PIN and FUNCTION COMPATIBLEwith
JEDECSTANDARD 32K x 8SRAMs
AUTOMATIC POWER-FAILCHIP DESELECT
and WRITEPROTECTION
CHOICEof TWOWRITE PROTECT
VOLTAGES:
– M48Z30:4.5V ≤ V
– M48Z30Y:4.2V≤ V
PFD
PFD
≤ 4.75V
≤ 4.50V
BATTERYINTERNALLYISOLATEDUNTIL
POWERIS APPLIED
DESCRIPTION
The M48Z30/30Y32K x 8 ZEROPOWER
RAMis
a non-volatile262,144bitStaticRAMorganizedas
32,768 words by 8 bits. The device combines an
internallithium batteryand a full CMOSSRAMina
plastic 28 pin DIP Module. The ZEROPOWER
Table 1. Signal Names
A0 - A14Address Inputs
28
1
PMDIP28 (PM)
Module
Figure 1. Logic Diagram
DQ0 - DQ7Data Inputs / Outputs
EChip Enable
GOutput Enable
WWrite Enable
V
CC
V
SS
July 19941/12
Supply Voltage
Ground
M48Z30, M48Z30Y
Table 2. Absolute MaximumRatings
SymbolParameterValueUnit
T
A
T
STG
T
BIAS
T
SLD
V
IO
V
CC
Note: Stresses greater than those listed under ”Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this
specification is not implied. Exposure to the absolute maximumratings conditions for extended periods of time may affect reliability.
CAUTION: Negative undershootsbelow –0.3 volts are notallowed onany pin while in the Battery Back-up mode.
Table 3. OperatingModes
Ambient Operating Temperature0 to 70°C
Storage Temperature(VCCOff)–40 to 70°C
Temperature Under Bias–10 to 70°C
Lead Soldering Temperature for 10 seconds260°C
Input or Output Voltages–0.3 to7V
Supply Voltage–0.3 to7V
alsofits into manyEPROMandEEPROM sockets,
providing the nonvolatilityof PROMs without any
requirement for special write timing or limitations
on the number of writes that can be performed.
The M48Z30/30Y has its own Power-fail Detect
Circuit.Thecontrolcircuitryconstantlymonitorsthe
single5V supply for an out of tolerancecondition.
When V
is out of tolerance, the circuit write
CC
protectstheSRAM,providinga highdegreeofdata
security in the midst of unpredictable system operationsbrought onby lowV
.AsVCCfallsbelow
CC
approximately3V,the controlcircuitryconnectsthe
battery which sustains data until valid power returns.
2/12
READMODE
The M48Z30/30Y is in the Read Mode whenever
W(Write Enable)ishighandE(ChipEnable)islow.
The device architecture allows ripple-through accessof data from eight of 262,144locations in the
static storage array. Thus, the unique address
Figure3. Block Diagram
M48Z30, M48Z30Y
specified by the 15 Address Inputs defines which
one of the32,768 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within t
(Address Access Time) after the last
AVQV
addressinput signal is stable, providing that theE
and G (OutputEnable) access times are alsosatisfied.If theE andGaccesstimesarenotmet, valid
data will be availableafter the later ofChipEnable
AccessTime(t
).
(t
GLQV
)orOutputEnableAccessTime
ELQV
The state of the eight three-stateData I/Osignals
iscontrolledbyEand G.Iftheoutputsareactivated
before t
indeterminate state until t
, the data lines will be driven to an
AVQV
. If the Address In-
AVQV
putsare changedwhile Eand Gremainlow, output
data will remain valid for t
(Output Data Hold
AXQX
Time) but will go indeterminate until the next AddressAccess.
WRITE MODE
TheM48Z30/30Yis inthe Write ModewheneverW
and E are active.The start of a write is referenced
fromthe latter occurring falling edge of W or E.
AC MEASUREMENT CONDITIONS
Input Rise and Fall Times≤ 5ns
Input Pulse Voltages0 to 3V
Input and Output Timing Ref. Voltages1.5V
Note that Output Hi-Z is defined as the point where data
is no longer driven.
Figure 4. AC TestingLoad Circuit
3/12
M48Z30, M48Z30Y
Table4. Capacitance
(1, 2)
(TA=25°C, f = 1 MHz)
SymbolParameterTestConditionMinMaxUnit
C
IN
(3)
C
IO
Notes:1. Effective capacitance measured with power supply at 5V.