ST STM32F103RC, STM32F103VC, STM32F103ZC, STM32F103RD, STM32F103VD User Manual

...
STM32F103xC STM32F103xD
FBGA
LQFP64 10 × 10 mm,
LQFP100 14 × 14 mm,
LQFP144 20 × 20 mm
LFBGA100 10 × 10 mm LFBGA144 10 × 10 mm
WLCSP64
STM32F103xE
High-density performance line ARM-based 32-bit MCU with 256 to
512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
Features
– 72 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 256 to 512 Kbytes of Flash memory – up to 64 Kbytes of SRAM – Flexible static memory controller with 4
Chip Select. Supports Compact Flash, SRAM, PSRAM, NOR and NAND
– LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
3 × 12-bit, 1 µs A/D converters (up to 21
supply for RTC and backup registers
BAT
channels) – Conversion range: 0 to 3.6 V – Triple-sample and hold capability – Temperature sensor
2 × 12-bit D/A converters
DMA: 12-channel DMA controller
– Supported peripherals: timers, ADCs, DAC,
SDIO, I
Debug mode
2
Ss, SPIs, I2Cs and USARTs
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
memories
Up to 112 fast I/O ports
– 51/80/112 I/Os, all mappable on 16
external interrupt vectors and almost all 5 V-tolerant
Up to 11 timers
– Up to four 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 2 × 16-bit motor control PWM timers with
dead-time generation and emergency stop
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 13 communication interfaces
– Up to 2 × I
2
C interfaces (SMBus/PMBus)
– Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s), 2 with I
interface multiplexed – CAN interface (2.0B Active) – USB 2.0 full speed interface – SDIO interface
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

Reference Part number
STM32F103xC
STM32F103xD
STM32F103xE
®
packages
STM32F103RC STM32F103VC STM32F103ZC
STM32F103RD STM32F103VD STM32F103ZD
STM32F103RE STM32F103ZE STM32F103VE
2
S
April 2011 Doc ID 14611 Rev 8 1/130
www.st.com
1
Contents STM32F103xC, STM32F103xD, STM32F103xE
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.11 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs) 21
2.3.20 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.21 Inter-integrated sound (I
2
S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.22 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.28 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Contents
2.3.29 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.30 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 43
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 43
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 84
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Doc ID 14611 Rev 8 3/130
Contents STM32F103xC, STM32F103xD, STM32F103xE
5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 121
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F103xC, STM32F103xD and STM32F103xE features and peripheral counts . . . . 11
Table 3. STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. High-density timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. High-density STM32F103xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 7. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 10. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 12. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 13. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 14. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 47
Table 17. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 48
Table 18. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 19. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 20. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 21. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 22. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 23. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 24. LSE oscillator characteristics (f
Table 25. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 26. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 28. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 64
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 65
Table 33. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 34. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 35. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 36. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 38. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 39. Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 79
Table 40. Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 82
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LSE
Doc ID 14611 Rev 8 5/130
List of tables STM32F103xC, STM32F103xD, STM32F103xE
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 50. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 51. I Table 52. SCL frequency (f
Table 53. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 54. I
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
PCLK1
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 55. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 56. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 57. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 58. USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 59. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 60. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC
Table 61. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 62. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 63. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 64. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 65. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . 112
Table 66. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 68. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 69. Recommended PCB design rules (0.5mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 70. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 117
Table 71. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 118
Table 72. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 119
Table 73. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 74. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE List of figures
List of figures
Figure 1. STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F103xC and STM32F103xE performance line BGA144 ballout . . . . . . . . . . . . . . . 24
Figure 4. STM32F103xC and STM32F103xE performance line BGA100 ballout . . . . . . . . . . . . . . . 25
Figure 5. STM32F103xC and STM32F103xE performance line LQFP144 pinout. . . . . . . . . . . . . . . 26
Figure 6. STM32F103xC and STM32F103xE performance line LQFP100 pinout. . . . . . . . . . . . . . . 27
Figure 7. STM32F103xC and STM32F103xE performance line
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 8. STM32F103xC and STM32F103xE performance line
WLCSP64 ballout, ball side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 46
Figure 15. Typical current consumption in Run mode versus frequency (at 3.6 V)-
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 46
Figure 16. Typical current consumption on V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 17. Typical current consumption in Stop mode with regulator in run mode
versus temperature at different V Figure 18. Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different V Figure 19. Typical current consumption in Standby mode versus temperature at
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DD
Figure 20. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 21. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 22. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 23. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 64
Figure 25. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 65
Figure 26. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 28. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 29. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 31. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 32. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 75
Figure 33. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 76
Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 78
Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 79
Figure 38. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
with RTC on vs. temperature at different V
BAT
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
BAT
Doc ID 14611 Rev 8 7/130
List of figures STM32F103xC, STM32F103xD, STM32F103xE
Figure 39. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 40. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 81
Figure 41. NAND controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 43. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 44. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 45. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 46. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 47. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 48. I
Figure 49. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 50. SPI timing diagram - slave mode and CPHA = 1 Figure 51. SPI timing diagram - master mode Figure 52. I Figure 53. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
(1)
(1)
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 54. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 55. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 56. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 57. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 58. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 59. Power supply and reference decoupling (V Figure 60. Power supply and reference decoupling (V
not connected to V
REF+
connected to V
REF+
). . . . . . . . . . . . . 106
DDA
). . . . . . . . . . . . . . . . 107
DDA
Figure 61. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 62. BGA pad footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 63. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 64. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 65. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 66. BGA pad footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 67. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 68. Recommended footprint
Figure 69. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 118
Figure 70. Recommended footprint
Figure 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 119
Figure 72. Recommended footprint Figure 73. LQFP100 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line
microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family,
please refer to Section 2.2: Full compatibility throughout the family.
The high-density STM32F103xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 14611 Rev 8 9/130
Description STM32F103xC, STM32F103xD, STM32F103xE

