SGS Thomson Microelectronics M28W640ECT, M28W640ECB Datasheet

SUPPLY VOLTAGE
= 2.7V to 3.6V Core Power Supply
–V
DD
–V –V
ACCESS TIME: 70, 85, 90,100ns
PROGRAMMING TIME:
= 1.65V to 3.6V for Input/Output
DDQ
= 12V for fast Program (optional)
PP
– 10µ s typical – Double Word Programming Option – Quadruple Word Programming Option
COMMON FLASH INTERFACE
MEMORY BLOCKS
– Parameter Blocks (Top or Bott o m location) – Main Blocks
BLOCK LOCKING
– All blocks locked at Power Up – Any combination of blocks can be locked
for Block Lock-Down
–WP
SECURITY
– 128 bit user Programmable OTP cells – 64 bit unique device identifier
AUTOMATIC STAND-BY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h – Top Device Code, M28W640ECT: 8848h – Bottom Device Code, M28W640ECB: 8849h
M28W640ECT
M28W640ECB
64 Mbit (4Mb x16, Boot Block)
3V Supp l y Fl ash Mem ory
PRELIMINARY DATA

Figure 1. Packages

FBGA
TFBGA48 (ZB)
6.39 x 10.5mm
TSOP48 (N)
12 x 20mm
April 2003
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/55
M28W640ECT, M28W640ECB

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Protection Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DD
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DDQ
V
Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PP
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SS
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Read Electronic Signature Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Suspend Comm and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/55
M28W640ECT, M28W640ECB
Block Lock-Down Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Program, Erase Times and Program/Er ase Endu rance Cycles . . . . . . . . . . . . . . . . . . . . 16
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Erase Status (Bit 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
V
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PP
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 16. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. Power-Up and Reset AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3/55
M28W640ECT, M28W640ECB
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 30
Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 30 Figure 14. TFBGA48 6.39x10.5m m - 8x6 ball array, 0.75mm pitch, Bottom View Package Out line31 Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 31
Figure 15. TFBGA48 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 32
Figure 16. TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package). . . . 32
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 24. Top Boot Block Addresses, M28W640ECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Bottom Boot Block Addresses, M28W640ECB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 26. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 27. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 28. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 29. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 19. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 47
Figure 21. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 52
Table 32. Write State Machine Current/Next, sheet 1 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. Write State Machine Current/Next, sheet 2 of 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4/55

SUMMARY DESCRIPTION

The M28W640EC is a 64 Mbit (4 Mbit x 16) non­volatile Flash memory that can b e erased electri­cally at block level and programmed in-s ystem on a Word-by-Word basis using a 2.7V to 3.6V V supply for the circuitry and a 1.65V to 3.6V V
DD
DDQ
supply for the Input/Output pins. An optional 12V V
power supply is provided to speed up custom-
PP
er programming. The device features an asymmetrical blocked ar-
chitecture. The M28W640EC ha s an array of 135 blocks: 8 Parameter Blocks of 4 KWord and 127 Main Blocks of 32 KWord. M28W640ECT has the Parameter Blocks at the top of the memory ad­dress space while the M28W640ECB locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5, Block Ad­dresses.
The M28W640EC features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency, enabling in­stant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any acciden­tal programming or erasure. There is an additional hardware protection against program and erase. When V
PP
≤ V
all blocks are protected against
PPLK
program or erase. All blocks are locked at Power Up.
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be s uspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includes a 192 b it Protection Register to increase th e pr o tection of a system design. The Protection Register is divided into a 64 bit segment and a 128 bit segment. The 64 bi t segment con­tains a unique device number written by ST, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. Figure 6, shows the Pro­tection Register Memory Map.
Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.
M28W640ECT, M28W640ECB
The memory is of fered in TSOP48 (12 X 20mm) and TFBGA48 (6.39 x 10.5mm, 0.75mm pitch) packages and is supplied with all the bits erased
(set to ’1’).

