffer ON 5 kΩ
Capacitive load 50 pF
Lower DAC_OUT voltage with buffer ON
Higher DAC_OUT voltage with buffer ON
0.2 V
V
REF+
0.2 V
425 600 µA
DAC DC current consumption in
I
DD
quiescent mode (Standby mode) (in V
DD18D+VDD33A
+ V
REF+
)
500 700 µA
DAC DC current consumption in
5350
5200
±0.5 LSB
I
DDQ
DNL
Power Down mode (in V
DD18D+VDD33A+VREF+
)
DAC DC current consumption in Power Down mode (in V
DD33A+VREF+
Differential non linearity (Difference between two consecutive code-1LSB)
)
Integral non linearity (difference between measured value at Code i
INL
and the value at Code i on a line
±1 LSB
drawn between Code 0 and last Code
1023)
Offset
Offset error (difference between measured value
at Code (800)H and the ideal value =
/2
V
REF+
±10 mV
±3 LSB
Gain error Gain error ±0.5 %
Amplifier gain
Gain of the amplifier in open loop 80 85 dB with a 5 kΩ load (worst case)
Unit Comments
must always be below
V
REF+
V
DD33A
Minimum resistive load between DAC_OUT and V
SSA
Maximum capacitive load at DAC_OUT pin.
It gives the maximum output excursion of the DAC
it corresponds to 12-bit input code (0E0)h to (F1C)h @ V
V
= 3.6 V and (155)h and (EAB)h
REF+
= 2.4 V
@ V
With no load, middle code (800)H on the inputs
With no load, worst code (F1C)H @ V
= 3.6 V in terms of DC
REF+
consumption on the inputs
nA With no load.
Given for the DAC in 10-bit configuration (B1=B0=0 always)
Given for the DAC in 10-bit configuration (B1=B0=0 always)
Given for the DAC in 10-bit configuration (B1=B0=0 always)
Given for the DAC in 10-bit @ V
= 3.6 V
REF+
Given for the DAC in 10-bit configuration (B1=B0=0 always)
REF+
73/90
Electrical characteristics STM32F105xx, STM32F107xx
Table 54. DAC characteristics (continued)
Symbol Parameter Min Typ Max
Settling time (full scale: for an 10-bit input code transition between the
t
SETTLING
lowest and the highest input codes
34µs when DAC_OUT reaches final value ±1LSB
Max frequency for a correct
Update rate
DAC_OUT change when small variation in the input code (from code i to i+1LSB)
t
WAKEUP
PSRR+
1. Guaranteed by characterization, not tested in production.
Wakeup time from off state (PDV18 from 1 to 0)
Power supply rejection ratio (to
) (static DC measurement
V
DD33A
6.5 10 µs
–67 –40 dB No R
(1)
Unit Comments
≤ 50 pF,
C
LOAD
5 kΩ
R
LOAD
≤ 50 pF,
C
1MS/s
R
C R
LOAD
LOAD
LOAD
LOAD
5 kΩ
≤ 50 pF, 5 kΩ
input code between lowest and highest possible ones.
LOAD
, C
LOAD
= 50 pF

5.3.18 Temperature sensor characteristics

Table 55. TS characteristics
Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
(1)
V
25
(2)
t
START
S_temp
(3)(2)
T
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
V
(1)
Average slope 4.0 4.3 4.6 mV/°C
linearity with temperature
SENSE
±1 ±2
Voltage at 25 °C 1.34 1.43 1.52 V
Startup time 4 10 µs
ADC sampling time when reading the temperature 17.1 µs
°C
74/90
STM32F105xx, STM32F107xx Package characteristics

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
75/90
Package characteristics STM32F105xx, STM32F107xx
ai14396
A2 A4 A3 A1 A
Seating plane
B
A1 corner index area
(see note 5)
(100 balls)
Bottom view
12345678910
F
E1
E
e
A
D
D1
e
F
K
J H G F E D C B A
ddd
C
C
eee
fff
CA
B
CM
M
b

Figure 35. LFBGA100 - low profile fine pitch ball grid array package outline

Table 56. LFBGA100 - low profile fine pitch ball grid array package mechanical data

A 1.700 0.0026
A1 0.270 0.0004
A2 1.085 0.0017
A3 0.30 0.0005
A4 0.80 0.0012
b 0.45 0.50 0.55 0.0007 0.0008 0.0009
D 9.85 10.00 10.15 0.0153 0.0155 0.0157
D1 7.20 0.0111
E 9.85 10.00 10.15 0.0153 0.0155 0.0157
E1 7.20 0.0111
e 0.80 0.0012
F 1.40 0.0022
ddd 0.12 0.0002
76/90
eee 0.15 0.0002
fff 0.08 0.0001
N (number of balls) 100
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Dim.
mm inches
(1)
Min Typ Max Min Typ Max
STM32F105xx, STM32F107xx Package characteristics
Dpad
Dsm
Dpad 0.37 mm
Dsm
0.52 mm typ. (depends on solder
mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended
– 4 to 6 mils screen print

