ST STM32F103RF, STM32F103VF, STM32F103ZF, STM32F103RG, STM32F103VG User Manual

...
STM32F103xF
FBGA
LQFP64 10 × 10 mm,
LQFP100 14 × 14 mm,
LQFP144 20 × 20 mm
LFBGA144 10 × 10 mm
STM32F103xG
XL-density performance line ARM-based 32-bit MCU with 768 KB to
Target specification
Features
Core: ARM 32-bit Cortex™-M3 CPU with MPU
– 72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 768 Kbytes to 1 Mbyte of Flash memory – 96 Kbytes of SRAM – Flexible static memory controller with 4
Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND
– LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
3 × 12-bit, 1 µs A/D converters (up to 21
supply for RTC and backup registers
BAT
channels) – Conversion range: 0 to 3.6 V – Triple-sample and hold capability – Temperature sensor
2 × 12-bit D/A converters
DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
SDIO, I
Debug mode
2
Ss, SPIs, I2Cs and USARTs
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
memories
Up to 112 fast I/O ports
– 51/80/112 I/Os, all mappable on 16
external interrupt vectors and almost all 5 V-tolerant
Up to 17 timers
– Up to ten 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 2 × 16-bit motor control PWM timers with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 13 communication interfaces
– Up to 2 × I
2
C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with I
interface multiplexed – CAN interface (2.0B Active) – USB 2.0 full speed interface – SDIO interface
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

Reference Part number
STM32F103xF
STM32F103xG
®
packages
STM32F103RF STM32F103VF STM32F103ZF
STM32F103RG STM32F103VG STM32F103ZG
2
S
January 2012 Doc ID 16554 Rev 3 1/120
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.
www.st.com
1
Contents STM32F103xF, STM32F103xG
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) 21
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.22 Inter-integrated sound (I
2
S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.23 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.28 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Contents
2.3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 42
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 42
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 82
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 100
Doc ID 16554 Rev 3 3/120
Contents STM32F103xF, STM32F103xG
5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 115
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F103xF and STM32F103xG features and peripheral counts . . . . . . . . . . . . . . . . . 11
Table 3. STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STM32F103xF and STM32F103xG timer feature comparison . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. STM32F103xF and STM32F103xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 7. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 10. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 11. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 12. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 13. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 14. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 15. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 46
Table 17. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 47
Table 18. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 19. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 20. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 21. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 22. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 23. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 24. LSE oscillator characteristics (f
Table 25. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 26. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 28. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 63
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 64
Table 33. Asynchronous read muxed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 34. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 35. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 36. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 37. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 38. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 39. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 40. Switching characteristics for PC Card/CF read and write cycles in
attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . 78
Table 42. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 43. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
LSE
Doc ID 16554 Rev 3 5/120
List of tables STM32F103xF, STM32F103xG
Table 44. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 45. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 46. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 49. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 50. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 51. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 52. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 53. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 54. I Table 55. SCL frequency (f
Table 56. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 57. I
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PCLK1
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 58. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 59. USB startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 60. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 61. USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 63. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC
Table 64. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 65. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 66. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 67. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 69. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 111
Table 70. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 112
Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 113
Table 72. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 73. STM32F103xF and STM32F103xG ordering information scheme . . . . . . . . . . . . . . . . . . 117
6/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG List of figures
List of figures
Figure 1. STM32F103xF and STM32F103xG performance line block diagram. . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout . . . . . . 25
Figure 4. STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout. . . . . . 26
Figure 5. STM32F103xF and STM32F103xG XL-density performance line LQFP100 pinout. . . . . . 27
Figure 6. STM32F103xF and STM32F103xG XL-density performance line
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 7. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 45
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)-
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 45
Figure 14. Typical current consumption on V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 15. Typical current consumption in Stop mode with regulator in run mode
versus temperature at different V Figure 16. Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different V Figure 17. Typical current consumption in Standby mode versus temperature at
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DD
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 19. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 62
Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 63
Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 26. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 27. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 29. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 30. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 73
Figure 31. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 74
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 76
Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 77
Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 79
Figure 39. NAND controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . . 80
with RTC on vs. temperature at different V
BAT
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DD
BAT
Doc ID 16554 Rev 3 7/120
List of figures STM32F103xF, STM32F103xG
Figure 40. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 41. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 42. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 43. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 44. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 45. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 46. I
Figure 47. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 48. SPI timing diagram - slave mode and CPHA = 1 Figure 49. SPI timing diagram - master mode Figure 50. I Figure 51. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
(1)
(1)
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 52. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 53. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 54. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 55. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 56. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 57. Power supply and reference decoupling (V Figure 58. Power supply and reference decoupling (V
not connected to V
REF+
connected to V
REF+
). . . . . . . . . . . . . 104
DDA
). . . . . . . . . . . . . . . . 105
DDA
Figure 59. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 60. Recommended PCB design rules (0.80/0.75 mm pitch BGA . . . . . . . . . . . . . . . . . . . . . . 109
Figure 61. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 62. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 63. Recommended footprint
Figure 64. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 112
Figure 65. Recommended footprint
Figure 66. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 113
Figure 67. Recommended footprint Figure 68. LQFP100 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For
more details on the whole STMicroelectronics STM32F103xx family, please refer to
Section 2.2: Full compatibility throughout the family.
The XL-density STM32F103xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 16554 Rev 3 9/120
Description STM32F103xF, STM32F103xG

