ST ST1S14 User Manual

Up to 3 A step down switching regulator
Features
3 A DC output current
Operating input voltage from 5.5 V to 48 V
850 kHz internally fixed switching frequency
Power good open collector output
Current mode architecture
Embedded compensation network
Zero load current operation
Internal current limiting
Inhibit for zero current consumption
2 mA maximum quiescent current over
temperature range
250 mΩ typical R
Thermal shutdown
Application
Factory automation
Printers
DC-DC modules
High current LED drivers

Figure 1. Application schematic

DS(on)
ST1S14
HSOP8 - exposed pad
Description
The ST1S14 is a step down monolithic power switching regulator able to delivers up to 3 A DC current to the load depending on the application conditions. The high current level is also achieved thanks to an HSOP8 package with exposed frame, that allows to reduce the R approximately 40 °C/W. The output voltage can be set from 1.22 V. The device uses an internal N­channel DMOS transistor (with a typical R 200 mΩ) as switching element to minimize the size of the external components. The internal oscillator fixes the switching frequency at 850 kHz. Power good open collector output validates the regulated output voltage as soon as it reaches the regulation. Pulse by pulse current limit offers an effective constant current short circuit protection. Current foldback decreases overstress in persistent short circuit condition.
100nFC1 100nFC1
th(JA)
PGOODPGOOD
down to
DS(on)
of
VINVIN
GNDGND
10uFC210uF
U1 ST1S14U1 ST1S14
PGOOD
8
SW
2
4
FB
D1
D1
STPS3L60U
STPS3L60U
1
BOOT
7
VIN
5
EN2
3
EN1
C3
C2
100nFC3100nF
GND
6
L1 8.5uHL1 8.5uH
R3 47KR3 47K
R1 4.7KR1 4.7K
C4C4
R2
2.7KR22.7K
small signal
power plane
VOUTVOUT
C5
100uFC5100uF
GNDGND
October 2010 Doc ID 17977 Rev 1 1/42
www.st.com
42
Contents ST1S14
Contents
1 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Soft Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Additional features and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Maximum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Minimum output voltage over V
range . . . . . . . . . . . . . . . . . . . . . . . . . . 13
IN
6 Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 GCO(s) Control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1 Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1.1 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/42 Doc ID 17977 Rev 1
ST1S14 Contents
7.1.2 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1.3 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4.1 300 mV < VFB < 1.22 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4.2 V
< 300 mV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
FB
7.5 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Doc ID 17977 Rev 1 3/42
Pin settings ST1S14

1 Pin settings

1.1 Pin connection

Figure 2. Pin connection (top view)

EXPOSED PA D TO GND

1.2 Pin description

Table 1. Pin description

N Pin Description
1BOOT
2 PG Power good
3EN1
4 FB Feedback voltage
5 FB Enable pin active high
6 GND Ground pin
7V
8 SW Switching node
IN
E.p. Exposed pad must be connected to GND

1.3 Enable inputs

Table 2. Truth table

EN1 EN2 Device status
HL INH
HH INH
LL INH
Bootstrap capacitor for N-channel gate driver. Connect 100nF low ESR capacitor from BOOT pin to SW
Enable pin active low
Input supply pin
LH ON
4/42 Doc ID 17977 Rev 1
ST1S14 Electrical data

2 Electrical data

2.1 Maximum ratings

Table 3. Absolute maximum ratings

Symbol Parameter Value Unit
V
IN
V
EN1
V
EN2
PG Power good -0.3 to (V
BOOT Bootstrap pin -0.3 to 55 V
SW Switching node -1 to (VIN+0.3) V
V
FB
T
J
T
STG
T
LEAD
Power supply input voltage -0.3 to 52 V
Enable 1 voltage -0.3 to 7 V
Enable 2 voltage -0.3 to (VIN+0.3) V
Feedback voltage -0.3 to 3 V
Operating junction temperature range -40 to 150 °C
Storage temperature range -65 to 150 °C
Lead temperature (soldering 10 sec.) 260 °C

2.2 Thermal data

Table 4. Thermal data

Symbol Parameter Value Unit
R
th JA
Thermal resistance junction-ambient 40 °C/W
+0.3) V
IN

2.3 ESD protection

Table 5. ESD protection

Symbol Test condition Value Unit
HBM 4 kV
ESD
MM 500 V
Doc ID 17977 Rev 1 5/42
Electrical characteristics ST1S14

3 Electrical characteristics

All the population tested at TJ = 25 °C, VCC =12 V, V
EN1
= 5 V, V
=0 V unless otherwise
EN2
specified.
The specification is guaranteed from (-40 to +125) T
temperature range by design,
J
characterization and statistical correlation.