2 Description

The STM32F103xC, STM32F103xD and STM32F103xE performance line family
incorporates the high-performance ARM
®
Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, four general-purpose 16­bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I
2
Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a
CAN.
The STM32F103xx high-density performance line family operates in the –40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
These features make the STM32F103xx high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems video intercom, and HVAC.
10/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description

2.1 Device overview

The STM32F103xx high-density performance line family offers devices in six different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.
Table 2. STM32F103xC, STM32F103xD and STM32F103xE features and peripheral
counts
Peripherals STM32F103Rx STM32F103Vx STM32F103Zx
Flash memory in Kbytes 256 384 512 256 384 512 256 384 512
SRAM in Kbytes 48 64
FSMC No Yes
General-purpose 4
Timers
Advanced-control 2
Basic 2
SPI(I2S)
2
I
(3)
C2
(1)
48 64 48 64
(2)
Ye s
3(2)
Comm
USART 5
USB 1
CAN 1
SDIO 1
GPIOs 51 80 112
12-bit ADC Number of channels
12-bit DAC Number of channels
16
3
16
3
3
21
2 2
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Ta b le 1 0 )
Junction temperature: –40 to + 125 °C (see Ta b le 1 0)
Package LQFP64, WLCSP64 LQFP100, BGA100 LQFP144, BGA144
1. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.
2. For the LQFP100 and BGA100 packages, only FSMC Bank1 and Bank2 are available. Bank1 can only
support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
3. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the
I2S audio mode.
Doc ID 14611 Rev 8 11/130
Description STM32F103xC, STM32F103xD, STM32F103xE