2 Description

The STM32F103xF and STM32F103xG performance line family incorporates the high-
performance ARM
®
Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high­speed embedded memories (Flash memory up to 1 Mbyte and SRAM up to 96 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, ten general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I
2
I
Ss, one SDIO, five USARTs, an USB and a CAN.
2
Cs, three SPIs, two
The STM32F103xx XL-density performance line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6
V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
These features make the STM32F103xx high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems and video intercom.
10/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description

2.1 Device overview

The STM32F103xx XL-density performance line family offers devices in four different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.

Table 2. STM32F103xF and STM32F103xG features and peripheral counts

Peripherals STM32F103Rx STM32F103Vx STM32F103Zx
Flash memory 768 KB 1 MB 768 KB 1 MB 768 KB 1 MB
SRAM in Kbytes 96 96 96
FSMC No Yes
General-purpose 10
Timers
Advanced-control 2
Basic 2
SPI(I2S)
2
I
(2)
3(2)
C2
(1)
Ye s
Comm
USART 5
USB 1
CAN 1
SDIO 1
GPIOs 51 80 112
12-bit ADC Number of channels
12-bit DAC Number of channels
16
3
16
3
3
21
2 2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Ta b l e 1 0 )
Junction temperature: –40 to + 125 °C (see Table 10)
Package LQFP64 LQFP100 LQFP144, BGA144
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a
multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the
2
I
S audio mode.
Doc ID 16554 Rev 3 11/120
PA[ 15:0 ]
EXT.IT
WWDG
NVIC
12bit A DC1
8 ADINs common
JTDI JTCK/SWCLK JTMS/SWDA T
NJTRST
JTDO
=2 to 3.6V
112 AF
AHB2
MOSI/SD,MISO,
WKUP
F
max
: 48/72 MHz
V
SS
SCL,SDA,SMBA
I2C2
GP DMA1
XTAL OSC
4-16 MHz
XTAL 32 kHz
A
P
B
1:
F
m
a
x
=2
4
/
3
6MHz
HCLK
PCLK1
as AF
Flash1 512 KB
VOLT. RE G.
3.3VTO1.8V
POWER
Backupinterface
as AF
B
us matrix
64 bit
RTC
RC HS
Cortex-M3 CPU
Ibus
Dbus
obl
SRAM 512B
USART1
USART2
SPI2/I2S2
bxCAN device
7channels
Backup
reg
4channels
TIM1
4compl.
SCL,SDA,SMBA
I2C1
as AF
RX,TX, CTS,RTS,
USART3
Temp sen sor
4Ch,ETRas AF
FCLK
RC LS
Standby
IWDG
@VSW
POR / PD R
SUPPLY
@VDDA
V
BAT
=1.8Vto3.6V
CK as AF
RX,TX, CTS,RTS, CK as AF
RX,TX, CTS,RTS, CK as AF
A
PB
2:
F
m
a
x
=48 /
72
MH
z
NVIC
SPI1
MOSI,MISO,
SCK,NSS as AF
12bit A DC2
IF
IF
interface
SUPERVISION
PVD
Reset
Int
AWU
POR
TAMPER-RTC
System
SCK/CK ,NSS/WS,
UART4
RX,TX as AF
UART5
RX,TX as AF
Reset & clock controller
PCLK2
PLL
12bit DAC1
IFIF
IF
12bit DA C2
DAC1_OUT as AF
DAC2_OUT as AF
to the 3 ADCs
8 ADINs commo n
to the ADC1 & 2
GP DMA2
5channels
(ALARM OUT)
MCLK as AF MOSI/SD,MISO,
SCK/CK ,NSS/WS, MCLK as AF
SWJTAG
TPIU
ETM
Trace/Trig
TRACECL K
TRACED[ 0:3]
as AF