Table 6. Electrical characteristics

Symbol Parameter Test condition Min Typ Max Unit
Operating input
V
IN
R
DS(on)
I
SW
t
HICCUP
f
SW
T
ON MIN
T
OFF MIN
voltage range
MOSFET on resistance
=1A 0.2 0.4 Ω
I
SW
Maximum limiting current
Hiccup time 16 ms
Switching frequency 600 850 1000 kHz
Duty cycle
Minimum conduction time of the power element
Minimum conduction time of the external diode
5.5 48 V
3.7 4.5 5.2 A
(1)
(1)
(1)
75 90 120 ns
90 %
90 ns
DC characteristics
I
=0 A 1.202 1.22 1.239 V
V
I
FB
I
I
qst-by
Voltage feedback
FB
FB biasing current 50 nA
Quiescent current
q
Stand-by quiescent current
PG output voltage (open collector active)
LOAD
I
=10 mA to 3A 1.196 1.22 1.245 V
LOAD
V
=2V 1.3 2 mA
FB
V
=2V, VIN=48V 1.7 2.4 mA
FB
DEVICE OFF (see Ta b le 2 μ
V
falling edge
FB
I
= 6mA 0.4 V
SINK
6/42 Doc ID 17977 Rev 1
0.92* V
OUT
0.8*
V
OUT
V
V
Table 6. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Inhibit
V
I
V
I
Enable 1 levels
EN1
Enable 1 biasing
EN1
current
Enable 2 levels
EN2
Enable 2 biasing
EN2
current
Thermal shutdown
T
SHDWN
T
HYS
1. Parameter guaranteed by design
Thermal shutdown temperature
Thermal shutdown hysteresis
Device ON
=5.5V to 48V
V
IN
Device OFF
=5.5V to 48V
V
IN
=5V 1.6 2.5 μA
V
EN1
Device ON VIN=5.5V to 48V
1.5 V
1.5 V
Device OFF V
=5.5V to 48V
IN
V
=0V; V
EN1
V
=0V; V
EN1
=0V; VCC=V
V
EN1
=0V -1.0 -2.4 -3.7 μA
EN2
=12V 2.7 5.8 8.5 μA
EN2
=48V 3.0 6.0 9.0 μA
EN2
(1)
140 150 160 °C
(1)
15 °C
0.5 V
0.5 V
Doc ID 17977 Rev 1 7/42
Functional description ST1S14

4 Functional description

The ST1S14 is based on a “peak current mode”, constant frequency control. As a consequence the intersection between the error amplifier output and the sensed inductor current generates the control signal to drive the power switch.
The main internal blocks shown in the block diagram in Figure 3 are:
A fully integrated sawtooth oscillator with a typical frequency of 850 kHz
A transconductance error amplifier
An high side current sense amplifier to track the inductor current
A pulse width modulator (PWM) comparator and the circuitry necessary to drive the
internal power element
The soft start circuitry to decrease the inrush current at power-up
The current limitation circuit based on the pulse by pulse current protection with
frequency divider based on FB voltage and the HICCUP protection
The bootstrap circuitry to drive the embedded N-MOS switch.
A multi input inhibit block for stand-by operation.
A circuit to implement the thermal protection function.

Figure 3. Device block diagram

Slope
compensation
EA
SOFT START
REF
VC
1.21V
T
Comp
Rc
Cc
OSC
OTP
KR*I
Reg
L
MOSFET
CONTROL
LOGIC
ShutDown
BOOT
I_SEN
VIN
Boot Reg
Driver1
SW
Driver2Cp
PG
8/42 Doc ID 17977 Rev 1
EN2
EN1 GND
ST1S14 Functional description

4.1 Power supply and voltage reference

The internal regulator circuit consists of a start-up circuit, an internal voltage pre-regulator, the bandgap voltage reference and the bias block that provides current to all the blocks. The starter supplies the start-up current to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground). The pre-regulator block supplies the bandgap cell with a pre-regulated voltage that has a very low supply voltage noise sensitivity.