Figure 2. Logic Diagram

V
V
DD
DDQVPP
22
A0-A21
W
E
G
RP
WP
M28W640ECT M28W640ECB
V
SS

Table 1. Signal Names

A0-A21 Address Inputs DQ0-DQ15 Data Input/Output E G W RP WP V
DD
V
DDQ
V
PP
V
SS
NC Not Connected Internally
Chip Enable Output Enable Write Enable Reset Write Protect Core Power Supply Power Supply for
Input/Output Optional Supply Voltage for
Fast Program & Erase Ground
16
DQ0-DQ15
AI04378b
5/55
M28W640ECT, M28W640ECB

Figure 3. TSOP Connections

A15 A14 A13 A12 A11
1
48
A16 V
DDQ
V
SS
DQ15 DQ7
A10 DQ14
37 36
DQ6 DQ13 DQ5 DQ12 DQ4 V
DD
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G V
SS
E A0
A21 A20
RP
V
PP
WP A19 A18 A17
A9 A8
W
A7 A6 A5 A4 A3 A2 A1
12
M28W640ECT M28W640ECB
13
24 25
AI04379b
6/55

Figure 4. TFBGA Connections (Top view through package)

M28W640ECT, M28W640ECB
87654321
A
B
C
D
E
F
DDQ
SS
DQ7V
A8A11A13
DQ13
PP
RP A18
A21
DQ11
DQ12
DQ4
WP A19
A20
DQ2
DD
A7V
A5A17WA10A14
DQ0DQ9DQ3DQ6DQ15V
DQ1DQ10V
A4
A2
A1A3A6A9A12A15
A0EDQ8DQ5DQ14A16
V
SS
G
AI04380
7/55
M28W640ECT, M28W640ECB

Figure 5. Block Addresses

M28W640ECT
Top Boot Block Addresses
3FFFFF
3FF000
3F8FFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
000000
Note: A l so see Appe ndi x A, Tables 24 and 25 for a full l isting of the Bl ock Address es.
4 KWords
Total of 8
4 KWord Blocks
4 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
32 KWords
Bottom Boot Block Addresses
3FFFFF
3F8000
3F7FFF
3F0000
00FFFF
008000
007FFF
007000
000FFF
000000
M28W640ECB
32 KWords
32 KWords
Total of 127
32 KWord Blocks
32 KWords
4 KWords
Total of 8
4 KWord Blocks
4 KWords
AI04386b

Figure 6. Prot ect i on Register Me m o ry Map

PROTECTION REGISTER
8Ch
User Programmable OTP
85h 84h
81h 80h
Unique device number
Protection Register Lock 1 0
AI05520b
8/55

SIGNAL DESCRIPTIONS

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A0-A21). The Address Inputs select the cells i n the memory array to a ccess dur­ing Bus Read operations. During Bus Write opera­tions they control the commands sent to the Command Interface of the internal state machine.

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed durin g a Write Bus operation.