USBDM/CAN_RX
USBDP/CAN_TX
SDIO
FSMC
PCLK3
SRAM
96 Kbyte
64 bit
12bit ADC3
IF
5ADINs on ADC3
4 4compl. BKIN, ETR input as AF
PB[15:0]
PC[ 15:0]
PD[15:0]
PE[1 5:0]
PF[15:0]
PG[15:0]
MPU
2 as AF
1 as AF
1 as AF
4Ch,ETRas AF
4Ch,ETRas AF
4Ch,ETRas AF
D[7: 0], CMD
CK as AF
Flash2 512 KB
A[25:0] D[15:0]
CLK
NOE
NWE
NE[3:0]
NBL[1:0]
NWAIT
NL
as AF
channels
channels
channels
channels
channel
channel
TIM8
TIM9
TIM10
TIM11
V
REF+
V
REF–
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
TIM12
TIM13
TIM14
OSC_IN OSC_OUT
OSC32_IN OSC32_OUT
V
DD
@V
DD
NRST V
DDA
V
SSA
V
DD
@V
DD
@V
DDA
@V
DDA
Flash
interface
Flash
interface
obl
2 channels as AF
1 channel as AF
1 channel as AF
ai17352
@V
DDA
GPIO port A
GPIO port B
GPIO port C
GPIO port D
GPIO port E
GPIO port F
GPIO port G
APB3 APB2 APB1
BKIN, ETR input as AF
USB 2.0 FS device
SPI3/I2S3
Description STM32F103xF, STM32F103xG

Figure 1. STM32F103xF and STM32F103xG performance line block diagram

1. TA = –40 °C to +85 °C (suffix 6, see Table 73) or –40 °C to +105 °C (suffix 7, see Table 73), junction temperature up to
2. AF = alternate function on I/O port pin.
105 °C or 125 °C, respectively.
12/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description

Figure 2. Clock tree

FLITFCLK to Flash programming interface
USBCLK
to USB interface
I2S3CLK
I2S2CLK
36 MHz max
Peripheral Clock
Enable
else x2
72 MHz max
Peripheral Clock
Enable
else x2
ADCCLK
Peripheral clock enable
to I2S3
to I2S2
SDIOCLK
FSMCCLK
HCLK to AHB bus, core, memory and DMA
to SDIO
to FSMC
to Cortex System timer
FCLK Cortex free running clock
Peripheral Clock
Enable
PCLK1
to APB1 peripherals
to TIM2/3/4/5/12/13/14 and TIM6/7
TIMxCLK
PCLK2
peripherals to APB2
to TIM1/8 and TIM9/10/11
TIMxCLK
Peripheral Clock
Enable
to ADC1, 2 or 3
HCLK/2
To SDIO AHB interface
OSC_OUT
OSC_IN
OSC32_IN
OSC32_OUT
8 MHz
HSI RC
PLLSRC
4-16 MHz
HSE OSC
LSE OSC
32.768 kHz
LSI RC 40 kHz
HSI
PLLMUL
..., x16
x2, x3, x4
PLL
PLLXTPRE
/2
/128
LSE
RTCSEL[1:0]
LSI
/2
SW
HSI
PLLCLK
HSE
CSS
RTCCLK
to Independent Watchdog (IWDG)
SYSCLK
72 MHz
max
to RTC
AHB Prescaler /1, 2..512
IWDGCLK
USB
Prescaler
/1, 1.5
Peripheral clock enable
Peripheral clock enable
/1, 2, 4, 8, 16
TIM2,3,4,5,12,13,14,6,7
If (APB1 prescaler =1) x1
/1, 2, 4, 8, 16
48 MHz
Peripheral clock enable
Peripheral clock enable
72 MHz max
Clock Enable
/8
APB1
Prescaler
APB2
Prescaler
TIM1, 8, 9, 10, 11
If (APB2 prescaler =1) x1
ADC Prescaler /2, 4, 6, 8
/2
Legend:
HSE = High-speed external clock signal
HSI =
High-speed internal clock signal
LSI =
Low-speed internal clock signal
LSE =
Low-speed external clock signal
ai17354
MCO
Main Clock Output
/2
PLLCLK
HSI
HSE
SYSCLK
MCO
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz.
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.
Doc ID 16554 Rev 3 13/120
Description STM32F103xF, STM32F103xG