Figure 1. STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram

TRACECLK TRACED[0:3] as AS
NJTRST
JTDI JTCK/SWCLK JTMS/SWDIO
JTDO as AF
A[25:0] D[15:0]
CLK
NOE
NWE
NE[4:1]
NBL[1:0]
NWAIT
NL (or NADV)
as AF
D[7:0]
CMD
CK as AF
112AF
PA[15:0]
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
4 channels 3 compl. channels BKIN, ETR as AF
4 channels 3 compl. channels BKIN, ETR as AF
MOSI, MISO, SCK, NSS as AF
RX, TX, CTS, RTS, CK as AF
8 ADC123_INs common to the 3 ADCs
8 ADC12_INs common to ADC1 & ADC2
5 ADC3_INs on ADC3
V
REF–
V
REF+
TPIU
Trace/trig
SW/JTAG
Cortex-M3 CPU
F
: 48/72 MHz
max
NVIC
GP DMA1
7 channels
GP DMA2
5 channels
EXT.IT WKUP
GPIO port A
GPIO port B
GPIO port C
GPIO port D
GPIO port E
GPIO port F
GPIO port G
TIM1
TIM8
SPI1
USART1
Temp. sensor
12-bit ADC1
12-bit ADC2
12-bit ADC3
@ V
DDA
FSMC
SDIO
IF
IF
IF
Pbus
Dbus
System
Ibus
Bus Matrix
APB2: Fmax = 48/72 MHz
Trace controller
AHB2 APB2
obl
Flash 512 Kbytes
Flash
interface
SRAM
64 KB
Reset & Clock control
AHB: Fmax = 48/72 MHz
AHB2
APB1
64 bit
SRAM 512 B
WWDG
TIM6
TIM7
RC 8 MHz
RC 40 kHz
PCLK1 PCLK2 HCLK FCLK
@V
PLL
DDA
POR
Reset
= 24/36 MHz
max
APB1: F
V
DD
Supply supervision
POR / PDR
Int
Standby
interface
RTC
AWU
Backup interface
SPI2 / I2 S2
2x(8x16bit)
SPI3 / I2S3
2x(8x16bit)
bxCAN device
USB 2.0 FS device
IFIF IF
@V
@V
DD
Power
Volt. reg.
3.3 V to 1.8 V
@V
DDA
PVD
@V
DD XTAL OSC 4-16 MHz
IWDG
V
@
BAT
XTAL 32kHz
Backup
reg
TIM2
TIM3
TIM4
TIM5
USART 2
USART 3
UART4
UART5
I2C1
I2C2
12bit DAC1
12bit DAC 2
DDA
V
SS
NRST V
DDA
V
SSA
OSC_IN OSC_OUT
V
=1.8 V to 3.6 V
BAT
OSC32_IN OSC32_OUT
TAMPER-RTC/ ALARM/SECOND OUT
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels as AF
RX, TX, CTS, RTS, CK as AF
RX, TX, CTS, RT S, CK as AF
RX,TX as AF
RX,TX as AF
MOSI/SD, MISO SCK/CK, MCK, NSS/WS as AF
MOSI/SD, MISO
SCK/CK, MCK, NSS/WS as AF
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
USBDP/CAN_TX USBDM/CAN_RX
DAC_OUT1 as AF
DAC_OUT2 as AF
ai14666f
1. TA = –40 °C to +85 °C (suffix 6, see Table 74) or –40 °C to +105 °C (suffix 7, see Table 74), junction temperature up to 105 °C or 125 °C, respectively.
2. AF = alternate function on I/O port pin.
12/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC 40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
HSE = High Speed External clock signal
LSE = Low Speed External clock signal
LSI = Low Speed Internal clock signal
HSI = High Speed Internal clock signal
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16
AHB Prescaler /1, 2..512
/2
PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC Prescaler /2, 4, 6, 8
ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core, memory and DMA
USBCLK
to USB interface
USB
Prescaler
/1, 1.5
to ADC1, 2 or 3
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (20 bits)
Enable (6 bits)
Peripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
TIM1 & 8 timers
to TIM1 and TIM8
peripherals to APB2
Peripheral Clock
Enable (15 bits)
Enable (2 bit)
Peripheral Clock
48 MHz
72 MHz max
72 MHz
72 MHz max
36 MHz max
to RTC
PLLSRC
SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (4 bits)
SYSCLK
max
RTCCLK
RTCSEL[1:0]
TIMxCLK
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex free running clock
/2
TIM2,3,4,5,6,7
to TIM2,3,4,5,6 and 7
To SDIO AHB interface Peripheral clock enable
HCLK/2
to FSMC
FSMCCLK
to SDIO
Peripheral clock enable
Peripheral clock enable
to I2S3
to I2S2
Peripheral clock enable
Peripheral clock enable
I2S3CLK
I2S2CLK
SDIOCLK
ai14752b
If (APB1 prescaler =1) x1
else x2
If (APB2 prescaler =1) x1
else x2
FLITFCLK to Flash programming interface

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz.
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.
Doc ID 14611 Rev 8 13/130
Description STM32F103xC, STM32F103xD, STM32F103xE

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.
Low-density and high-density devices are an extension of the STM32F103x8/B medium­density devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I remaining fully compatible with the other members of the family.
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for the STM32F103x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

Table 3. STM32F103xx family

2
S and DAC while
Low-density devices Medium-density devices High-density devices
Pinout
16 KB
Flash
32 KB
Flash
(1)
64 KB
Flash
128 KB
Flash
256 KB
Flash
384 KB
Flash
512 KB
Flash
6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 RAM 64 KB RAM 64 KB RAM
144 5 × USARTs
100
2 × USARTs
64
2 × 16-bit timers 1 × SPI, 1 × I
48
CAN, 1 × PWM timer 2 × ADCs
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.
2. Ports F and G are not available in devices delivered in 100-pin packages.
2
C, USB,
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I
2
Cs, USB, CAN, 1 × PWM timer 2 × ADCs
4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I
2
Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO FSMC (100- and 144-pin packages
(2)
)
14/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
With its embedded ARM core, STM32F103xC, STM32F103xD and STM32F103xE performance line family is compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

