The DE2-70 package contains all components needed to use the DE2-70 board in conjunction with
a computer that runs the Microsoft Windows software.
1.1 Package Contents
Figure 1.1 shows a photograph of the DE2-70 package.
Figure 1.1. The DE2-70 package contents.
1
DE2-70 User Manual
The DE2-70 package includes:
• The DE2-70 board
• USB Cable for FPGA programming and control
• DE2-70 System CD containing the DE2-70 documentation and supporting materials,
including the User Manual, the Control Panel utility, reference designs and demonstrations,
device datasheets, tutorials, and a set of laboratory exercises
• CD-ROMs containing Altera’s Quartus® II Web Edition and the Nios® II Embedded Design
Suit Evaluation Edition software.
• Bag of six rubber (silicon) covers for the DE2-70 board stands. The bag also contains some
extender pins, which can be used to facilitate easier probing with testing equipment of the
board’s I/O expansion headers
• Clear plastic cover for the board
• 12V DC wall-mount power supply
1.2 The DE2-70 Board Assembly
To assemble the included stands for the DE2-70 board:
• Assemble a rubber (silicon) cover, as shown in Figure 1.2, for each of the six copper stands
on the DE2-70 board
• The clear plastic cover provides extra protection, and is mounted over the top of the board
by using additional stands and screws
Figure 1.2. The feet for the DE2-70 board.
2
1.3 Getting Help
Here are the addresses where you can get help if you encounter problems:
• Altera Corporation
101 Innovation Drive
San Jose, California, 95134 USA
Email: university@altera.com
• T erasic Technologies
No. 356, Sec. 1, Fusing E. Rd.
Jhubei City, HsinChu County, Taiwan, 302
Email: support@terasic.com
Web: DE2-70.terasic.com
DE2-70 User Manual
3
DE2-70 User Manual
Chapter 2
Altera DE2-70 Board
This chapter presents the features and design characteristics of the DE2-70 board.
2.1 Layout and Components
A photograph of the DE2-70 board is shown in Fi gure 2.1. It depicts the layout of the board and
indicates the location of the connectors and key components.
The DE2-70 board has many features that allow the user to implement a wide range of designed
circuits, from simple circuits to various multimedia projects.
The following hardware is provided on the DE2-70 board:
• Altera Cyclone® II 2C70 FPGA device
• Altera Serial Configuration device - EPCS16
• USB Blaster (on board) for programming and user API control; both JTAG and Active Serial
4
(AS) programming modes are supported
• 2-Mbyte SSRAM
• Two 32-Mbyte SDRAM
• 8-Mbyte Flash memory
• SD Card socket
• 4 pushbutton switches
• 18 toggle switches
• 18 red user LEDs
• 9 green user LEDs
• 50-MHz oscillator and 28.63-MHz oscillator for clock sources
• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks
• VGA DAC (10-bit high-speed triple DACs) with VGA-out connector
• 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector
• 10/100 Ethernet Controller with a connector
DE2-70 User Manual
• USB Host/Slave Controller with USB type A and type B connectors
• RS-232 transceiver and 9-pin connector
• PS/2 mouse/keyboard connector
• IrDA transceiver
• 1 SMA connector
• Two 40-pin Expansion Headers with diode protection
In addition to these hardware features, the DE2-70 board has software support for standard I/O
interfaces and a control panel facility for accessing various components. Also, software is provided
for a number of demonstrations that illustrate the advanced capabilities of the DE2-70 board.
In order to use the DE2-70 board, the user has to be familiar with the Quartus II software. The
necessary knowledge can be acquired by reading the tutorials Getting Started with Altera’s DE2-70 Board and Quartus II Introduction (which exists in three versions based on the design entry method
used, namely Verilog, VHDL or schematic entry). These tutorials are provided in the directory
DE2_70_tutorials on the DE2-70 System CD-ROM that accompanies the DE2-70 board and can
also be found on Altera’s DE2-70 web pages.
2.2 Block Diagram of the DE2-70 Board
Figure 2.2 gives the block diagram of the DE2-70 board. To provide maximum flexibility for the
user, all connections are made through the Cyclone II FPGA device. Thus, the user can configure
the FPGA to implement any system design.
5
DE2-70 User Manual
Figure 2.2. Block diagram of the DE2-70 board.
