Silicon Laboratories SI5351A-B-C User Manual

0 (0)

Si5351A/B/C

I2C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK

GENERATOR + VCXO

Features

Generates up to 8 non-integer-related frequencies from 8 kHz to 160 MHz

I2C user definable configuration

Exact frequency synthesis at each output (0 ppm error)

Highly linear VCXO

Optional clock input (CLKIN)

Low output period jitter: 100 ps pp

Configurable spread spectrum selectable at each output

Operates from a low-cost, fixed frequency crystal: 25 or 27 MHz

Supports static phase offset

Programmable rise/fall time control

Glitchless frequency changes

Separate voltage supply pins: Core VDD: 2.5 or 3.3 V Output VDDO: 1.8, 2.5, or 3.3 V

Excellent PSRR eliminates external

power supply filtering

Very low power consumption

Adjustable output-output delay

Available in 3 packages types: 10-MSOP: 3 outputs 24-QSOP: 8 outputs 20-QFN (4x4 mm): 8 outputs

PCIE Gen 1 compliant

Supports HCSL compatible swing

Applications

HDTV, DVD/Blu-ray, set-top box

Residential gateways

Audio/video equipment, gaming

Networking/communication

Printers, scanners, projectors

Servers, storage

 

 

XO replacement

Description

The Si5351 is an I2C configurable clock generator that is ideally suited for replacing crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in cost-sensitive applications. Based on a PLL/VCXO + high resolution MultiSynth fractional divider architecture, the Si5351 can generate any frequency up to 160 MHz on each of its outputs with 0 ppm error. Three versions of the Si5351 are available to meet a wide variety of applications. The Si5351A generates up to 8 free-running clocks using an internal oscillator for replacing crystals and crystal oscillators. The Si5351B adds an internal VCXO and provides the flexibility to replace both free-running clocks and synchronous clocks. The Si5351B eliminates the need for higher cost, custom pullable crystals while providing reliable operation over a wide tuning range. The Si5351C offers the same flexibility but synchronizes to an external reference clock (CLKIN).

10-MSOP

24-QSOP

20-QFN

Ordering Information:

See page 66

Functional Block Diagram

 

 

Multi

XA

 

Multi

XA

 

 

Multi

XA

PLLA

 

 

 

 

Synth

 

 

Synth

 

 

 

Synth

 

 

0

OSC

PLL

0

 

OSC

PLLA

0

 

OSC

Multi

Multi

 

 

Multi

 

 

 

 

 

 

 

Synth

 

 

Synth

XB

 

 

Synth

 

 

XB

 

 

 

XB

PLLB

1

 

1

 

 

1

 

 

 

Multi

 

 

 

Multi

 

 

 

VC

VCXO

Synth

 

 

PLLB

Synth

 

 

 

2

CLKIN

 

2

 

 

 

 

 

Multi

 

 

Multi

 

 

Multi

 

 

 

 

 

I2C

 

 

 

Synth

 

 

 

Synth

 

Synth

 

 

 

 

 

 

 

N

 

 

3

 

 

 

3

SSEN

 

 

 

Multi

 

 

 

Multi

 

 

 

 

 

 

 

 

Si5351A

 

 

Synth

 

 

 

Synth

OEB

 

 

 

4

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

Multi

 

 

 

Multi

 

N = 2 or 7

 

 

 

Synth

 

 

 

Synth

 

 

 

 

5

 

 

 

5

 

 

 

 

 

Multi

 

 

 

Multi

 

 

 

 

 

Synth

 

 

 

Synth

 

 

 

 

 

6

I2C

 

 

6

 

 

 

I2C

 

Multi

 

 

Multi

 

 

 

 

 

Synth

 

 

 

Synth

 

 

 

SSEN

 

7

INTR

 

 

7

 

 

 

 

 

 

 

 

 

 

 

OEB

 

Si5351B

OEB

 

 

Si5351C

 

 

 

 

 

 

 

 

Preliminary Rev. 0.95 8/11

 

Copyright © 2011 by Silicon Laboratories

 

 

Si5351A/B/C

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.

Si5351A/B/C

2

Preliminary Rev. 0.95

Si5351A/B/C

TABLE OF CONTENTS

Section

Page

1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3.1. Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3.2. Synthesis Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

3.3. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.4. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3.5. Control Pins (OEB, SSEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 5. Configuring the Si5351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5.1. Writing a Custom Configuration to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5.2. Si5351 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.3. Replacing Crystals and Crystal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 5.4. Replacing Crystals, Crystal Oscillators, and VCXOs . . . . . . . . . . . . . . . . . . . . . . . .19

5.5. Replacing Crystals, Crystal Oscillators, and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . .19

5.6. Replacing a Crystal with a Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5.7. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

6. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

6.1. Power Supply Decoupling/Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.2. Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

6.3. External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

6.4. External Crystal Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.5. Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.6. Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