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices and the STM32F103xF and STM32F103xG are called XL-density devices.
Low-density, high-density and XL-density devices are an extension of the STM32F103x8/B medium-density devices, they are specified in the STM32F103x4/6, STM32F103xC/D/E and STM32F103xF/G datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I DAC. XL-density devices bring even more Flash and RAM memory, and extra features, namely an MPU, a greater number of timers and a dual bank Flash structure while remaining fully compatible with the other members of the family.
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD, STM32F103xE, STM32F103xF and STM32F103xG are a drop-in replacement for the STM32F103x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

Table 3. STM32F103xx family

2
S and
Pinout
144
100
64
48
Low-density
devices
16 KB
Flash
6 KB RAM
32 KB
Flash
10 KB
RAM
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I
2
C, USB, CAN, 1 × PWM timer 2 × ADCs
Medium-density
devices
64 KB
(1)
Flash
20 KB
RAM
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, USB, CAN, 1 × PWM timer 2 × ADCs
128 KB
Flash
20 KB
RAM
High-density devices XL-density devices
256 KB
Flash
48 or
64 KB
RAM
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO FSMC (100- and 144-pin packages
(2)
384 KB
Flash
64 KB
RAM
(3)
)
2
512 KB
Flash
64 KB
RAM
Ss, 2 × I2Cs
768 KB Flash 1 MB Flash
96 KB RAM 96 KB RAM
5 × USARTs 10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO, Cortex-M3 with MPU FSMC (100- and 144-pin packages
(4)
), dual bank Flash
memory
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.
2. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.
3. Ports F and G are not available in devices delivered in 100-pin packages.
4. Ports F and G are not available in devices delivered in 100-pin packages.
2
Ss, 2 × I2Cs
14/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
With its embedded ARM core, STM32F103xF and STM32F103xG performance line family is compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

2.3.3 Embedded Flash memory

768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability).

2.3.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.
Doc ID 16554 Rev 3 15/120
Description STM32F103xF, STM32F103xG

2.3.5 Embedded SRAM

96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.
Functionality overview:
The three FSMC interrupt lines are ORed in order to be connected to the NVIC
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
The targeted frequency, f
, is HCLK/2, so external access is at 36 MHz when HCLK
CLK
is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost­effective graphic applications using LCD modules with embedded controllers or high­performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F103xF and STM32F103xG performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.
16/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See
Figure 2 for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from user Flash: you have an option to boot from any of two memory banks. By
default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
DDA
RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
BAT
DDA
and V
registers (through power switch) when V

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to
Ta bl e 12: Embedded reset and power control block characteristics for the values of
V
POR/PDR
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
and V
PVD
pins.
DD
must be connected to VDD and VSS, respectively.
SSA
DD
is below a specified threshold, V
DD
drops below the V
PVD
.
is not present.
POR/PDR
threshold. An interrupt can be
PVD
, without the need for an
threshold and/or when VDD/V
is higher
DDA
Doc ID 16554 Rev 3 17/120
Description STM32F103xF, STM32F103xG

2.3.14 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.15 Low-power modes

The STM32F103xF and STM32F103xG performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.16 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.
18/120 Doc ID 16554 Rev 3
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
STM32F103xF, STM32F103xG Description
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I
2
S, SDIO and ADC.