Up to 512 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

Up to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.
Functionality overview:
The three FSMC interrupt lines are ORed in order to be connected to the NVIC
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
The targeted frequency, f
is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz
, is HCLK/2, so external access is at 36 MHz when HCLK
CLK
Doc ID 14611 Rev 8 15/130
Description STM32F103xC, STM32F103xD, STM32F103xE

2.3.6 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost­effective graphic applications using LCD modules with embedded controllers or high­performance solutions using external controllers with dedicated acceleration.

2.3.7 Nested vectored interrupt controller (NVIC)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.8 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

2.3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See Figure 2 for details on the clock tree.
16/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description

2.3.10 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from user Flash: you have an option to boot from any of two memory banks. By
default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.11 Power supply schemes

V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
V
SSA
, V
= 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
DDA
RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC
V
is used). V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
BAT
DDA
and V
must be connected to VDD and VSS, respectively.
SSA
registers (through power switch) when V
For more details on how to connect power pins, refer to Figure 12: Power supply scheme.

2.3.12 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to
Table 12: Embedded reset and power control block characteristics for the values of
V
POR/PDR
and V
PVD
is below a specified threshold, V
DD
drops below the V
.
DD
pins.
is not present.
DD
POR/PDR
threshold. An interrupt can be
PVD
threshold and/or when VDD/V
PVD
, without the need for an
is higher
DDA

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.
Doc ID 14611 Rev 8 17/130
Description STM32F103xC, STM32F103xD, STM32F103xE

2.3.14 Low-power modes

The STM32F103xC, STM32F103xD and STM32F103xE performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.15 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I and advanced-control timers TIMx, DAC, I
2
S, SDIO and ADC.
2
C, USART, general-purpose, basic

2.3.16 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 84 bytes of user application data when V They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
pin. The backup registers are forty-two 16-bit
BAT
power is not present.
DD
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a
18/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.17 Timers and watchdogs

The high-density STM32F103xx performance line devices include up to two advanced­control timers, up to four general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Ta bl e 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. High-density timer feature comparison
Timer
TIM1, TIM8
TIM2, TIM3, TIM4, TIM5
TIM6, TIM7
Counter
resolution
16-bit
16-bit
16-bit Up
Counter
type
Up,
down,
up/down
Up,
down,
up/down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA request
generation
Capture/compare
channels
Ye s 4 Ye s
Ye s 4 N o
Ye s 0 N o
Complementary
outputs
Advanced-control timers (TIM1 and TIM8)
The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.
Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.
Doc ID 14611 Rev 8 19/130
Description STM32F103xC, STM32F103xD, STM32F103xE
General-purpose timers (TIMx)
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one­pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

2.3.18 I²C bus

Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
20/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description

2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.20 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
All SPIs can be served by the DMA controller.

2.3.21 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

2.3.22 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.
2
S interfaces is/are configured in master

2.3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.
Doc ID 14611 Rev 8 21/130
Description STM32F103xC, STM32F103xD, STM32F103xE

2.3.24 Universal serial bus (USB)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

2.3.25 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.26 ADC (analog to digital converter)

Three 12-bit analog-to-digital converters are embedded into STM32F103xC, STM32F103xD and STM32F103xE performance line devices and each ADC shares up to 21 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.27 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
22/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Description
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
REF+
Eight DAC trigger inputs are used in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.3.28 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
< 3.6 V. The temperature sensor is internally
DDA