7. Register Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 8. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 9. Si5351A Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . .62 10. Si5351B Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . .63 11. Si5351C Pin Descriptions (20-Pin QFN, 24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . .64 12. Si5351A Pin Descriptions (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 13. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 14. Package Outline (24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 15. Package Outline (20-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 16. Package Outline (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Preliminary Rev. 0.95

3

Si5351A/B/C

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter

Symbol

Test Condition

Min

Typ

Max

Unit

 

 

 

 

 

 

 

Ambient Temperature

TA

 

–40

25

85

°C

Core Supply Voltage

VDD

 

3.0

3.3

3.60

V

 

 

 

 

 

 

2.25

2.5

2.75

V

 

 

 

 

 

 

 

 

 

 

 

 

 

1.71

1.8

1.89

V

 

 

 

 

 

 

 

Output Buffer Voltage

VDDOx

 

2.25

2.5

2.75

V

 

 

 

3.0

3.3

3.60

V

 

 

 

 

 

 

 

Notes:All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted. VDD and VDDOx can be operated at independent voltages.

Power supply sequencing for VDD and VDDOx requires that both voltage rails are powered at the same time.

Table 2. DC Characteristics

(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)

Parameter

Symbol

Test Condition

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

Enabled 3 outputs

22

35

mA

 

 

 

 

 

 

 

Core Supply Current

IDD

Enabled 8 outputs

27

45

mA

 

 

Power Down (PDN = VDD)

20

µA

Output Buffer Supply Current

IDDOx

CL = 5 pF

2.2

5

mA

(Per Output)*

 

ICLKIN

CLKIN, SDA, SCL

10

µA

Input Current

Vin < 3.6 V

 

 

 

 

 

 

IVC

VC

30

µA

Output Impedance

ZO

8 mA output drive current.

 

 

 

 

See "6. Design Consider-

85

 

 

ations" on page 21.

 

 

 

 

*Note: Output clocks less than or equal to 100 MHz.

4

Preliminary Rev. 0.95

Si5351A/B/C

Table 3. AC Characteristics

(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)

Parameter

Symbol

Test Condition

Min

Typ

Max

Unit

 

 

 

 

 

 

 

Power-up Time

TRDY

From VDD = VDDmin to valid

 

 

 

 

output clock, CL = 5 pF,

1

10

ms

 

 

fCLKn > 1 MHz

 

 

 

 

 

 

From OEB pulled low to valid

 

 

 

 

Output Enable Time

TOE

clock output, CL = 5 pF,

10

µs

 

 

fCLKn > 1 MHz

 

 

 

 

Output Phase Offset

PSTEP

 

333

ps/step

Spread Spectrum Frequency

SSDEV

Down spread

–0.1

–2.5

%

Deviation

Center spread

±0.1

±1.5

%

 

 

 

 

 

 

 

 

Spread Spectrum Modulation

SSMOD

 

30

31.5

33

kHz

Rate

 

VCXO Specifications (Si5351B only)

 

 

 

 

 

 

 

 

 

 

 

 

VCXO Control Voltage Range

Vc

 

0

VDD/2

VDD

V

VCXO Gain (configurable)

Kv

Vc = 10–90% of VDD, VDD = 3.3 V

18

150

ppm/V

VCXO Control Voltage Linearity

KVL

Vc = 10–90% of VDD

–5

+5

%

VCXO Pull Range

PR

VDD = 3.3 V*

±30

0

±240

ppm

(configurable)

 

 

 

 

 

 

 

VCXO Modulation Bandwidth

 

 

10

kHz

 

 

 

 

 

 

 

*Note: Contact Silicon Labs for 2.5 V VCXO operation.

Table 4. Input Clock Characteristics

(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)

Parameter

Symbol

Test Condition

Min

Typ

Max

Units

 

 

 

 

 

 

 

CLKIN Input Low Voltage

VIL

 

–0.1

0.3 x VDD

V

CLKIN Input High Voltage

VIH

 

0.7 x VDD

3.60

V

CLKIN Frequency Range

fCLKIN

 

10

100

MHz

Preliminary Rev. 0.95

5

Si5351A/B/C

Table 5. Output Clock Characteristics

(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)

Parameter

Symbol

Test Condition

Min

Typ

Max

Units

 

 

 

 

 

 

 

Frequency Range

FCLK

 

0.008

160

MHz

Load Capacitance

CL

 

5

15

pF

Duty Cycle

DC

Measured at VDD/2,

45

50

55

%

 

 

fCLK = 50 MHz

 

 

 

 

Rise/Fall Time

tr

20%–80%, CL = 5 pF,

0.5

1

1.5

ns

 

 

 

 

 

 

tf

Drive Strength = 8 mA

0.5

1

1.5

ns

 

 

Output High Voltage

VOH

CL = 5 pF

VDD – 0.6

V

Output Low Voltage

VOL

0.6

V

 

Period Jitter

JPER

Measured over 10k cycles

35

100

ps pk-pk

Period Jitter VCXO

JPER_VCXO

60

110

ps pk-pk

 

Cycle-to-Cycle Jitter

JCC

 

30

90

ps pk

 

 

Measured over 10k cycles

 

 

 

 

Cycle-to-Cycle Jitter

JCC_VCXO

50

95

ps pk

 

VCXO

 

RMS Phase Jitter

JRMS

12 kHz–20 MHz

3.5

11

ps rms

RMS Phase Jitter VCXO

JRMS_VCXO

8.5

18.5

ps rms

 

Table 6. Crystal Requirements1,2

Parameter

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

Crystal Frequency

fXTAL

25

27

MHz

Load Capacitance

CL

6

12

pF

Equivalent Series Resistance

rESR

150

 

Crystal Max Drive Level

dL

100

µW

Notes:

1.Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a combination of the internal 10 pF load capacitors in addition to external 2 pF load capacitors.