Figure 36. Recommended PCB design rules (0.80/0.75 mm pitch BGA)

77/90
Package characteristics STM32F105xx, STM32F107xx
D
D1
D3
75
51
50
76
100 26
125
E3 E1 E
e
b
Pin 1 identification
SEATING PLANE
GAGE PLANE
C
A
A2
A1
Cccc
0.25 mm
0.10 inch
L
L1
k
C
1L_ME
75 51
5076
0.5
0.3
.3
100 26
12.3
25
1.2
16.7
1
ai14906
Figure 37. LQFP100, 100-pin low-profile quad flat
package outline
(1)
Figure 38. Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 57. LQPF100 – 100-pin low-profile quad flat package mechanical data

millimeters inches
Symbol
Typ Min Max Typ Min Max
(1)(2)
(1)
A 1.60 0.063
A1 0.05 0.15 0.002 0.0059
A2 1.40 1.35 1.45 0.0551 0.0531 0.0571
b 0.22 0.17 0.27 0.0087 0.0067 0.0106
c 0.09 0.20 0.0035 0.0079
D 16.00 15.80 16.20 0.6299 0.622 0.6378
D1 14.00 13.80 14.20 0.5512 0.5433 0.5591
D3 12.00 0.4724
E 16.00 15.80 16.20 0.6299 0.622 0.6378
E1 14.00 13.80 14.20 0.5512 0.5433 0.5591
E3 12.00 0.4724
e0.50 0.0197
L 0.60 0.45 0.75 0.0236 0.0177 0.0295
L1 1.00 0.0394
k3.5°0° 7°3.5°0° 7°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
78/90
STM32F105xx, STM32F107xx Package characteristics
A
A2
A1
c
L1
L
E
E1
D
D1
e
b
ai14398b
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Figure 39. LQFP64 – 64 pin low-profile quad flat
package outline
(1)
Figure 40. Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 58. LQFP64 – 64 pin low-profile quad flat package mechanical data

mm inches
Dim.
Min Typ Max Min Typ Max
(1)(2)
(1)
A 1.60 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.20 0.0035 0.0079
D 12.00 0.4724
D1 10.00 0.3937
E 12.00 0.4724
E1 10.00 0.3937
e 0.50 0.0197
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 0.0394
Number of pins
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.
64
79/90
Part numbering STM32F105xx, STM32F107xx

7 Part numbering

Table 59. Ordering information scheme

Example: STM32 F 105 R C T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
105 = connectivity, USB OTG FS 107= connectivity, USB OTG FS & Ethernet
Pin count
R = 64 pins V = 100 pins
Flash memory size
8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory C = 256 Kbytes of Flash memory
Package
H = BGA T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts TR = tape and real
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.
80/90
STM32F105xx, STM32F107xx Applicative block diagrams
USB OTG
Full-speed
core
STM32F105xx/STM32F107xx
USB
Full-speed
transceiver
D+
USB Micro-B connector
D–
V
BUS
V
SS
HNPHNP
SRPSRP
V
DD
(1)
IDID
Cortex-M3
OTG PHY
ai15653
D+ D–
V
BUS
V
SS
To host
5 V to V
DD
Regulator
(2)

Appendix A Applicative block diagrams

A.1 USB OTG FS interface solutions

Figure 41. USB OTG FS device mode

1. VDD ranges between 2 V and 3.6 V.
2. Use a regulator if you want to build a bus-powered device.
81/90
Applicative block diagrams STM32F105xx, STM32F107xx

Figure 42. Host connection

STM32F105xx/STM32F107xx
OTG PHY
D+
D–
V
BUS
V
USB Std-A connector
SS
USB OTG
Full-speed
core
USB full-speed/ low-speed transceiver
HNPHNP
IDID
SRPSRP
(2)
V
DD
Cortex-M3
GPIO
GPIO + IRQ
1. ST20x2 needed only if the application has to support bus-powered devices.
ranges between 2 V and 3.6 V.
2. V
DD
EN
OVRCR flag
Current-limited
power distribution
ST20x2
switch
5 V
(1)
ai15654
82/90
STM32F105xx, STM32F107xx Applicative block diagrams
MCU
Ethernet MAC 10/100
Ethernet PHY 10/100
PLL
HCLK
XT1
PHY_CLK 25 MHz
MII_RX_CLK MII_RXD[3:0] MII_RX_DV MII_RX_ER
MII_TX_CLK MII_TX_EN
MII_TXD[3:0] MII_CRS MII_COL
MDIO MDC
HCLK
(1)
PPS_OUT
(2)
XTAL
25 MHz
STM32F107xx
OSC
TIM2
Timestamp
comparator
Timer input trigger
IEEE1588 PTP
MII
= 15 pins
MII + MDC = 17 pins
ai15656