Following is more detailed information about the blocks in Figure 2.2:
Cyclone II 2C70 FPGA
• 68,416 LEs
• 250 M4K RAM blocks
• 1,152,000 total RAM bits
• 150 embedded multipliers
• 4 PLLs
• 622 user I/O pins
• FineLine BGA 896-pin package
Serial Configuration device and USB Blaster circuit
• Altera’s EPCS16 Serial Configuration device
• On-board USB Blaster for programming and user API control
• JTAG and AS programming modes are supported
6
SSRAM
• 2-Mbyte standard synchronous SRAM
• Organized as 512K x 36 bits
• Accessible as memory for the Nios II processor and by the DE2-70 Control Panel
SDRAM
• Two 32-Mbyte Single Data Rate Synchronous Dynamic RAM memory chips
• Organized as 4M x 16 bits x 4 banks
• Accessible as memory for the Nios II processor and by the DE2-70 Control Panel
Flash memory
• 8-Mbyte NOR Flash memory
• Support both byte and word mode access
DE2-70 User Manual
• Accessible as memory for the Nios II processor and by the DE2-70 Control Panel
SD card socket
• Provides SPI and 1-bit SD mode for SD Card access
• Accessible as memory for the Nios II processor with the DE2-70 SD Card Driver
Pushbutton switches
• 4 pushbutton switches
• Debounced by a Schmitt trigger circuit
• Normally high; generates one active-low pulse when the switch is pressed
Toggle switches
• 18 toggle switches for user inputs
• A switch causes logic 0 when in the DOWN (closest to the edge of the DE2-70 board)
position and logic 1 when in the UP position
Clock inputs
• 50-MHz oscillator
• 28.63-MHz oscillator
• SMA external clock input
7
DE2-70 User Manual
Audio CODEC
• Wolfson WM8731 24-bit sigma-delta audio CODEC
• Line-level input, line-level output, and microphone input jacks
• Sampling frequency: 8 to 96 KHz
• Applications for MP3 players and recorders, PDAs, smart phones, voice recorders, etc.
VGA output
• Uses the ADV7123 240-MHz triple 10-bit high-speed video DAC
• With 15-pin high-density D-sub connector
• Supports up to 1600 x 1200 at 100-Hz refresh rate
• Can be used with the Cyclone II FPGA to i mplement a high-performance TV Encoder
NTSC/PAL/ SECAM TV decoder circuit
• Uses two ADV7180 Multi-format SDTV Video Decoders
• Supports worldwide NTSC/PAL/SECAM color demodulation
• One 10-bit ADC, 4X over-sampling for CVBS
• Supports Composite Video (CVBS) RCA jack input
• Supports digital output formats : 8-bit ITU-R BT.656 YCrCb 4:2:2 output + HS, VS, and
FIELD
• Applications: DVD recorders, LCD TV, Set-top boxes, Digital TV, Portable video devices,
and TV PIP (picture in picture) display.
10/100 Ethernet controller
• Integrated MAC and PHY with a general processor interface
• Supports 100Base-T and 10Base-T applications
• Supports full-duplex operation at 10 Mb/s and 100 Mb/s, with auto-MDIX
• Fully compliant with the IEEE 802.3u Specification
• Supports IP/TCP/UDP checksum generation and checking
• Supports back-pressure mode for half-duplex mode flow control
USB Host/Slave controller
• Complies fully with Universal Serial Bus Specification Rev. 2.0
• Supports data transfer at full-speed and low-speed
• Supports both USB host and device
• Two USB ports (one type A for a host and one type B for a device)
• Provides a high-speed parallel interface to most available processors; supports Nios II with a
Terasic driver
• Supports Programmed I/O (PIO) and Direct Memory Access (DMA)
8
Serial ports
• One RS-232 port
• One PS/2 port
• DB-9 serial connector for the RS-232 port
• PS/2 connector for connecting a PS2 mouse or keyboard to the DE2-70 board
IrDA transceiver
• Contains a 115.2-kb/s infrared transceiver
• 32 mA LED drive current
• Integrated EMI shield
• IEC825-1 Class 1 eye safe
• Edge detection input
Two 40-pin expansion headers
DE2-70 User Manual
• 72 Cyclone II I/O pins, as well as 8 power and ground lines, are brought out to two 40-pin
expansion connectors
• 40-pin header is designed to accept a standard 40-pin ribbon cable used for IDE hard drives
• Diode and resistor protection is provided
2.3 Power-up the DE2-70 Board
The DE2-70 board comes with a preloaded configuration bit stream to demonstrate some features of
the board. This bit stream also allows users to see quickly if the board is working properly. To
power-up the board perform the following steps:
1. Connect the provided USB cable from the host computer to the USB Blaster connector on
the DE2-70 board. For communication between the host and the DE2-70 board, it is
necessary to install the Altera USB Blaster driver software. If this driver is not already
installed on the host computer, it can be installed as explained in the tutorial Getting
Started with Altera's DE2-70 Board.This tutorial is available in the directory
DE2_70_tutorials on the DE2-70 System CD-ROM.