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
pin. The backup registers are forty-two 16-bit
BAT
registers used to store 84 bytes of user application data when V They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F103xx performance line devices include up to two advanced-control timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
power is not present.
DD
Ta bl e 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. STM32F103xF and STM32F103xG timer feature comparison
Timer
TIM1, TIM8 16-bit
TIM2, TIM3,
TIM4, TIM5
TIM9, TIM12 16-bit Up
TIM10, TIM11 TIM13, TIM14
TIM6, TIM7 16-bit Up
Counter
resolution
16-bit
16-bit Up
Counter
type
Up,
down,
up/down
Up,
down,
up/down
Prescaler factor
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
DMA request
generation
Ye s 4 Ye s
Ye s 4 N o
No 2 No
No 1 No
Ye s 0 N o
Capture/compare
channels
Complementary
outputs
Doc ID 16554 Rev 3 19/120
Description STM32F103xF, STM32F103xG
Advanced-control timers (TIM1 and TIM8)
The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.
Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are10 synchronizable general-purpose timers embedded in the STM32F103xF and STM32F103xG performance line devices (see
TIM2, TIM3, TIM4, TIM5
Ta bl e 4 for differences).
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xF and STM32F103xG access line devices.
These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
TIM13, TIM14 and TIM12
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
20/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F103xF and STM32F103xG performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.
Doc ID 16554 Rev 3 21/120
Description STM32F103xF, STM32F103xG

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
All SPIs can be served by the DMA controller.

2.3.22 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48
kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

2.3.23 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.

2.3.24 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.25 Universal serial bus (USB)

The STM32F103xF and STM32F103xG performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

2.3.26 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable.
22/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Description
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.27 ADC (analog to digital converter)

Three 12-bit analog-to-digital converters are embedded into STM32F103xF and STM32F103xG performance line devices and each ADC shares up to 21 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.28 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
Eight DAC trigger inputs are used in the STM32F103xF and STM32F103xG performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
REF+
Doc ID 16554 Rev 3 23/120
Description STM32F103xF, STM32F103xG

2.3.29 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V
< 3.6 V. The temperature sensor is internally
DDA
connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.30 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.31 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
24/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Pinouts and pin descriptions
AI14798b
V
DD_7
PC3PC2
PF6
V
DD_6
V
SS_4
PF8
H
V
DD_1
D PG13
PG14
PE6PE5
C
PG10
PG11
V
DD_5
PB8
NRST
B PG12PG15
PC15-
OSC32_OUT
PB9
A
87654321
V
BAT
OSC_IN
OSC_OUT
V
SS_5
G
F
E
PF7
PC0
PF0 PF1
PF2
V
SS_10
PG9PF4
PF3
V
SS_3
PF5
V
DD_8
V
DD_3
V
DD_4
V
SS_8
PE4
PB5
PB6
BOOT0 PB7
V
SS_11
PF10
PC1
V
DD_11VDD_10
PF9
109
K
J
V
SS_2
PD3
PD4
PD1
PC12
PC11
PD5
PD2 PD0
V
DD_9
V
SS_9
V
DD_2
PG1
PC5PA5 PE9
PB2/
BOOT1
PC4PA4
PE10
PG0PF13V
REF–
PE12V
SSA
PA1 PE13
PA0-WKUP
PD9
PD10
PG4
PD13
1211
PG8
PA10
NC
PA9
PA11
PA12
PC10
PC9 PA8
PC7
PC6
PC8
PD14
PG3
PG2
PD15
M
L
PF15
PB1PA7 PE7
PF12
PB0PA6
PE8
PF14PF11V
DDA
PE14V
REF+
PA3 PE15
PA2
PB10
PD8
PD12
PB11
PB12
PB14
PB15
PB13
PC13-
TAMPER-RTC
PE3 PE2 PE1 PE0
PB4
JTRST
PB3
JTDO
PD6 PD7
PA15
JTDI
PA14 JTCK
PA13
JTMS
PE11V
SS_6
V
SS_7VSS_1
PG7
PD11
PG5
PG6
PC14-
OSC32_IN