2.Refer to “AN551: Crystal Selection Guide” for more details.

6

Preliminary Rev. 0.95

Si5351A/B/C

Table 7. I2C Specifications (SCL,SDA)1

Parameter

Symbol

Test Condition

Standard Mode

Fast Mode

 

Unit

 

 

 

 

 

100 kbps

400 kbps

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

Max

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOW Level

VILI2C

 

 

 

–0.5

0.3 x VDDI2

–0.5

 

0.3 x VDDI2C

2

V

Input Voltage

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

HIGH Level

VIHI2C

 

 

 

0.7 x VDDI2

3.63

0.7 x VDDI2C

2

3.63

 

V

Input Voltage

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hysteresis of

 

 

 

 

0.1

 

 

V

Schmitt Trigger

VHYS

 

 

 

 

 

Inputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOW Level

 

VDDI2C2 = 2.5/3.3 V

0

0.4

0

 

0.4

 

V

Output Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(open drain or

VOLI2C2

 

 

 

 

 

 

 

 

 

 

open collector)

VDDI2C

2

= 1.8 V

0

 

0.2 x VDDI2C

V

at 3 mA Sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Current

III2C

 

 

 

–10

10

–10

 

10

 

µA

Capacitance for

CII2C

VIN = –0.1 to VDDI2C

4

 

4

 

pF

Each I/O Pin

 

 

I2C Bus

TTO

Timeout Enabled

25

35

25

 

35

 

ms

Timeout

 

 

Notes:

 

 

 

 

 

 

 

 

 

 

 

1. Refer to NXP’s UM10204 I2C-bus specification and user manual, revision 03, for further details, go to: www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf.

2. Only I2C pullup voltages (VDDI2C) of 2.25 to 3.63 V are supported.

Table 8. Thermal Characteristics

Parameter

Symbol

Test Condition

Package

Value

Unit

 

 

 

 

 

 

 

 

 

10-MSOP

131

°C/W

Thermal Resistance

JA

 

 

 

 

Still Air

24-QSOP

80

°C/W

Junction to Ambient

 

 

 

20-QFN

51

°C/W

 

 

 

 

 

 

 

 

 

10-MSOP

43

°C/W

Thermal Resistance

JC

 

 

 

 

Still Air

24-QSOP

31

°C/W

Junction to Case

 

 

 

20-QFN

16

°C/W

 

 

 

 

 

 

Preliminary Rev. 0.95

7

Si5351A/B/C

Table 9. Absolute Maximum Ratings1

Parameter

Symbol

Test Condition

Value

Unit

 

 

 

 

 

DC Supply Voltage

VDD_max

 

–0.5 to 3.8

V

 

VIN_CLKIN

CLKIN, SCL, SDA

–0.5 to 3.8

V

Input Voltage

VIN_VC

VC

–0.5 to (VDD+0.3)

V

 

VIN_XA/B

Pins XA, XB

–0.5 to 1.3 V

V

Junction Temperature

TJ

 

–55 to 150

°C

Soldering Temperature (Pb-free

TPEAK

 

260

°C

profile)2

 

Soldering Temperature Time at

TP

 

20–40

Sec

TPEAK (Pb-free profile)2

 

Notes:

1.Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2.The device is compliant with JEDEC J-STD-020.

8

Preliminary Rev. 0.95

Si5351A/B/C

2. Detailed Block Diagrams

XA

 

 

OSC

XB

 

SDA

I2C

SCL

Interface

 

VDD

Si5351A 3-Output

VDDO

PLL

MultiSynth

R0

CLK0

A

0

 

 

 

PLL

MultiSynth

R1

CLK1

B

1

 

 

 

 

MultiSynth

R2

CLK2

 

2

 

 

 

GND

 

 

10-MSOP

 

VDD

Si5351A 8-Output

 

 

 

 

 

 

MultiSynth

R0

VDDOA

 

PLL

CLK0

 

0

 

A

 

XA

MultiSynth

 

CLK1

 

R1

 

OSC

1

 

 

 

VDDOB

XB

PLL

MultiSynth

R2

B

CLK2

 

2

 

 

 

 

 

MultiSynth

R3

CLK3

 

 

3

 

A0

 

 

VDDOC

I2C

MultiSynth

R4

 

CLK4

SDA

4

Interface

 