2.3.29 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.30 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
Doc ID 14611 Rev 8 23/130
Pinouts and pin descriptions STM32F103xC, STM32F103xD, STM32F103xE
AI14798b
V
DD_7
PC3PC2
PF6
V
DD_6
V
SS_4
PF8
H
V
DD_1
D PG13
PG14
PE6PE5
C
PG10
PG11
V
DD_5
PB8
NRST
B PG12PG15
PC15-
OSC32_OUT
PB9
A
87654321
V
BAT
OSC_IN
OSC_OUT
V
SS_5
G
F
E
PF7
PC0
PF0 PF1
PF2
V
SS_10
PG9PF4
PF3
V
SS_3
PF5
V
DD_8
V
DD_3
V
DD_4
V
SS_8
PE4
PB5
PB6
BOOT0 PB7
V
SS_11
PF10
PC1
V
DD_11VDD_10
PF9
109
K
J
V
SS_2
PD3
PD4
PD1
PC12
PC11
PD5
PD2 PD0
V
DD_9
V
SS_9
V
DD_2
PG1
PC5PA5 PE9
PB2/
BOOT1
PC4PA4
PE10
PG0PF13V
REF–
PE12V
SSA
PA1 PE13
PA0-WKUP
PD9
PD10
PG4
PD13
1211
PG8
PA10
NC
PA9
PA11
PA12
PC10
PC9 PA8
PC7
PC6
PC8
PD14
PG3
PG2
PD15
M
L
PF15
PB1PA7 PE7
PF12
PB0PA6
PE8
PF14PF11V
DDA
PE14V
REF+
PA3 PE15
PA2
PB10
PD8
PD12
PB11
PB12
PB14
PB15
PB13
PC13-
TAMPER-RTC
PE3 PE2 PE1 PE0
PB4
JTRST
PB3
JTDO
PD6 PD7
PA15 JTDI
PA14 JTCK
PA13
JTMS
PE11V
SS_6
V
SS_7VSS_1
PG7
PD11
PG5
PG6
PC14-
OSC32_IN

3 Pinouts and pin descriptions

Figure 3. STM32F103xC and STM32F103xE performance line BGA144 ballout

24/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Pinouts and pin descriptions
AI14601c
PE10
PC14-
OSC32_IN
PC5PA5
PC3
PB4
PE15
PB2
PC4PA4
H
PE14
PE11PE7
D PD4
PD3
PB8PE3
C
PD0
PC12
PE5
PB5
PC0
PE2
B PC11PD2
PC15-
OSC32_OUT
PB7
PB6
A
87654321
V
SS_5
OSC_IN
OSC_OUT V
DD_5
G
F
E
PC1
V
REF–
PC13-
TAMPER-RTC
PB9
PA15
PB3
PE4
PE1
PE0
V
SS_1
PD1PE6NRST
PC2
V
SS_3
V
SS_4
NCV
DD_3
V
DD_4
PB15
V
BAT
PD5
PD6
BOOT0 PD7
V
SS_2
V
SSA
PA1
V
DD_2
V
DD_1
PB14
PA0-WKUP
109
K
J
PD10
PD11
PA8
PA9
PA10
PA11
PA12
PC10
PA13
PA14
PC9
PC7
PC6
PD15
PC8
PD14
PE12
PB1PA7
PB11
PE8
PB0PA6
PB10
PE13PE9V
DDA
PB13
V
REF+
PA3
PB12
PA2
PD8
PD9
PD13
PD12

Figure 4. STM32F103xC and STM32F103xE performance line BGA100 ballout

Doc ID 14611 Rev 8 25/130
Pinouts and pin descriptions STM32F103xC, STM32F103xD, STM32F103xE
V
DD_3VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD_11VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD_10VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2
V
DD_2
PE3
V
SS_2
PE4
NC
PE5
PA13
PE6
PA12
VBAT
PA11
PC13-TAMPER-RTC
PA10
PC14-OSC32_IN
PA9
PC15-OSC32_OUT
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
V
DD_9
PF5
V
SS_9
V
SS_5
PG8
V
DD_5
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
OSC_IN
PD15
OSC_OUT
PD14
NRST
V
DD_8
PC0
V
SS_8
PC1
PD13
PC2
PD12
PC3
PD11
V
SSA
PD10
V
REF-
PD9
V
REF+
PD8
V
DDA
PB15
PA0-WKUP
PB14
PA1
PB13
PA2
PB12
PA3
V
SS_4
V
DD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS_6
V
DD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS_7
V
DD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
SS_1
V
DD_1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
3738394041424344454647484950515253545556575859
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
6162636465666768697071
26 27 28 29 30 31 32 33 34 35 36
83 82 81 80 79 78 77 76 75 74 73
ai14667

Figure 5. STM32F103xC and STM32F103xE performance line LQFP144 pinout

26/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Pinouts and pin descriptions
100999897969594939291908988878685848382818079787776
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100