Chip Enable (E
). The Chip Enable input acti-
vates the memory control logic, input buffers, de­coders and sense amplifiers. When Chip Enable is
and Reset is at VIH the device is in active
at V
IL
mode. When Chi p E nable i s at V
the memory is
IH
deselected, the outputs are high impedan ce and the power consumption is reduced to the stand-by level.
Output Enable (G
). The Output Enable controls
data outputs during the Bus Read operation of the memory.
Write Enable (W
). The Write Enable controls the
Bus Write operation of the memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip Enable, E, or Write En­able, W
Write Protect (WP
, whichever occurs first.
). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is at V
, the Loc k-
IL
Down is enabled and the prote ction status of t he block cannot be changed. When Write Protect is at
, the Lock-Down is disabled and the block can
V
IH
be locked or unlocked. (refer to Table 7, Read Pro­tection Register and Protection Register Lock).
Reset (RP
ware reset of the memory. W hen Reset is at V
). The Reset input provides a hard-
IL
the memory is in reset mode: the outputs are high impedance and the current consumption is mini­mized. After Reset all blocks are in the Locked
M28W640ECT, M28W640ECB
state. When Reset is at V operation. Exiting reset mode the device enters read array mode, but a negative transition of Chip Enable or a change of the addres s is required t o ensure valid data outputs.
Supply Voltage. VDD provides the power
V
DD
supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).
Su pp ly V olt ag e . V
V
DDQ
power supply to the I/O pins a nd ena bles all Ou t­puts to be powered independently from V can be tied to VDD or can use a separate supply.
Program Supply Voltage. VPP is both a
V
PP
control input and a power supply pin. The two functions are selected by the voltage range ap­plied to the pin. The Supply Voltage V Program Supply Voltage V any order.
If V
is kept in a low voltage range (0V to 3.6V)
PP
V
is seen as a control input. In this case a volt-
PP
age lower than V
PPLK
against program or erase, whi le V ables these functions (see Table 15, DC Charac­teristics for the relevant values). V sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect on Program or Erase, however for Double or Q uadruple Word Program the results are uncertain.
If V
is in the range 11.4V to 12.6V it acts as a
PP
power supply pin. In this condition V stable until the Program/Erase algorit hm is com­pleted (see Table 17 and 18).
Ground. VSS is the reference for all voltage
V
SS
measurements.
Note: Each device in a system should have V
DD, VDDQ
pacitor close to the pin. See Figure 8, AC Mea-
,
and VPP decoupled wi th a 0.1 µF ca-
surement Load Circu it. The PCB trace widths should be sufficient to carry the required V program and erase currents.
, the device is in normal
IH
provides the
DDQ
can be applied in
PP
gives an absolute protection
PP
DD
and the
DD
> V
is only
PP
must be
PP
. V
PP1
DDQ
en-
PP
9/55
M28W640ECT, M28W640ECB

BUS OPERATIONS

There are six standard bus operations that control the device. These are Bus Read, Bus Wri te, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output En­able must be at V eration. The Chip Enable in put should be us ed to enable the device. Out put E nable shoul d be used to gate data onto the output. The data read de­pends on the previous command written to the memory (see Command Interface section). See Figure 9, Read Mode AC Wa veforms, and Table 16, Read AC Characteristics, for details of when the output becomes valid.

Read mode is the default state of the device when exiting Reset or after power-up.

Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V

. Commands, Input Data and Addresses are
IH
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
in order to perform a read op-
IL
with Output Enable at
IL
See Figures 10 and 11, Write AC Waveforms, and Tables 17 and 18, Write AC Characteristics, for details of the timing requirements.

Output Disa bl e . The data outputs are high im­pedance when the Output Enable is at V

.
IH

Standby. Stan dby disables most of the inte rnal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V

and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the o utputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V
during a program or erase operation, t he de-
IH

vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-

vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data I nputs/Out-
DD1
, and the supply
IL
puts will still output data if a bus Read operation is in progress.

Reset. During Reset mode when Output Enable is Low, V

, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write En­able inputs. If Reset is pulled to V
during a Pro-
SS
gram or Erase, this operation is aborted and the memory content is no longer valid.

Table 2. Bus Operations

Operation E G W RP WP
Bus Read Bus Write Output Disable Standby Reset X X X
Note: X = VIL or VIH, V
10/55
V V V V
= 12V ± 5%.
PPH
IL
IL
IL
IH
V
IL
V
IH
V
IH
XX
V
IH
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
PP
X Don’t Care Data Output
V
X X Don’t Care Hi-Z X Don’t Care Hi-Z X Don’t Care Hi-Z
DD
or V
PPH
DQ0-DQ15
Data Input

COMMAND INTERFACE

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program/Erase Controller han­dles all timings and verifies the correct execution of the Program and Erase commands. The Pro­gram/Erase Controller provides a S tatus Register whose output may be read at any time during, to monitor the progress of the operation, or the P ro­gram/Erase states. See Table 3, Command Codes, for a summary o f the c ommands and see Appendix 22, Table 32, Write State Machine Cur­rent/Next, for a summa ry of the Command Inter­face.
The Command Interface is reset to Read mode when power is first applied, when exiting from Re­set or whenever V
is lower than V
DD
LKO
. Com­mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode. Refer to Table 4, Commands, in conjunction with the text descriptions below.