 

MultiSynth

 

CLK5

SCL

 

R5

 

5

 

 

 

 

VDDOD

 

 

MultiSynth

R6

OEB

 

CLK6

Control

6

 

SSEN

Logic

MultiSynth

R7

CLK7

 

 

7

 

 

 

 

 

 

GND

20-QFN, 24-QSOP

 

Figure 1. Block Diagrams of 3-Output and 8-Output Si5351A Devices

Preliminary Rev. 0.95

9

Silicon Laboratories SI5351A-B-C User Manual

Si5351A/B/C

VDD

Si5351B

 

XA

 

PLL

 

OSC

 

 

XB

 

 

 

 

VCXO

VC

 

 

SDA

I2C

 

SCL

Interface

 

 

 

OEB

Control

 

 

 

SSEN

Logic

 

 

 

 

 

GND

 

 

VDD

XA

 

PLL

 

OSC

 

A

XB

 

 

 

PLL

CLKIN B

SDA

I2C

SCL Interface

INTR

OEB

Control

Logic

 

GND

MultiSynth

R0

VDDOA

CLK0

0

 

MultiSynth

R1

CLK1

1

 

 

VDDOB

MultiSynth

R2

CLK2

2

 

MultiSynth

R3

CLK3

3

 

 

VDDOC

MultiSynth

R4

CLK4

4

 

MultiSynth

R5

CLK5

5

 

 

VDDOD

MultiSynth

R6

CLK6

6

 

MultiSynth

R7

CLK7

7

 

 

 

20-QFN, 24-QSOP

 

 

Si5351C

 

MultiSynth

R0

VDDOA

CLK0

0

 

MultiSynth

R1

CLK1

1

 

 

VDDOB

MultiSynth

R2

CLK2

2

 

MultiSynth

R3

CLK3

3

 

 

VDDOC

MultiSynth

R4

CLK4

4

 

MultiSynth

R5

CLK5

5

 

 

VDDOD

MultiSynth

R6

CLK6

6

 

MultiSynth

R7

CLK7

7

 

 

 

20-QFN, 24-QSOP

Figure 2. Block Diagrams of Si5351B and Si5351C 8-Output Devices

10

Preliminary Rev. 0.95

Si5351A/B/C

3. Functional Description

The Si5351 is a versatile I2C programmable clock generator that is ideally suited for replacing crystals, crystal oscillators, VCXOs, PLLs, and buffers. A block diagram showing the general architecture of the Si5351 is shown in Figure 3. The device consists of an input stage, two synthesis stages, and an output stage.

The input stage accepts an external crystal (XTAL), a clock input (CLKIN), or a control voltage input (VC) depending on the version of the device (A/B/C). The first stage of synthesis multiplies the input frequencies to an high-frequency intermediate clock, while the second stage of synthesis uses high resolution MultiSynth fractional dividers to generate the desired output frequencies. Additional integer division is provided at the output stage for generating output frequencies as low as 8 kHz. Crosspoint switches at each of the synthesis stages allows total flexibility in routing any of the inputs to any of the outputs.

Because of this high resolution and flexible synthesis architecture, the Si5351 is capable of generating synchronous or free-running non-integer related clock frequencies at each of its outputs, enabling one device to synthesize clocks for multiple clock domains in a design.

 

Input

Synthesis

Synthesis

 

Stage

Stage 1

Stage 2

 

 

 

Multi

 

 

 

Synth

 

 

 

0

 

 

 

Multi

CLKIN

Div

 

Synth

PLL A

1

 

 

Multi

 

 

(SSC)

 

 

Synth

 

XA

PLL B

2

 

 

Multi

XTAL

OSC

(VCXO)

Synth

 

3

 

XB

 

Multi

 

 

Synth

 

 

 

4

 

 

 

Multi

 

 

 

Synth

VC

VCXO

 

5

 

Multi

 

 

 

Synth

 

 

 

6

 

 

 

Multi

 

 

 

Synth

 

 

 

7

 

Output

 

Stage

R0

VDDOA

CLK0

 

R1

CLK1

 

R2

VDDOB

CLK2

 

R3

CLK3

 

R4

VDDOC

CLK4

 

R5

CLK5

 

R6

VDDOD

CLK6

 

R7

CLK7

 

Figure 3. Si5351 Block Diagram

3.1. Input Stage

3.1.1. Crystal Inputs (XA, XB)

The Si5351 uses a fixed-frequency standard AT-cut crystal as a reference to the internal oscillator. The output of the oscillator can be used to provide a free-running reference to one or both of the PLLs for generating asynchronous clocks. The output frequency of the oscillator will operate at the crystal frequency, either 25 MHz or 27 MHz. The crystal is also used as a reference to the VCXO to help maintain its frequency accuracy.

Internal load capacitors (CL) are provided to eliminate the need for external components when connecting a crystal to the Si5351. Options for internal load capacitors are 6, 8, or 10 pF. Crystals with alternate load capacitance requirements are supported using additional external load capacitors as shown in Figure 4. Refer to application note AN551 for crystal recommendations.