4.2 Voltages monitor

An internal block continuously senses the Vcc, V good, the regulator begins operating. There is also a hysteresis on the V

Figure 4. Internal circuit

4.3 Soft Start

The startup phase minimizes the inrush current and decreases the stress of the power components at the power up. The startup takes place when V threshold.
As shown in Figure 5, the soft start event is composed of three main phases:
and Vbg. If the monitored voltages are
ref
crosses the selected UVLO
IN
(UVLO).
CC
Phase 1: [V
<300 mV]
FB
The output capacitor is charged with a typical peak inductor current equal to 1.45 A and the nominal f
Phase 2: [VFB>300 mV & n
is divided by 5
SW
COUNT
<2816 clks]
A internal counter determines phase 2 time (see Figure 5).
The reference of the error amplifier is ramped in 44 steps (one step every 64 clks).
A low pass filter smooths each step to minimize output discontinuity. Considering the typical 850 kHz switching frequency, the phase two duration is 3.3 msec
Phase 3: [VFB>300 mV & n
COUNT
=2816 clks]
The reference of the embedded error amplifier is connected to the nominal reference voltage (1.222 typical) derived from the internal bandgap generator. The soft start phase ends at this time.
Doc ID 17977 Rev 1 9/42
Functional description ST1S14

Figure 5. soft start phases

PHASE 1
PHASE 2 PHASE 3
VREF_OUT
VFB
SHORT
2816 clks
During normal operation a new soft start cycle takes place in case of:
HICCUP mode current protection
thermal shutdown event
UVLO event
the device is driven in INH mode

Figure 6. Soft-start block diagram

VREF
Ctrl
S2
c
Vsaw
Vsense
64clks
S1
300mV
VREF_OUT
VFB
VFB
EA
400mV
Vsense
Logic
Iclamp
SHORT
10/42 Doc ID 17977 Rev 1
ST1S14 Functional description

4.4 Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.222 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage.
The error amplifier is internally compensated to minimize the size of the final application.

Table 7. Uncompensated error amplifier characteristics

Description Values
Transconductance 218 µS
Low frequency gain 93 dB
C
P
C
C
R
C
The error amplifier output is compared with the inductor current sense information to perform PWM control
24 pF
211 pF
200 kΩ

4.5 Inhibit function

The inhibit feature is used to set the device in standby mode according to Ta b l e 2 : Tr u t h
table. When the device is disabled, the power consumption is reduced to less than 40 µA.
The pin EN2 is also V
compatible.
IN

4.6 Thermal shutdown

The shutdown block generates a signal that turns OFF the power stage if the temperature of the chip goes higher than a fixed internal threshold (150±10 °C). The sensing element of the chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A hysteresis of approximately 15 °C keeps the device from turning ON and OFF continuously.
Doc ID 17977 Rev 1 11/42
Additional features and limitations ST1S14

5 Additional features and limitations

5.1 Maximum duty cycle

The bootstrap circuitry charges cycle by cycle the external bootstrap capacitor to generate a voltage higher than V
An internal linear regulator charges the C free wheeling diode during the switching activity. The internal logic implements a minimum OFF time of the high side switch (90 nsec typical) to prevent the bootstrap discharge at high duty cycle. As a consequence the ST1S14 can operate at a maximum duty cycle around 90% typical.
necessary to drive the internal N-channel power element.
IN
during the conduction time of the external
BOOT
The ST1S14 embeds the diode V

Figure 7. Bootstrap operation

REGULATOR
V
D1
V
DRIVER
V
REG-VD1+VD2
required for the bootstrap operation.
D1
V
IN
HS switch
C
BOOT
V
D2
C
OUT
12/42 Doc ID 17977 Rev 1
ST1S14 Additional features and limitations

5.2 Minimum output voltage over VIN range

The minimum regulated output voltage at a given input voltage is limited by the minimum conduction time of the power element, that is 90nsec typical for the ST1S14:
Equation 1
V
O_MINVIN
()VIND
V
MIN
T
ON_MIN
--------------------- -
V
IN
T
SW
== =
IN
90ns
------------------
1.18μs
which is plotted in Figure 14. The reference of the embedded error amplifier (1.22V) sets the minimum V
Figure 8. V
O_SET
O_MIN
at low VIN.
over input voltage range
Figure 8 shows the minimum output voltage over input voltage range to have constant
switching activity and a predictable output voltage ripple.
The regulator can anyway regulate the minimum input voltage over the entire input voltage range but, given the 90ns minimum conduction time of the power element, it will skip some pulses to keep the output voltage in regulation when Equation 1 is not satisfied.
This operation is not recommended at the nominal input voltage of the application mainly because it affects the output voltage ripple, but it is generally accepted during a line transient event.
Doc ID 17977 Rev 1 13/42
Loading...
+ 29 hidden pages