2. Connect the 12V adapter to the DE2-70 board
3. Connect a VGA monitor to the VGA port on the DE2-70 board
4. Connect your headset to the Line-out audio port on the DE2-70 board
5. Turn the RUN/PROG switch on the left edge of the DE2-70 board to RUN position; the
PROG position is used only for the AS Mode programming
6. Turn the power on by pressing the ON/OFF switch on the DE2-70 board
9
DE2-70 User Manual
At this point you should observe the following:
• All user LEDs are flashing
• All 7-segment displays are cycling through the numbers 0 to F
• The LCD display shows Welcome to the Altera DE2-70
• The VGA monitor displays the image shown in Figure 2.3.
• Set the toggle switch SW17 to the DOWN position; you should hear a 1-kHz sound
• Set the toggle switch SW17 to the UP position and connect the output of an audio player to
the Line-in connector on the DE2-70 board; on your headset you should hear the music
played from the audio player (MP3, PC, iPod, or the like)
• You can also connect a microphone to the Microphone-in connector on the DE2-70 board;
your voice will be mixed with the music played from the audio player
Figure 2.3. The default VGA output pattern.
10
DE2-70 User Manual
Chapter 3
DE2-70 Control Panel
The DE2-70 board comes with a Control Panel facility that allows users to access various
components on the board from a host computer. The host computer communicates with the board
through an USB connection. The facility can be used to verify the functionality of components on
the board or be used as a debug tool while developing RTL code.
This chapter first presents some basic functions of the Control Panel, then describes its structure in
block diagram form, and finally describes its capabilities.
.
3.1 Control Panel Setup
The Control Panel Software Utility is located in the “DE2_70_control_pane/SW” folder in the
DE2-70 System CD-ROM. To install it, just copy the whole folder to your host computer. Launch
the control panel by executing the “DE2_70_Control_Panel.exe”.
Specific control codes should be downloaded to your FPGA board before the control panel can
request it to perform required tasks. The control codes include one .sof file and one .elf file. To
download the codes, just click the “Download Code” button on the program. The program will call
Quartus II and Nios II tools to download the control codes to the FPGA board through
USB-Blaster[USB-0] connection. The .sof file is downloaded to FPGA. The .elf file is downloaded
to either SDRAM-U2 or SSRAM, according to the user option.
To activate the Control Panel, perform the following steps:
1. Make sure Quartus II and NIOS II are installed successfully on your PC.
2. Connect the supplied USB cable to the USB Blaster port, connect the 12V power supply,
and turn the power switch ON
3. Set the RUN/PROG switch to the RUN position
4. Start the executable DE2_70_control_panel.exe on the host computer. The Control Panel
user interface shown in Figure 3.1 will appear.
5. Select the target memory, SDRAM-U2 or SSRAM, on the control panel. Note. The .elf file
will be downloaded to the target memory and the memory will be read-only in later
memory access operation.
6. Click Download Code button. Note, the Control Panel will occupy the USB port until you
11
DE2-70 User Manual
close that port; you cannot use Quartus II to download a configuration file into the FPGA
until you close the USB port.
7. The Control Panel is now ready for use; experiment by setting the value of some LEDs
display and observing the result on the DE2-70 board.
Figure 3.1. The DE2-70 Control Panel.
The concept of the DE2-70 Control Panel is illustrated in Figure 3.2. The “Control Codes” that
performs the control functions is implemented in the FPGA board. It communicates with the
Control Panel window, which is active on the host computer, via the USB Blaster link. The
graphical interface is used to issue commands to the control codes. It handles all requests and
performs data transfers between the computer and the DE2-70 board.