CL XA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XB

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

Optional

 

CL

 

CL Selectable internal

Additional external

 

 

 

 

 

load capacitors

load capacitors

 

 

 

 

 

6 pF, 8 pF, 10 pF

 

 

(< 2 pF)

 

 

 

 

 

 

Figure 4. External XTAL with Optional Load Capacitors

Preliminary Rev. 0.95

11

Si5351A/B/C

3.1.2. External Clock Input (CLKIN)

The external clock input is used as a clock reference for the PLLs when generating synchronous clock outputs. CLKIN can accept any frequency from 10 to 100 MHz. A divider at the input stage limits the PLL input frequency to 30 MHz.

3.1.3. Voltage Control Input (VC)

The VCXO architecture of the Si5350B eliminates the need for an external pullable crystal. Only a standard, lowcost, fixed-frequency (25 or 27 MHz) AT-cut crystal is required.

The tuning range of the VCXO is configurable allowing for a wide variety of applications. Key advantages of the VCXO design in the Si5351 include high linearity, a wide operating range (linear from 10 to 90% of VDD), and reliable startup and operation. Refer to Table 3 on page 5 for VCXO specification details.

A unique feature of the Si5351B is its ability to generate multiple output frequencies controlled by the same control voltage applied to the VC pin. This replaces multiple PLLs or VCXOs that would normally be locked to the same reference. An example is illustrated in Figure 9 on page 15.

3.2. Synthesis Stages

The Si5351 uses two stages of synthesis to generate its final output clocks. The first stage uses PLLs to multiply the lower frequency input references to a high-frequency intermediate clock. The second stage uses highresolution MultiSynth fractional dividers to generate frequencies in the range of 1 MHz to 100 MHz. It is also possible to generate two unique frequencies up to 160 MHz on two or more of the outputs.

A crosspoint switch at the input of the first stage allows each of the PLLs to lock to the CLKIN or the XTAL input. This allows each of the PLLs to lock to a different source for generating independent free-running and synchronous clocks. Alternatively, both PLLs could lock to the same source. The crosspoint switch at the input of the second stage allows any of the MultiSynth dividers to connect to PLLA or PLLB. This flexible synthesis architecture allows any of the outputs to generate synchronous or non-synchronous clocks, with spread spectrum or without spread spectrum, and with the flexibility of generating non-integer related clock frequencies at each output.

Since the VCXO already generates a high-frequency intermediate clock, it is fed directly into the second stage of synthesis. The MultiSynth high-resolution dividers synthesize the VCXO center frequency to any frequency in the range of ~391 kHz to 160 MHz. The center frequency is then controlled (or pulled) by the VC input. An interesting feature of the Si5351 is that the VCXO output can be routed to more than one MultiSynth divider. This creates a VCXO with multiple output frequencies controlled from one VC input as shown in Figure 5.

Frequencies down to 8 kHz can be generated by applying the R divider at the output of the Multisynth (see Figure 5 below).

 

XA

XB

Fixed Frequency

 

 

 

Crystal (non-pullable)

 

 

OSC

 

Multi

R0

CLK0

 

 

Synth

 

 

 

0

 

 

Control

VC

 

Multi

R1

CLK1

Voltage

VCXO

 

Synth

 

 

1

 

 

 

 

 

Multi

R2

CLK2

 

 

 

Synth

 

 

 

2

 

 

The clock frequency generated from CLK0 is controlled by the VC input

Additional MultiSynths can be “linked” to the VCXO to generate additional clock frequencies

Figure 5. Using the Si5351 as a Multi-Output VCXO

3.3. Output Stage

An additional level of division (R) is available at the output stage for generating clocks as low as 8 kHz. All output drivers generate CMOS level outputs with separate output voltage supply pins (VDDOx) allowing a different voltage signal level (1.8, 2.5, or 3.3 V) at each of the four 2-output banks.

12

Preliminary Rev. 0.95

Si5351A/B/C

3.4. Spread Spectrum

Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its frequency, which effectively reduces the overall amplitude of its radiated energy. See “AN554: Si5350/51 PCB Layout Guide” for details. Note that spread spectrum is not available on clocks synchronized to PLLB or to the VCXO.

The Si5351 supports several levels of spread spectrum allowing the designer to chose an ideal compromise between system performance and EMI compliance.

Center

Reduced

Reduced

Amplitude

Amplitude

Frequency

and EMI

and EMI

Amplitude

 

 

fc

fc

fc

No Spread

Center Spread

Down Spread

Spectrum

 

 

 

Figure 6. Available Spread Spectrum Profiles

 

3.5. Control Pins (OEB, SSEN)

The Si5351 offers control pins for enabling/disabling clock outputs and spread spectrum.

3.5.1. Output Enable (OEB)

The output enable pin allows enabling or disabling outputs clocks. Output clocks are enabled when the OEB pin is held low, and disabled when pulled high. When disabled, the output state is configurable as disabled high, disabled low, or disabled in high-impedance.