3 Pinouts and pin descriptions

Figure 3. STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout

Doc ID 16554 Rev 3 25/120
Pinouts and pin descriptions STM32F103xF, STM32F103xG
V
DD_3VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD_11VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD_10VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2
V
DD_2
PE3
V
SS_2
PE4
NC
PE5
PA13
PE6
PA12
VBAT
PA11
PC13-TAMPER-RTC
PA10
PC14-OSC32_IN
PA9
PC15-OSC32_OUT
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
V
DD_9
PF5
V
SS_9
V
SS_5
PG8
V
DD_5
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
OSC_IN
PD15
OSC_OUT
PD14
NRST
V
DD_8
PC0
V
SS_8
PC1
PD13
PC2
PD12
PC3
PD11
V
SSA
PD10
V
REF-
PD9
V
REF+
PD8
V
DDA
PB15
PA0-WKUP
PB14
PA1
PB13
PA2
PB12
PA3
V
SS_4
V
DD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS_6
V
DD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS_7
V
DD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
SS_1
V
DD_1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
3738394041424344454647484950515253545556575859
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
6162636465666768697071
26 27 28 29 30 31 32 33 34 35 36
83 82 81 80 79 78 77 76 75 74 73
ai14667

Figure 4. STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout

26/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Pinouts and pin descriptions
100999897969594939291908988878685848382818079787776
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100
Figure 5. STM32F103xF and STM32F103xG XL-density performance line LQFP100
pinout
Doc ID 16554 Rev 3 27/120
Pinouts and pin descriptions STM32F103xF, STM32F103xG
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2
PC3 VSSA VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
VDD_2 VSS_2 PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14392
Figure 6. STM32F103xF and STM32F103xG XL-density performance line
LQFP64 pinout
28/120 Doc ID 16554 Rev 3
STM32F103xF, STM32F103xG Pinouts and pin descriptions
Pins
LQFP64
(2)
Pin name
(1)
Typ e
LQFP100
LQFP144
FT
FT
FT
FT
FT
BAT
PC13-TAMPER-
RTC
(5)
PC15-
OSC32_OUT
SV
I/O PC13
(5)
I/O PC14
I/O PC15
(5)
Main
function
(3)
(after reset)
I / O level
PE2 TRACECK / FSMC_A23
PE3 TRACED0 / FSMC_A19
PE4 TRACED1/ FSMC_A20
PE5 TRACED2/ FSMC_A21 TIM9_CH1
PE6 TRACED3 / FSMC_A22 TIM9_CH2
BAT
(6)
(6)
(6)
Alternate functions
Default Remap
TAMPER-RTC
OSC32_IN
OSC32_OUT

