Quectel Wireless Solutions 201903EG91NS Users Manual

G
M
S
a
2
s
_
w
_
r
D
s
n
c
E
LTE
Date:
Statu
91
odule
EG91_H
2019-0
s: Relea
Ha
eries
rdware
-03
ed
rd
Design
a
V1.3
e
e
ig
www.que
tel.com
LTE Module Series
EG91 Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://www.quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/technical.htm
Or email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALLINFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.
EG91_Hardware_Design 1 / 93
EG91 Hardware Design
About the Document
History
Revision Date Author Description
Felix YIN/
1.0 2017-03-22
Yeoman CHEN/
Jackie WANG
Initial
LTE Module Series
1.1 2018-01-23
1.2 2018-03-14
Felix YIN/
Rex WANG
Felix YIN/
Rex WANG
1. Added band B28A.
2. Updated the description of UMTS and GSM
features in Table 2.
3. Updated the functional diagram in Figure 1.
4. Updated module operating frequencies in
Table 21.
5. Updated current consumption in Table 26.
6. Updated RF output power in Table 27.
7. Updated the conducted RF receiving
sensitivity in Table 28.
8. Updated the GPRS multi-slot classes in
Table 33.
9. Added thermal consideration in Chapter 5.8
10. Added a GND pad in each of the four corners
of the module’s footprint in Chapter 6.2.
11. Updated storage information in Chapter 7.1.
12. Added packaging information in Chapter 7.3.
1. Added the description of EG91-NA.
2. Updated the functional diagram in Figure 1.
3. Updated pin assignment in Figure 2.
4. Updated GNSS function in Table 1.
5. Updated GNSS Features in Table 2.
6. Updated reference circuit of USB interface
in Figure 21.
7. Added description of GNSS receiver in
Chapter 4.
EG91_Hardware_Design 2 / 93
EG91 Hardware Design
Ward WANG/
1.3 2019-02-03
Nathan LIU/
Rex WANG
LTE Module Series
8. Updated pin definition of RF antenna in
Table 21.
9. Updated module operating frequencies in
Table 22.
10. Added description of GNSS antenna
interface in Chapter 5.2.
11. Updated antenna requirements in Table 25.
12. Updated RF output power in Table 32.
1. Added new variants EG91-NS, EG91-V,
EG91-EC and related contents.
2. Opened pin 24 as ADC0 and added related
contents.
3. Updated functional diagram (Figure 1)
4. Updated pin assignment (Figure 2)
5. Updated GNSS features (Table 2)
6. Added USB_BOOT interface information
(Chapter 3.18)
7. Updated storage information (Chapter 8.1)
8. Updated module operating frequencies
(Table 23)
9. Updatedantenna requirements (Table26)
10. Added current consumption of EG91-NS,
EG91-V and EG91-EC (Table 32, 33 and 34)
11. Added conducted RF receiving sensitivityof
EG91-NS, EG91-V and EG91-EC (Table 39,
40 and 41)
EG91_Hardware_Design 3 / 93
LTE Module Series
EG91 Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 4
Table Index ............................................................................................................................................... 7
Figure Index .............................................................................................................................................. 9
1 Introduction ..................................................................................................................................... 11
1.1. Safety Information ................................................................................................................. 12
1.2. FCC/ISED Regulatory notices ............................................................................................... 13
2 Product Concept ............................................................................................................................. 16
2.1. General Description .............................................................................................................. 16
2.2. Key Features ......................................................................................................................... 17
2.3. Functional Diagram ............................................................................................................... 19
2.4. Evaluation Board ................................................................................................................... 20
3 Application Interfaces ..................................................................................................................... 21
3.1. General Description .............................................................................................................. 21
3.2. Pin Assignment ..................................................................................................................... 22
3.3. Pin Description ...................................................................................................................... 23
3.4. Operating Modes .................................................................................................................. 30
3.5.