The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading edge after OEB is pulled low. When OEB is pulled high, the clock is allowed to complete its full clock cycle before going into a disabled state.

3.5.2. Spread Spectrum Enable (SSEN)—Si5351A and Si5351B only

This control pin allows disabling the spread spectrum feature for all outputs that were configured with spread spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient method of evaluating the effect of using spread spectrum clocks during EMI compliance testing.

Preliminary Rev. 0.95

13

Si5351A/B/C

4. I2C Interface

Many of the functions and features of the Si5351 are controlled by reading and writing to the RAM space using the I2C interface. The following is a list of the common features that are controllable through the I2C interface. A summary of register functions is shown in Section 7.

Read Status Indicators

Loss of signal (LOS) for the CLKIN input Loss of lock (LOL) for PLLA and PLLB

Configuration of multiplication and divider values for the PLLs, MultiSynth dividers

Configuration of the Spread Spectrum profile (down or center spread, modulation percentage)

Control of the cross point switch selection for each of the PLLs and MultiSynth dividers

Set output clock options

Enable/disable for each clock output Invert/non-invert for each clock output

Output divider values (2n, n=1.. 7)

Output state when disabled (stop hi, stop low, Hi-Z) Output phase offset

The I2C interface operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps) or Fast-Mode (400 kbps) and supports burst data transfer with auto address increments.

The I2C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in Figure 7. Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the I2C specification.

 

VDD

>1k

>1k

 

Si5351

 

SCL

I2C Bus

SDA

 

4.7 k

INTR

 

I2C Address Select:

A0

Pull-up to VDD (A0 = 1)

 

Pull-down to GND (A0 = 0)

 

Figure 7. I2C and Control Signals

The 7-bit device (slave) address of the Si5351 consist of a 6-bit fixed address plus a user selectable LSB bit as shown in Figure 8. The LSB bit is selectable as 0 or 1 using the optional A0 pin which is useful for applications that require more than one Si5351 on a single I2C bus.

 

6

5

4

3

2

1

0

Slave Address

 

 

 

 

 

 

 

1

1

0

0

0

0

0/1

A0

Figure 8. Si5351 I2C Slave Address

Data is transferred MSB first in 8-bit words as specified by the I2C specification. A write command consists of a 7- bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 9. A write burst operation is also shown where every additional data word is written using to an auto-incremented address.

14

Preliminary Rev. 0.95

Si5351A/B/C

Write Operation – Single Byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

0

A

Reg Addr [7:0]

A

 

Data [7:0]

A

P

 

 

 

Write Operation - Burst (Auto Address Increment)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

0

A

Reg Addr [7:0]

A

 

Data [7:0]

A

Data [7:0]

A

P

 

 

 

 

 

 

 

 

 

Reg Addr +1

 

Fromslave to master

1 – Read

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 – Write

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frommaster to slave

A – Acknowledge (SDA LOW)

 

 

 

 

N– Not Acknowledge (SDAHIGH)

 

 

 

 

 

 

 

 

S – START condition

 

 

 

 

 

 

 

 

 

P – STOP condition

 

 

 

 

 

Figure 9. I2C Write Operation

A read operation is performed in two stages. A data write is used to set the register address, then a data read is performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in Figure 10.

ReadOperation – Single Byte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

0

A

Reg Addr [7:0]

A

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

1

A

Data [7:0]

 

N

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ReadOperation - Burst (Auto Address Increment)

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

0

A

Reg Addr [7:0]

A

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

Slv Addr [6:0]

1

A

Data [7:0]

 

A

Data [7:0]

N

P

 

 

 

 

 

 

 

 

 

Reg Addr +1

 

 

 

Fromslave to master

 

1 – Read

 

 

 

 

 

 

0 – Write

 

 

 

 

 

 

 

 

Frommaster to slave

 

A – Acknowledge (SDA LOW)

 

 

 

 

 

 

N– Not Acknowledge (SDAHIGH)

 

 

 

 

 

 

 

 

 

 

 

 

S – START condition

 

 

 

 

 

 

P – STOP condition

Figure 10. I2C Read Operation

AC and DC electrical specifications for the SCL and SDA pins are shown in Table 7. The timing specifications and timing diagram for the I2C bus is compatible with the I2C-Bus Standard. SDA timeout is supported for compatibility with SMBus interfaces.

Preliminary Rev. 0.95

15

Si5351A/B/C

5. Configuring the Si5351

The Si5351 is a highly flexible clock generator which is entirely configurable through its I2C interface. The device’s default configuration is stored in non-volatile memory (NVM) as shown in Figure 11. The NVM is a one time programmable memory (OTP) which can store a custom user configuration at power-up. This is a useful feature for applications that need a clock present at power-up (e.g., for providing a clock to a processor).