Read Memory Array Command

The Read command returns the memory to its Read mode. One Bus Write cycle is required to is­sue the Read Memory Array command and return the memory to Read mode. Subsequ ent read op­erations will read the addressed locat ion and out­put the data. When a device Reset occurs, the memory defaults to Read mode.

Read Status Register Command

The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status
Register command to rea d the Status Register’s contents. Subsequent Bus Read op erations read the Status Register at any address, u ntil another command is issued. See Table 11, Status Register Bits, for details on the definitions of the bits.
The Read Status Register command m ay be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the con­tent of the Status Register.

Read Electronic Signature Command

The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protec­tion and Lock Register. See Tables 5, 6 and 7 for the valid address.
M28W640ECT, M28W640ECB

Table 3. Command Codes

Hex Code Command
01h Block Lock confirm
10h Program 20h Erase
2Fh Block Lock-Down confirm
30h 40h Program
50h Clear Status Register 56h
60h
70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query B0h Program/Erase Suspend
C0h Protection Register Program
D0h
FFh Read Memory Array

Read CFI Query Command

The Read Query Command is used to read dat a from the Common Flash Interface (CFI) Me mory Area, allowing programming equi pment or appli­cations to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Com­mand. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Common Flash Inte rface, Tables 26, 27, 28, 29, 30 and 31 for details on the information contained in the Common Flash Interface memory area.

Block Erase Command

The Block Erase com mand can be used to erase a block. It sets all the bits within the selected block to ’1’. All previous d ata in th e block is lost. If th e block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase command.
Double Word Program
Quadruple Word Program Block Lock, Block Unlock, Block Lock-
Down
Program/Erase Resume, Block Unlock confirm
11/55
M28W640ECT, M28W640ECB
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 a re s et and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memory will accept the Read Status Re gister com mand and the P ro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 8, Program, Erase Times and P ro­gram/Erase Endurance Cycles.
See Appendix C, Figure 21 , Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command.

Program Command

The memory array can be programmed word-by­word. Two bus write cycles are required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data to
be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Status Register command and the Program/Erase Suspend command. Typical Pro­gram times are g iven in Tab le 8, P rogram, E rase Times and Program/Erase Endurance Cycles.
Programming aborts if Reset goe s to V
. As data
IL
integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and repro­grammed.
See Appendix C, Figure 17, Program Flowchart and Pseudo Code, for the f lowchart for using the Program command.

Double Word Program Command

This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words m ust differ only for the address A0. Programm ing should not be at t emp t­ed when V
is not at V
PP
PPH
.
Three bus write cycles are necessary to issue the Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 18, Double Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Double Word Program command.

Quadruple Word Program Command

This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The four words must differ only for the addresses A0 and A1. Programming should not be attempted when V
is not at V
PP
PPH
.
Five bus write cycles are necessary to issue the Quadruple Word Program command.
The first bus cycle sets up the Quadruple Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written.
The fourth bus cycle latches the Address and
the Data of the third word to be written.
The fifth bus cycl e latches the Addres s and th e
Data of the fourth word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 19, Quadruple Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Quadruple Word Program command.

Clear Status Register Command

The Clear Status Register comm and c an b e us ed to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.

Program/Erase Suspend Command

The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pau se the Prog ram/Erase control­ler.
12/55
M28W640ECT, M28W640ECB
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, Block Lock -Down or Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume com mand is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Ena ble to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See Appendix C, Figure 20 , Program Suspend & Resume Flowchart and Pseudo Code, and Figure 22, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Suspend command.

Program/Erase Resume Command

The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend o peration has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subse­quent Bus Read operations read the Status Reg­ister.
See Appendix C, Figure 20 , Program Suspend & Resume Flowchart and Pseudo Code, and Figure 22, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Resume command.