Figure 43. OTG connection (any protocol)

STM32F105xx/STM32F107xx
OTG PHY
D+
D–
ID
V
BUS
V
SS
USB Micro-AB connector
USB OTG
Full-speed
core
USB full-speed/ low-speed transceiver
HNPHNP
IDID
SRPSRP
(2)
V
DD
Cortex-M3
GPIO
GPIO + IRQ
1. ST20x2 needed only if the application has to support bus-powered devices.
ranges between 2 V and 3.6 V.
2. V
DD

A.2 Ethernet interface solutions

Figure 44. MII mode using a 25 MHz crystal

EN
OVRCR flag
Current-limited
power distribution
switch
ST20x2
(1)
5 V
ai15655
1. HCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP, optional signal.
83/90
Applicative block diagrams STM32F105xx, STM32F107xx

Figure 45. RMII with a 50 MHz oscillator

STM32F107xx
MCU
Ethernet MAC 10/100
(1)
HCLK
IEEE1588 PTP Timer input trigger
TIM2
2.5 or 25 MHz 50 MHz
OSC
50 MHz
1. HCLK must be greater than 25 MHz.
Timestamp
comparator
synchronous
PLL
/2 or /20
HCLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
MDIO
MDC
PHY_CLK 50 MHz

Figure 46. RMII with a 25 MHz crystal and PHY with PLL

PHY 10/100
RMII
= 7 pins
XT1
Ethernet
RMII + MDC = 9 pins
50 MHz
ai15657
STM32F107xx
MCU
Ethernet MAC 10/100
(1)
HCLK
IEEE1588 PTP Timer input trigger
TIM2
2.5 or 25 MHz 50 MHz
XTAL
25 MHz
OSC
1. HCLK must be greater than 25 MHz.
Timestamp
comparator
/2 or /20
synchronous
PLL
HCLK
RMII_TX_EN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
MDIO
MDC
PHY_CLK 25 MHz
PHY 10/100
RMII
= 7 pins
REF_CLK
XT1
Ethernet
RMII + MDC = 9 pins
PLL
ai15658
84/90
STM32F105xx, STM32F107xx Applicative block diagrams
MCU
Ethernet MAC 10/100
Ethernet
PHY 10/100
PLL
HCLK
XT1/XT2
RMII_RXD[1:0]
RMII_CRX_DV
RMII_REF_CLK
RMII_TX_EN
RMII_TXD[1:0]
MDIO
MDC
HCLK
STM32F107xx
TIM2
Time stamp
comparator
Timer input trigger
IEEE1588 PTP
RMII
= 7 pins
RMII + MDC = 9 pins
ai15659
50 MHz
XTAL
25 MHz
OSC
NS DP83848
(1)
50 MHz
50 MHz

Figure 47. RMII with a 25 MHz crystal

1. The NS DP83848 is recommended as the input jitter requirement of this PHY. It is compliant with the output jitter specification of the MCU.
85/90
Applicative block diagrams STM32F105xx, STM32F107xx
Cortex-M3 core
72 MHz
OTG
+
PHY
SPI
SPI
GPIO
I2S
XTAL
14.7456 MHz
USB
Mass-storage
device
MMC/
SDCard
LCD
touch
screen
Control
buttons
Audio ampli
File
System
Program memory
Audio
CODEC
User
application
STM32F105/STM32F107
ai15661
SOF
SOF synchronization of input/output
audio streaming

A.3 Complete audio player solutions

Two solutions are offered, illustrated in Figure 48 and Figure 49.
Figure 48 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I
2
S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure 48. Complete audio player solution 1

STM32F105/STM32F107
XTAL
14.7456 MHz
USB
Mass-storage
device
MMC/
SDCard
OTG
(host
mode) +
PHY
SPI
Cortex-M3 core
72 MHz
Program memory
File
System
Audio
CODEC
User
application
SPI
GPIO
I2S
touch
screen
Control
buttons
DAC +
Audio ampli
LCD
ai15660
Figure 49 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.