Power-Up

NVM

(OTP)

RAM

Default

Config

I2C

Figure 11. Si5351 Memory Configuration

During a power cycle the contents of the NVM are copied into random access memory (RAM), which sets the device configuration that will be used during normal operation. Any changes to the device configuration after power-up are made by reading and writing to registers in the RAM space through the I2C interface. A detailed register map is shown in Section "8. Register Descriptions" on page 25.

5.1. Writing a Custom Configuration to RAM

To simplify device configuration, Silicon Labs has released the ClockBuilder Desktop. The software serves two purposes: to configure the Si5351 with optimal configuration based on the desired frequencies and to control the EVB when connected to a host PC.

The optimal configuration can be saved from the software in text files that can be used in any system, which configures the device over I2C. ClockBuilder Desktop can be downloaded from www.silabs.com/ClockBuilder and runs on Windows XP, Windows Vista, and Windows 7.

Once the configuration file has been saved, the device can be programmed via I2C by following the steps shown in Figure 12.

16

Preliminary Rev. 0.95

Si5351A/B/C

Register

Map

Use ClockBuilder Desktop v3.1 or later

Disable Outputs

Set CLKx_DIS high; Reg. 3 = 0xFF

Powerdown all output drivers Reg. 16, 17, 18, 19, 20, 21, 22, 23 =

0x80

Set interrupt masks (see register 2 description)

Write new configuration to device using the contents of the register map

generated by ClockBuilder Desktop. This step also powers up the output drivers.

(Registers 15-92 and 149-170)

Apply PLLA and PLLB soft reset

Reg. 177 = 0xAC

Enable desired outputs (see Register 3)

Figure 12. I2C Programming Procedure

Preliminary Rev. 0.95

17

Si5351A/B/C

5.2. Si5351 Application Examples

The Si5351 is a versatile clock generator which serves a wide variety of applications. The following examples show how it can be used to replace crystals, crystal oscillators, VCXOs, and PLLs.

5.3. Replacing Crystals and Crystal Oscillators

Using an inexpensive external crystal, the Si5351A can generate up to 8 different free-running clock frequencies for replacing crystals and crystal oscillators. A 3-output version packaged in a small 10-MSOP is also available for applications that require fewer clocks. An example is shown in Figure 13.

 

XA

 

Multi

CLK0

125 MHz

Ethernet

 

 

 

Synth

 

 

PHY

27 MHz

OSC

PLL

0

 

 

CLK1

 

 

Multi

48 MHz

USB

 

 

 

 

 

 

Synth

 

 

Controller

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

Multi

CLK2

28.322 MHz

HDMI

 

 

 

Synth

 

 

 

 

 

 

Port

 

 

 

2

CLK3

 

 

 

 

Multi

74.25 MHz

 

 

 

 

Synth

 

 

 

 

 

 

3

CLK4

 

 

 

 

 

Multi

74.25/1.001 MHz

 

 

 

 

Synth

 

 

 

 

 

 

4

CLK5

 

Video/Audio

 

 

 

Multi

24.576 MHz

Processor

 

 

 

Synth

 

 

 

 

 

 

5

 

 

 

 

 

 

Multi

CLK6

22.5792 MHz

 

 

 

 

Synth

 

 

 

 

 

 

6

 

 

 

 

 

 

Multi

CLK7

33.3333 MHz

CPU

 

Si5351A

 

Synth

 

 

 

 

7

 

 

 

 

 

 

 

 

 

Note: Si5351A replaces crystals, XOs, and PLLs.

Figure 13. Using the Si5351A to Replace Multiple Crystals, Crystal Oscillators, and PLLs

18

Preliminary Rev. 0.95

Si5351A/B/C

5.4. Replacing Crystals, Crystal Oscillators, and VCXOs

The Si5351B combines free-running clock generation and a VCXO in a single package for cost sensitive video applications. An example is shown in Figure 14.

 

 

 

 

 

Free-running

 

 

 

 

 

 

Clocks

 

XA

 

 

Multi

CLK0

125 MHz

Ethernet

 

 

 

 

PHY

 

 

 

Synth

 

 

 

27 MHz

OSC

PLL

0

CLK1

 

 

Multi

 

 

XB

 

 

48 MHz

USB

 

 

 

 

 

 

Synth

 

 

Controller

 

 

 

1

 

 

 

 

 

Multi

CLK2

28.322 MHz

 

 

 

 

Synth

 

 

 

 

 

 

 

HDMI

 

 

 

2

 

 

 

 

 

 

 

 

Port

VC

 

 

Multi

CLK3

74.25 MHz

 

 

 

Synth

 

 

 

 

 

VCXO

3

CLK4

 

 

 

 

Multi

 

 

 

 

 

74.25/1.001 MHz

Video/Audio

 

 

 

Synth

 

 

Processor

 

 

 

4

 

 

 

 

 

CLK5

 

 

 

 

 

Multi

24.576 MHz

 

 

 

 

Synth

 

 

 

 

Si5351B

 

5

 

Synchronous

 

 

 

 

 

 

 

 

 

 

 

Clocks

 

Note: FBW = 10 kHz

 

 

 

 

 

 

Figure 14. Using the Si5351B to Replace Crystals, Crystal Oscillators, VCXOs, and PLLs

5.5. Replacing Crystals, Crystal Oscillators, and PLLs

The Si5350C generates synchronous clocks for applications that require a fully integrated PLL instead of a VCXO. Because of its dual PLL architecture, the Si5351C is capable of generating both synchronous and free-running clocks. An example is shown in Figure 15.