Protectio n Register Program Command

The Protection Register Program command is used to Program the 128 bit user O ne-Time-Pro­grammable (OTP) segment of the Protection Reg­ister. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set
to ‘1’. The user can only program the bits to ‘0’. Two write cycles are required to issue the Protec-
tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see F igure 6, Protection Register Memory Map). Attempting to program a previously prot ected Protection Regis-
ter will result in a Status Register error. The pro­tection of the Protection Register is not reversible.
The Protection Register Program cannot be sus­pended.

Block Lock Command

The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Lock command.
The Block Lock bits are vo latile, once set they re­main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Unlock Command

The Blocks Unlock command i s used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are requ ired to is­sue the Blocks Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation.

Block Lock-Down Command

A locked block cannot be Programmed or Erased, or have its protection status changed when WP low, V
. When WP is high, V
IL
the Lock-Down
IH,
is
function is disabled and the locked blocks can be individually unlocked by the Block Unlock com­mand.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not
13/55
M28W640ECT, M28W640ECB
locked-down) state when the device is reset on power-down. Table. 10 sho ws the protection sta-
Refer to the section, Block Locking, for a detailed explanation.
tus after issuing a Block Lock-Down command.

Table 4. Commands

Bus Write Operations
Commands
Read Memory Array
Read Status Register
Read Electronic Signature
Read CFI Query 1+ Write X 98h Read QA QD Erase 2 Write X 20h Write BA D0h
Program 2 Write X
Double Word Program
Quadruple Word Program
Clear Status Register
Program/Erase Suspend
Program/Erase Resume
Block Loc k 2 Write X 60h Write Block Unlock 2 Write X 60h Write Block Loc k-Down 2 Write X 60h Write Protection
Register Program
Note: 1. X = Don’t C are, RA=Rea d Addre ss, RD =Read D ata, SRD =Stat us Regis ter Da ta, ID =Identif ier (Ma nufact ure and Devic e Code),
(3)
(4)
QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Ad­dress, PRD=Protection Register Data.
2. The s i gnature addresses are li st ed in Tables 5, 6 and 7.
3. Program Addres ses 1 and 2 must be consecuti ve Addresses differing only for A0.
4. Program Addres ses 1,2,3 and 4 m ust be consec utive Addr esses differi ng only for A 0 and A1.
5. To be c haracteriz ed.
1+ Write X FFh
1+ Write X 70h Read X SRD
1+ Write X 90h Read
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle
Cycles
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data
RA RD
Read
(2)
IDh
SA
40h or
Write P A PD
10h
3 Write X 30h Write PA1 PD1 Write PA2 PD2
5 Write X
1 Write X 50h
1Write X B0h
1Write X D0h
(5)
Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
56h
01h
BA BA D0h BA 2Fh
2 Write X C0h Write
PRA
PRD

Table 5. Read Electronic Signature

Code Device E G W A0 A1 A2-A7 A8-A21 DQ0-DQ7 DQ8-DQ15
Manufacture Code
M28W640ECT
Device Code
M28W640ECB
Note: RP = VIH.
14/55
VILV
V
IL
V
VILV
IL
V
VILV
IL
V
IH
IHVIH
IHVIH
V
IL
V V
0 Don’t Care 20h 00h
IL
0 Don’t Care 48h 88h
IL
0 Don’t Care 49h 88h
IL
M28W640ECT, M28W640ECB

Table 6. Read Block Lock Signature

Block Status E G W A0 A1 A2-A7 A8-A11 A12-A21 DQ0 DQ1 DQ2-DQ15
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked-Down Blo ck can be lock ed "DQ0 = 1" or unlocked "DQ0 = 0" ; s ee B l ock Locking section.