Figure 49. Complete audio player solution 2

86/90
STM32F105xx, STM32F107xx Applicative block diagrams
14.7456 MHz
XTAL
OTG
47.9232 MHz
MCO
PLL2
x12
OSCOSC
MCU
MCO
Div
by 4
sel
Div by 3
PLL1
x6.5 VCO
Out x13
Div
by 4
PHY
STM32F105/STM32F107
Cortex-M3 core
Up to
147.456 MHz
I2S
PLL3
VCO
Out
x40
SCLK
MCLK Less than 0.5% accuracy error on MCLK and SCLK
Up to
71.88 MHz
ai15662
0.16% accuracy error

A.4 USB OTG FS interface + Ethernet/I2S interface solutions

With the clock tree implemented on the STM32F107xx, only one crystal is required to work with both the USB (host/device/OTG) and the Ethernet (MII/RMII) interfaces. Figure 50 illustrate the solution.

Figure 50. USB OTG FS + Ethernet solution

STM32F107
MCU
Div
XTAL
25 MHz
Ethernet
PHY
MCO
OSCOSC
MCO
by 5
sel
sel
PLL2
by 5
PLL3
x10
x8
Div
PLL1
VCO
Up to 50 MHz
x9
Out x18
up to 72 MHz
Div by 3
Cortex-M3 core
OTG
48 MHz
I2S
PHY
2% accuracy error
MCLK
SCLK
With the clock tree implemented on the STM32F107xx, only one crystal is required to work with both the USB (host/device/OTG) and the I
2
S (Audio) interfaces. Figure 51 illustrate the
solution.
Figure 51. USB OTG FS + I
2
S (Audio) solution
87/90
ai15662
Applicative block diagrams STM32F105xx, STM32F107xx

Table 60. PLL configurations

USB
prescaler
(PLL2
VCO
output)
PLL3MUL
I2Sn clock input
MCO (main
clock
output)
Application
Crystal
value in
MHz
(XT1)
PREDIV2 PLL2MUL PLL1SRC PREDIV1 PLL1MUL
Ethernet only 25 /5
Ethernet + OTG 25 /5
Ethernet + OTG + basic audio
25 /5
Ethernet + OTG + Audio class
2S(1)
I
14.7456 /4
PLL2ON
x8
PLL2ON
x8
PLL2ON
x8
PLL2ON
x12
PLL2 /5 PLL1ON x9 NA
PLL2 /5 PLL1ON x9 /3
PLL2 /5 PLL1ON x9 /3
PLL2 /4
PLL1ON
x6.5
/3
PLL3ON
x10
PLL3ON
x10
PLL3ON
x10
PLL3ON
x20
PLL1
PLL3 VCO
NA
NA
Out
XT1 (MII)
PLL3 (RMII)
XT1 (MII)
PLL3 (RMII)
XT1 (MII)
PLL3 (RMII)
NA
ETH PHY
must use its
own crystal
OTG only 8 NA PLL2OFF XT1 /1 PLL1ON x9 /3 PLL3OFF NA NA
OTG + basic audio
OTG + Audio
2S(1)
class I
Audio class I
(1)
only
8 NA PLL2OFF XT1 /1 PLL1ON x9 /3 PLL3OFF PLL1 NA
14.7456 /4
2
S
14.7456 /4
PLL2ON
x12
PLL2ON
x12
PLL2 /4
PLL2 /4
PLL1ON
x6.5
PLL1ON
x6.5
NA
PLL3ON
/3
x20
PLL3ON
x20
PLL3 VCO
Out
PLL3 VCO
out
NA
NA
1. SYSCLK is set to be at 72 MHz except in this case where SYSCLK is at 71.88 MHz.
88/90
STM32F105xx, STM32F107xx Revision history

Revision history

Table 61. Document revision history

Date Revision Changes
18-Dec-2008 1 Initial release.
I/O information clarified on page 1. Figure 4: STM32F105xxx and
STM32F107xxx connectivity line BGA100 ballout corrected. Section 2.3.8: Boot modes updated.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column, plus small additional changes in Ta b le 5 :
Pin definitions.
Consumption values modified in Section 5.3.5: Supply current
20-Feb-2009 2
characteristics.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing Maximum current consumption in Sleep mode, code running from Flash or RAM.
Table 20: High-speed external user clock characteristics and Table 21: Low-speed external user clock characteristics modified.
Table 27: PLL1 characteristics modified and Table 28: PLL2 and PLL3 characteristics added.
running from Flash and Table 15:
89/90
STM32F105xx, STM32F107xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
90/90
Loading...