 

 

 

 

 

Free-running

 

 

 

 

 

 

Clocks

 

XA

 

 

Multi

CLK0

125 MHz

Ethernet

 

 

 

 

PHY

 

 

 

Synth

 

 

25 MHz

OSC

PLL

0

CLK1

 

 

Multi

 

 

XB

 

 

48 MHz

USB

 

 

 

 

 

 

Synth

 

 

Controller

 

 

 

1

 

 

 

 

 

Multi

CLK2

28.322 MHz

 

 

 

 

Synth

 

 

 

 

 

 

 

HDMI

 

 

 

2

 

 

 

 

 

 

 

 

Port

 

 

 

Multi

CLK3

74.25 MHz

 

CLKIN

 

 

Synth

 

 

 

54 MHz

 

PLL

3

CLK4

 

 

 

Multi

74.25/1.001 MHz

Video/Audio

 

 

 

 

 

 

Synth

 

 

Processor

 

 

 

4

 

 

 

 

 

CLK5

 

 

 

 

 

Multi

24.576 MHz

 

 

 

 

Synth

 

 

 

 

Si5351C

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synchronous

 

 

 

 

 

 

Clocks

 

Figure 15. Using the Si5351C to Replace Crystals, Crystal Oscillators, and PLLs

Preliminary Rev. 0.95

19

Si5351A/B/C

5.6. Replacing a Crystal with a Clock

The Si5351 can be driven with a clock signal through the XA input pin.

VIN = 1 VPP

 

 

25/27 MHz

XA

 

 

 

 

0.1 µF

OSC

 

XB

 

Note: Float the XB input while driving the XA input with a clock

PLLA

Multi

Synth

 

0

 

Multi

 

Synth

 

1

PLLB

 

 

Multi

 

Synth

 

N

Figure 16. Si5351 Driven by a Clock Signal

5.7. HCSL Compatible Outputs

The Si5351 can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).

The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair must also be inverted to generate a differential pair. See register setting CLKx_INV.

PLLA

OSC

PLLB

Multi

Synth

0

Multi

Synth

1

Multi

Synth

N

ZO = 70

R1

 

0

511

 

 

240

R2

ZO = 70

R1

 

0

511

 

 

240

R2

Note: The complementary -180 degree out of phase output clock is generated using the INV function

HCSL CLKIN

Figure 17. Si5350C Output is HCSL Compatible

20

Preliminary Rev. 0.95

Si5351A/B/C

6. Design Considerations

The Si5351 is a self-contained clock generator that requires very few external components. The following general guidelines are recommended to ensure optimum performance. Refer to “AN554: Si5350/51 PCB Layout Guide” for additional layout recommendations.

6.1. Power Supply Decoupling/Filtering

The Si5351 has built-in power supply filtering circuitry and extensive internal Low Drop Out (LDO) voltage regulators to help minimize the number of external bypass components. All that is recommended is one 0.1 µF decoupling capacitor per power supply pin. This capacitor should be mounted as close to the VDD and VDDOx pins as possible without using vias.

6.2. Power Supply Sequencing

The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow flexibility in output signal levels. If a minimum output-to-output skew is important, then all VDDOx must be applied before VDD. Unused VDDOx pins should be tied to VDD.

6.3. External Crystal

The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more details.

6.4. External Crystal Load Capacitors

The Si5351 provides the option of using internal and external crystal load capacitors. If internal load capacitance is insufficient, capacitors of value < 2 pF may be used to increased equivalent load capacitance. If external load capacitors are used, they should be placed as close to the XA/XB pads as possible. See AN554 for more details.

6.5. Unused Pins

Unused voltage control pin should be tied to GND. Unused CLKIN pin should be tied to GND.

Unused XA/XB pins should be left floating. Refer to "5.6. Replacing a Crystal with a Clock" on page 20 when using XA as a clock input pin.

Unused output pins (CLK0–CLK7) should be left floating. Unused VDDOx pins should be tied to VDD.

Preliminary Rev. 0.95

21

Si5351A/B/C

6.6. Trace Characteristics

The Si5351A/B/C features various output current drives ranging from 2 to 8 mA (default). It is recommended to configure the trace characteristics as shown in Figure 18 when an output drive setting of 8 mA is used.

ZO = 85 ohms

R = 0 ohms

CLK

(Optional resistor for EMI management)

Length = No Restrictions

Figure 18. Recommended Trace Characteristics with 8 mA Drive Strength Setting

Note: Jitter is only specified at 6 and 8 mA drive strength.

22

Preliminary Rev. 0.95

Loading...
+ 50 hidden pages