Figure 6. STM32F103xC and STM32F103xE performance line LQFP100 pinout

Doc ID 14611 Rev 8 27/130
Pinouts and pin descriptions STM32F103xC, STM32F103xD, STM32F103xE
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46
45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2 3
4
5 6
7
8
9
10 11 12
13
14 15
16
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2
PC3 VSSA VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA1 5
PA 14
VDD_2 VSS_2 PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14392
Figure 7. STM32F103xC and STM32F103xE performance line
LQFP64 pinout
28/130 Doc ID 14611 Rev 8
STM32F103xC, STM32F103xD, STM32F103xE Pinouts and pin descriptions
Figure 8. STM32F103xC and STM32F103xE performance line
WLCSP64 ballout, ball side
87654321
A
V
DD_3
V
SS_3
B
C
D
E
F
G
H
PC13 NRST V
BAT
OSC_IN OSC_OUT PC2 PB8 PA13 PA10 PA9 PC9
PC0 V
PC1
V
DDA
V
PA3
SSA
REF+
PA1 PA5 PA8 PC8 PC7 PC6
PA0­WKUP
V
DD_4
PA2 PA4 PC4 PC5 PB0 PB2
PB7 PC12 PA15 PA12 PA11
V
SS_4
PB1 PB11 PB14 PB15
PA6 PA7 PB10 PB12 PB13
PC10PD2PB5 PB3BOOT0
BYPASS/
PA14PC11PB4PB6PB9PC15PC14
V
V
SS_1VDD_1
V
DD_2
SS_2
ai15460b
Doc ID 14611 Rev 8 29/130
Pinouts and pin descriptions STM32F103xC, STM32F103xD, STM32F103xE
LFBGA100
Pins
WLCSP64
LQFP64
(2)
Pin name
(1)
Typ e
LQFP100
LQFP144
Main
function
(after reset)
I / O Level
(3)
Default Remap

Table 5. High-density STM32F103xx pin definitions

LFBGA144
A3 A3 - - 1 1 PE2 I/O FT PE2 TRACECK/ FSMC_A23
A2 B3 - - 2 2 PE3 I/O FT PE3 TRACED0/FSMC_A19
B2 C3 - - 3 3 PE4 I/O FT PE4 TRACED1/FSMC_A20
B3 D3 - - 4 4 PE5 I/O FT PE5 TRACED2/FSMC_A21
B4 E3 - - 5 5 PE6 I/O FT PE6 TRACED3/FSMC_A22
C2 B2 C6 1 6 6 V
A1 A2 C8 2 7 7
B1 A1 B8 3 8 8
C1 B1 B7 4 9 9
PC13-TAMPER-
RTC
PC14-
OSC32_IN
PC15-
OSC32_OUT
BAT
(5)
SV
I/O PC13
I/O PC14
(5)
I/O PC15
(5)
BAT
(6)
(6)
(6)
TAMPER-RTC
OSC32_IN
OSC32_OUT
C3 - - - - 10 PF0 I/O FT PF0 FSMC_A0
C4 - - - - 11 PF1 I/O FT PF1 FSMC_A1
D4 - - - - 12 PF2 I/O FT PF2 FSMC_A2
E2 - - - - 13 PF3 I/O FT PF3 FSMC_A3
E3 - - - - 14 PF4 I/O FT PF4 FSMC_A4
E4 - - - - 15 PF5 I/O FT PF5 FSMC_A5
D2 C2 - - 10 16 V
D3 D2 - - 11 17 V
SS_5
DD_5
SV
SV
SS_5
DD_5
F3 - - - - 18 PF6 I/O PF6 ADC3_IN4/FSMC_NIORD
F2 - - - - 19 PF7 I/O PF7 ADC3_IN5/FSMC_NREG
G3 - - - - 20 PF8 I/O PF8 ADC3_IN6/FSMC_NIOWR
G2 - - - - 21 PF9 I/O PF9 ADC3_IN7/FSMC_CD
G1 - - - - 22 PF10 I/O PF10 ADC3_IN8/FSMC_INTR
D1 C1 D8 5 12 23 OSC_IN I OSC_IN
E1 D1 D7 6 13 24 OSC_OUT O OSC_OUT
F1 E1 C7 7 14 25 NRST I/O NRST
H1 F1 E8 8 15 26 PC0 I/O PC0 ADC123_IN10
H2 F2 F8 9 16 27 PC1 I/O PC1 ADC123_IN11
H3 E2 D6 10 17 28 PC2 I/O PC2 ADC123_IN12
H4 F3 - 11 18 29 PC3 I/O PC3 ADC123_IN13
J1 G1 E7 12 19 30 V
SSA
SV
SSA
Alternate functions
(4)
30/130 Doc ID 14611 Rev 8
Loading...
+ 100 hidden pages