12
DE2-70 User Manual
7-SEG Display
16x2
LCD
SDRAM
Flash
USB
Blaster
Control
Codes
SSRAM
PS/2
USB
Device
SD Card
Soket
LEDsLEDs
Figure 3.2. The DE2-70 Control Panel concept.
The DE2-70 Control Panel can be used to light up LEDs, change the values displayed on 7-segment
and LCD displays, monitor buttons/switches status, read/write the SDRAM, SSRAM and Flash
Memory, monitor the status of an USB mouse, read data from a PS/2 keyboard, and read SD-CARD
specification information. The feature of reading/writing a word or an entire file from/to the Flash
Memory allows the user to develop multimedia applications (Flash Audio Player, Flash Picture
Viewer) without worrying about how to build a Memory Programmer.
3.2 Controlling the LEDs, 7-Segment Displays and LCD Display
A simple function of the Control Panel is to allow setting the values displayed on LEDs, 7-segment
displays, and the LCD character display.
Choosing the LED tab leads to the window in Figure 3.3. Here, you can directly turn the individual
LEDs on or off by selecting them or click “Light All” or “Unlight All”.
13
DE2-70 User Manual
Figure 3.3. Controlling LEDs.
Choosing the 7-SEG tab leads to the window in Figure 3.4. In the tab sheet, directly use the
Up-Down control and Dot Check box to specified desired patterns, the 7-SEG patterns on the board
will be updated immediately.
Figure 3.4. Controlling 7-SEG display.
14
DE2-70 User Manual
Choosing the LCD tab leads to the window in Figure 3.5. Text can be written to the LCD display by
typing it in the LCD box and pressing the Set button.
Figure 3.5. Controlling LEDs and the LCD display.
The ability to set arbitrary values into simple display devices is not needed in typical design
activities. However, it gives the user a simple mechanism for verifying that these devices are
functioning correctly in case a malfunction is suspected. Thus, it can be used for troubleshooting
purposes.
3.3 Switches and Buttons
Choosing the Button tab leads to the window in Figure 3.6. The function is designed to monitor the
status of switches and buttons in real time and show the status in a graphical user interface. It can be
used to verify the functionality of the switches and buttons.
Press the Start button to start button/switch status monitoring process, and button caption is
changed from Start to Stop. In the monitoring process, the status of buttons and switches on the
board is shown in the GUI window and updated in real time. Press Stop to end the monitoring
process.
15
DE2-70 User Manual
Figure 3.6. Monitoring switches and buttons.
The ability to check the status of button and switch is not needed in typical design activities.
However, it provides users a simple mechanism for verifying if the buttons and switches are
functioning correctly. Thus, it can be used for troubleshooting purposes.
3.4 SDRAM/SSRAM/Flash Controller and Programmer
The Control Panel can be used to write/read data to/from the SDRAM, SSRAM, and FLASH chips
on the DE2-70 board. We will describe how the SDRAM-U1 may be accessed; the same approach
is used to access the SDRAM-U2, SRAM, and FLASH. Click on the Memory tab and select
“SDRAM-U1” to reach the window in Figure 3.7. Please note the target memory chosen for
storing .elf file is read-only. Also, please erase the flash before writing data to it.
16
DE2-70 User Manual
Figure 3.7. Accessing the SDRAM-U1.
A 16-bit word can be written into the SDRAM by entering the address of the desired location,
specifying the data to be written, and pressing the Write button. Contents of the location can be
read by pressing the Read button. Figure 3.7 depicts the result of writing the hexadecimal value
06CA into location 200, followed by reading the same location.
The Sequential Write function of the Control Panel is used to write the contents of a file into the
SDRAM as follows:
1. Specify the starting address in the Address box.
2. Specify the number of bytes to be written in the Length box. If the entire file is to be
loaded, then a checkmark may be placed in the File Length box instead of giving the
number of bytes.
3. To initiate the writing of data, click on the Write a File to Memory button.
4. When the Control Panel responds with the standard Windows dialog box asking for the
source file, specify the desired file in the usual manner.