Table 7. Read Protection Register and Lock Register

Word E
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3 OTP 4 OTP 5 OTP 6 OTP 7
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
0 Don’t Care Block Address 1 0 00h 0 Don’t Care Block Address 0 0 00h
0 Don’t Care Block Address
X
(1)
1 00h
G W A0-A7 A8-A21 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
80h Don’t Care 0
81h Don’t Care ID data ID data ID data ID data ID data 82h Don’t Care ID data ID data ID data ID data ID data 83h Don’t Care ID data ID data ID data ID data ID data 84h Don’t Care ID data ID data ID data ID data ID data 85h Don’t Care OTP data OTP data OTP data OTP data OTP data 86h Don’t Care OTP data OTP data OTP data OTP data OTP data 87h Don’t Care OTP data OTP data OTP data OTP data OTP data 88h Don’t Care OTP data OTP data OTP data OTP data OTP data
89h Don’t Care OTP data OTP data OTP data OTP data OTP data 8Ah Don’t Care OTP data OTP data OTP data OTP data OTP data 8Bh Don’t Care OTP data OTP data OTP data OTP data OTP data 8Ch Don’t Care OTP data OTP data OTP data OTP data OTP data
OTP Prot.
data
0 00h 00h
15/55
M28W640ECT, M28W640ECB

Table 8. Program , Erase Times and Program/Erase Endurance Cycl es

Parameter Test Conditions
V
Word Program
Double Word Program Quadruple Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
= V
PP
V
= 12V ±5%
PP
V
= 12V ±5%
PP
V
= 12V ±5%
PP
= V
V
PP
= 12V ±5%
V
PP
= V
V
PP
= 12V ±5%
V
PP
= V
V
PP
V
= 12V ±5%
PP
V
= V
PP
DD
DD
DD
DD
DD
Min Typ Max
M28W640EC
10 200 µs 10 200 µs 10 200 µs
0.16/0.08
0.02/0.01
(1)
0.32 5 s
(1)
0.04 4 s 110s 110s
0.4 10 s
0.4 10 s
5s
4s
Unit

BLOCK LOCKING

The M28W640EC features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency. This locking scheme has three levels of protection.
Lock/Unlock - this first level allows software-
only control of block locking.
Lock-Down - this second level requires
hardware interaction before locking can be changed.
V
PP
≤ V
- the third level offers a complete
PPLK
hardware protection against program and erase on all blocks.
The protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10, de­fines all of the possible protection states (WP DQ1, DQ0), and Appendi x C, Figure 23, shows a flowchart for the locking operations.

Reading a Block’s Lock Status

The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h t o the device. Subse­quent reads at the addres s specified in Table 6, will output the pr otection sta tus of that bloc k. The lock status is represented by DQ0 and DQ 1. DQ0 indicates the Block Lock/Unlock status and i s set by the Lock comm and and cleared by the Unlock
command. It is also automatically set when enter­ing Lock-Down. DQ1 indicates the Lock-Down sta­tus and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.

Locked State

The default status of all blocks on power-up or af­ter a hardware reset is L ocked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase oper­ations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software com-
,
mands. An Unlocked block can be Locked by issu­ing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate software commands. A locked block can be un­locked by issuing the Unlock command.
16/55
M28W640ECT, M28W640ECB

Lock-Down State

Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but th eir protect ion status can­not be changed using software comma nds alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked­Down blocks revert to the Locked state when the device is reset or powered-down.
The Lock-Down function is depen dent on the WP input pin. When WP=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from pro­gram, erase and protection status changes. When
=1 (VIH) the Lock-Down function is disabled
WP (1,1,1) and Locked-Down blocks can be ind ividu­ally unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be relocked (1,1,1) and unlocked (1,1,0) as desired while WP remains high. When WP is low , blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP
was high. Device reset or power-down resets all blocks , including those in Lock-Down, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.
To change block locking during an erase opera­tion, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock com mand sequence to a block and the lock status will be changed. After complet­ing any desired lock, read, or program operations, resume the erase operation with the Erase Re­sume command.
If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, b ut when the erase is resumed, the erase operation will complete.
Locking operations cannot be performed du ring a program suspend. Refer to Appendix D, Com­mand Interface and Program/Erase Controller State, for detailed information on which com­mands are valid during erase suspend.

Table 9. Block Lock Status

Item Address Data
Block Lock Configuration
Block is Unlocked DQ0=0
Block is Locked DQ0=1
Block is Locked-Down DQ1=1
LOCK
xx002
17/55
Loading...
+ 38 hidden pages