Table 5. STM32F103xF and STM32F103xG pin definitions

LFBGA144
A3 - 1 1 PE2 I/O
A2 - 2 2 PE3 I/O
B2 - 3 3 PE4 I/O
B3 - 4 4 PE5 I/O
B4 - 5 5 PE6 I/O
C2 1 6 6 V
A1 2 7 7
B1 3 8 8 PC14-OSC32_IN
C1 4 9 9
C3 - - 10 PF0 I/O FT PF0 FSMC_A0
C4 - - 11 PF1 I/O FT PF1 FSMC_A1
D4 - - 12 PF2 I/O FT PF2 FSMC_A2
E2 - - 13 PF3 I/O FT PF3 FSMC_A3
E3 - - 14 PF4 I/O FT PF4 FSMC_A4
E4 - - 15 PF5 I/O FT PF5 FSMC_A5
D2 - 10 16 V
D3 - 11 17 V
SS_5
DD_5
SV
SV
SS_5
DD_5
F3 - - 18 PF6 I/O PF6 ADC3_IN4 / FSMC_NIORD TIM10_CH1
F2 - - 19 PF7 I/O PF7 ADC3_IN5 / FSMC_NREG TIM11_CH1
G3 - - 20 PF8 I/O PF8 ADC3_IN6 / FSMC_NIOWR TIM13_CH1
G2 - - 21 PF9 I/O PF9 ADC3_IN7 / FSMC_CD TIM14_CH1
G1 - - 22 PF10 I/O PF10 ADC3_IN8 / FSMC_INTR
D1 5 12 23 OSC_IN I OSC_IN PD0
E1 6 13 24 OSC_OUT O OSC_OUT PD1
F1 7 14 25 NRST I/O NRST
H1 8 15 26 PC0 I/O PC0 ADC123_IN10
H2 9 16 27 PC1 I/O PC1 ADC123_IN11
H3 10 17 28 PC2 I/O PC2 ADC123_IN12
H4 11 18 29 PC3 I/O PC3 ADC123_IN13
J1 12 19 30 V
K1 - 20 31 V
SSA
REF-
SV
SV
SSA
REF-
(4)
(7)
(7)
Doc ID 16554 Rev 3 29/120
Pinouts and pin descriptions STM32F103xF, STM32F103xG
Table 5. STM32F103xF and STM32F103xG pin definitions (continued)
(7)
(7)
/
/
/
/
/
(4)
TIM1_BKIN
TIM1_CH1N
TIM1_CH2N
TIM1_CH3N
Pins
Pin name
LQFP64
LQFP100
LFBGA144
LQFP144
L1 - 21 32 V
M1 13 22 33 V
REF+
DDA
(2)
(1)
Type
Main
function
(3)
(after reset)
I / O level
SV
SV
REF+
DDA
WKUP/USART2_CTS
J2 14 23 34 PA0-WKUP I/O PA0
ADC123_IN0 / TIM2_CH1_ETR /
TIM5_CH1 / TIM8_ETR
K2 15 24 35 PA1 I/O PA1
USART2_RTS
TIM5_CH2 / TIM2_CH2
USART2_TX
L2 16 25 36 PA2 I/O PA2
ADC123_IN2 / TIM9_CH1 /
USART2_RX
M2 17 26 37 PA3 I/O PA3
G4 18 27 38 V
F4 19 28 39 V
SS_4
DD_4
SV
SV
SS_4
DD_4
J3 20 29 40 PA4 I/O PA4
K3 21 30 41 PA5 I/O PA5
ADC123_IN3 / TIM2_CH4
SPI1_NSS
DAC_OUT1 / ADC12_IN4
SPI1_SCK
SPI1_MISO
L3 22 31 42 PA6 I/O PA6
ADC12_IN6 / TIM3_CH1
SPI1_MOSI
M3 23 32 43 PA7 I/O PA7
ADC12_IN7 / TIM3_CH2
J4 24 33 44 PC4 I/O PC4 ADC12_IN14
K4 25 34 45 PC5 I/O PC5 ADC12_IN15
L4 26 35 46 PB0 I/O PB0
M4 27 36 47 PB1 I/O PB1
J5 28 37 48
PB2 I/O FT PB2/BOOT1
ADC12_IN8 / TIM3_CH3 /
ADC12_IN9 / TIM3_CH4
M5 - - 49 PF11 I/O FT PF11 FSMC_NIOS16
L5 - - 50 PF12 I/O FT PF12 FSMC_A6
H5 - - 51 V
G5 - - 52 V
SS_6
DD_6
SV
SV
SS_6
DD_6
K5 - - 53 PF13 I/O FT PF13 FSMC_A7
Alternate functions
Default Remap
(8)
/
(7)
/ ADC123_IN1 /
(7)
/ TIM5_CH3 /
TIM2_CH3
(7)
/ TIM5_CH4 /
(7)
(7)
TIM9_CH2
(7)
/ USART2_CK
(7)
/ DAC_OUT2 /
ADC12_IN5
(7)
/ TIM8_BKIN /
(7)
TIM13_CH1
(7)
/ TIM8_CH1N /
(7)
TIM14_CH1
TIM8_CH2N
(7)
TIM8_CH3N
30/120 Doc ID 16554 Rev 3
Loading...
+ 90 hidden pages