The Control Panel also supports loading files with a .hex extension. Files with a .hex extension are
ASCII text files that specify memory values using ASCII characters to represent hexadecimal
values. For example, a file containing the line
0123456789ABCDEF
defines four 8-bit values: 01, 23, 45, 67, 89, AB, CD, EF. These values will be loaded consecutively
17
DE2-70 User Manual
into the memory.
The Sequential Read function is used to read the contents of the SDRAM-U1 and place them into a
file as follows:
1. Specify the starting address in the Address box.
2. Specify the number of bytes to be copied into the file in the Length box. If the entire
contents of the SDRAM-U1 are to be copied (which involves all 32 Mbytes), then place a
checkmark in the Entire Memory box.
3. Press Load Memory Content to a File button.
4. When the Control Panel responds with the standard Windows dialog box asking for the
destination file, specify the desired file in the usual manner.
Users can use the similar way to access the SSRAM and Flash. Please note that users need to erase
the flash before writing data to it.
3.5 USB Monitoring
The Control Panel provides users a USB monitoring tool which monitors the real-time status of a
USB mouse connected to the DE2-70 board. The movement of the mouse and the status of the three
buttons will be shown in the graphical and text interface. The mouse movement is translated as a
position (x,y) with range from (0,0)~(1023,767). This function can be used to verify the
functionality of the USB Host.
Follow the steps below to exercise the USB Mouse Monitoring tool:
1. Choosing the USB tab leads to the window in Figure 3.8.
2. Plug an USB mouse to the USB HOST port on the DE2-70 board.
3. Press the Start button to start the USB mouse monitoring process, and button caption is
changed from Start to Stop. In the monitoring process, the status of the USB mouse is
updated and shown in the Control Panel’s GUI window in real-time. Press Stop to
terminate the monitoring process.
18
DE2-70 User Manual
Figure 3.8. USB Mouse Monitoring Tool.
3.6 PS2 Device
The Control Panel provides users a tool to receive the inputs from a PS2 keyboard in real time. The
received scan-codes are translated to ASCII code and displayed in the control window. Only visible
ASCII codes are displayed. For control key, only “Carriage Return/ENTER” key is implemented.
This function can be used to verify the functionality of the PS2 Interface. Please follow the steps
below to exercise the PS2 device:
1. Choosing the PS2 tab leads to the window in Figure 3.9.
2. Plug a PS2 Keyboard to the FPGA board. Then,
3. Press the Start button to start PS2Keyboard input receiving process; Button caption is
changed from Start to Stop.
4. In the receiving process, users can start to press the attached keyboard. The input data will
be displayed in the control window in real time. Press Stop to terminate the monitoring
process.
19
DE2-70 User Manual
Figure 3.9. Reading the PS2 Keyboard.
3.7 SD CARD
The function is designed to read the identification and specification of the SD card. The 1-bit SD
MODE is used to access the SD card. This function can be used to verify the functionality of
SD-CARD Interface. Follow the steps below to exercise the SD card:
1. Choosing the SD-CARD tab leads to the window in Figure 3.10. First,
2. Insert a SD card to the DE2-70 board, then press the Read button to read the SD card. The
SD card’s identification and specification will be displayed in the control window.
20
DE2-70 User Manual
Figure 3.10. Reading the SD card Identification and Specification.
3.8 Audio Playing and Recording
This interesting audio tool is designed to control the audio chip on the DE2-70 board for audio
playing and recording. It can play audio stored in a given WAVE file, record audio, and save the
audio signal as a wave file. The WAVE file must be uncompressed, stereo (2 channels per sample),
and 16-bits per channel. Its sample rate must be either 96K, 48K, 44.1K, 32K, or 8K. Follow the
steps below to exercise this tool.
1. Choosing the Audio tab leads to the window in Figure 3.11.
2. To play audio, plug a headset or speaker to the LINE-OUT port on the board.
3. Select the “Play Audio” item in the com-box, as shown in Figure 3.11.
4. Click “Open Wave” to select a WAVE file. The waveform of the specified wave file will be
displayed in the waveform window. The sampling rate of the wave file also is displayed in
the Sample Rate Combo-Box. You can drag the scrollbar to browse the waveform. In the
waveform window, the blue line represents left-channel signal and green line represents
right-channel signal.
5. Click “Start Play” to start audio play. The program will download the waveform to
SDRAM-U1, configure the audio chip for audio playing, and then start the audio playing
process. You will hear the audio sound from the headset or speaker. To stop the audio
playing, simply click “Stop Play”.
21
DE2-70 User Manual
Figure 3.11. Playing audio from a selected wave file
To record sound using a microphone, please follow the steps below:
1. Plug a microphone to the MIC port on the board.
2. Select the “Record MIC” item in the com-box and select desired sampling rate, as shown in
Figure 3.12.
3. Click “Start Record” to start the record process. The program will configure the audio chip
for MIC recording, retrieve audio signal from the MIC port, and then save the audio signal
into SDRAM-U1.
4. To stop recording, click “Stop Record”. Finally, audio signal saved in SDRAM-U1 will be
uploaded to the host computer and displayed on the waveform window. Click “Save Wave”
to save the waveform into a WAV file.
22
DE2-70 User Manual
Figure 3.12. Audio Recording and Saving as a WAV file.
To record audio sound from LINE-IN port, please connect an audio source to the LINE-IN port on
the board. The operation is as same as recording audio from MIC.
3.9 Overall Structure of the DE2-70 Control Panel
The DE2-70 Control Panel is based on a NIOS II system running in the Cyclone II FPGA with the
SDRAM-U2 or SSRAM. The software part is implemented in C code; the hardware part is
implemented in Verilog code with SOPC builder, which makes it possible for a knowledgeable user
to change the functionality of the Control Panel. The code is located inside the
DE2_70_demonstrations directory on the DE2 System CD-ROM.
To run the Control Panel, users must first configure it as explained in Section 3.1. Figure 3.13
depicts the structure of the Control Panel. Each input/output device is controlled by the NIOS II
Processor instantiated in the FPGA chip. The communication with the PC is done via the USB
Blaster link. The NIOS II interprets the commands sent from the PC and performs the
corresponding actions.
23
DE2-70 User Manual
JTAG
Blaster
Hardware
FPGA/SOPC
NIOS II
TIMER
JTAG
SEG7 Controller
SDRAM Controller
SDRAM Controller
System Interconnect Fabric
Avalon- MM
Tristate Bridge
Avalon- MM
Tri state Bridge
LCD Controller
USB Controller
PS2 Controller
PIO Controller
Flash
Controller
SSRAM
Controller
7-SEG Display
SDRAM U1
SDRAM U2
USB Mouse
PS2 Keyboard
LED/Button/
Switch/Seg7/
SD- Card
SSRAM
Nios II
Program
LCD
Flash
Nios II
Program
Figure 3.13. The block diagram of the DE2-70 control panel.
24
DE2-70 User Manual
Chapter 4
DE2-70 V ideo Utility
The DE2-70 board comes with a video utility that allows users to access video components on the
board from a host computer. The host computer communicates with the board through the
USB-Blaster link. The facility can be used to verify the functionality of video components on the
board, capture the video sent from the video-in ports, or display desired pattern on the VGA port.
This chapter first presents some basic functions of the Video Utility control panel, then describes its
structure in block diagram form, and finally describes its capabilities.
4.1 Video Utility Setup
The Video Utility is located in the “DE2_70_video utility/SW” folder in the DE2-70 System
CD-ROM. To install it, just copy the whole folder to your host computer. Launch the Video Utility
by executing the “DE2_70_AV_UTILITY.exe”.
Specific configuration files should be downloaded to your FPGA board before the Control Panel
can request it to perform required tasks. The configuration files include one .sof file and one .elf file.
To download the codes, simply click the “Download Code” button on the program. The program
will call Quartus II and Nios II tools to download the control codes to the FPGA board through
USB-Blaseter[USB-0] connection. The .sof file is downloaded to FPGA. The .elf file is downloaded
to SDRAM-U1.
To activate the Video Utility, perform the following steps:
1. Make sure Quartus II and Nios II are installed successfully on your PC.
2. Connect the supplied USB cable to the USB Blaster port, connect the 12V power supply,
and turn the power switch ON
3. Set the RUN/PROG switch to the RUN position
4. Start the executable DE2_70_AV_Utility.exe on the host computer. The Video Utility user
interface shown in Figure 4.1 will appear.
5. Click the “Download Code” button. The Control Panel will occupy the USB port until you
close that port; you cannot use Quartus II to download a configuration file into the FPGA
until you close the USB port.
6. The Video Utility is now ready for use.
25
Loading...
+ 65 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.