Power Saving ........................................................................................................................ 31
3.5.1. Sleep Mode.................................................................................................................. 31
3.5.1.1. UART Application ............................................................................................... 31
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 32
3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 32
3.5.1.4. USB Application without USB Suspend Function ............................................... 33
3.5.2. Airplane Mode .............................................................................................................. 34
3.6. Power Supply ........................................................................................................................ 34
3.6.1. Power Supply Pins ....................................................................................................... 34
3.6.2. Decrease Voltage Drop ................................................................................................ 35
3.6.3. Reference Design for Power Supply ............................................................................ 36
3.6.4. Monitor the Power Supply ............................................................................................ 37
3.7. Power-on/off Scenarios ......................................................................................................... 37
3.7.1. Turn on Module Using the PWRKEY ........................................................................... 37
3.7.2. Turn off Module ............................................................................................................ 39
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 39
3.7.2.2. Turn off Module Using AT Command ................................................................. 39
3.8. Reset the Module .................................................................................................................. 40
3.9. (U)SIM Interfaces .................................................................................................................. 41
3.10.USB Interface ........................................................................................................................ 44
3.11.UART Interfaces ................................................................................................................... 46
EG91_Hardware_Design 4 / 93
LTE Module Series
EG91 Hardware Design
3.12.PCM and I2C Interfaces ........................................................................................................ 48
3.13.SPI Interface ......................................................................................................................... 51
3.14.Network Status Indication ..................................................................................................... 51
3.15.STATUS ................................................................................................................................ 52
3.16.ADC Interface ....................................................................................................................... 53
3.17.Behaviors of RI ..................................................................................................................... 54
3.18.USB_BOOT Interface............................................................................................................ 55
4 GNSS Receiver ................................................................................................................................ 57
4.1. General Description .............................................................................................................. 57
4.2. GNSS Performance .............................................................................................................. 57
4.3. Layout Guidelines ................................................................................................................. 58
5 Antenna Interfaces .......................................................................................................................... 59
5.1. Main/Rx-diversityAntenna Interfaces..................................................................................... 59
5.1.1. Pin Definition ................................................................................................................ 59
5.1.2. Operating Frequency ................................................................................................... 59
5.1.3. Reference Design of RF Antenna Interface ................................................................. 60
5.1.4. Reference Design of RF Layout ................................................................................... 61
5.2. GNSS Antenna Interface ....................................................................................................... 63
5.3. Antenna Installation .............................................................................................................. 64
5.3.1. Antenna Requirement .................................................................................................. 64
5.3.2. Recommended RF Connector for Antenna Installation ................................................ 65
6 Electrical, Reliability and RadioCharacteristics ........................................................................... 67
6.1. Absolute Maximum Ratings .................................................................................................. 67
6.2. Power Supply Ratings ........................................................................................................... 67
6.3. Operation and Storage Temperatures .................................................................................. 68
6.4. Current Consumption ............................................................................................................ 69
6.5. RF Output Power .................................................................................................................. 76
6.6. RF Receiving Sensitivity ....................................................................................................... 77
6.7. Electrostatic Discharge ......................................................................................................... 79
6.8. Thermal Consideration .......................................................................................................... 79
7 Mechanical Dimensions.................................................................................................................. 82
7.1. Mechanical Dimensions of the Module.................................................................................. 82
7.2. Recommended Footprint ....................................................................................................... 84
7.3.
Design Effect Drawings of the Module .................................................................................. 85
8 Storage, Manufacturing and Packaging ........................................................................................ 86
8.1. Storage ................................................................................................................................. 86
8.2. Manufacturing and Soldering ................................................................................................ 87
8.3. Packaging ............................................................................................................................. 88
9 Appendix A References .................................................................................................................. 90
10Appendix B GPRS Coding Schemes ............................................................................................. 94
EG91_Hardware_Design 5 / 93
LTE Module Series
EG91 Hardware Design
11Appendix C GPRS Multi-slot Classes ............................................................................................ 95
12Appendix D EDGE Modulation and Coding Schemes .................................................................. 97
EG91_Hardware_Design 6 / 93
LTE Module Series
EG91 Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EG91 SERIES MODULE ....................................................................... 16
TABLE 2: KEY FEATURES OF EG91 MODULE ............................................................................................... 17
TABLE 3: IO PARAMETERS DEFINITION ........................................................................................................ 23
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 23
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 30
TABLE 6: PIN DEFINITION OF VBAT AND GND ............................................................................................. 35
TABLE 7: PIN DEFINITION OF PWRKEY ........................................................................................................ 37
TABLE 8: PIN DEFINITION OF RESET_N ....................................................................................................... 40
TABLE 9: PIN DEFINITION OF (U)SIM INTERFACES ..................................................................................... 42
TABLE 10: PIN DEFINITION OF USB INTERFACE ......................................................................................... 44
TABLE 11: PIN DEFINITION OF MAIN UART INTERFACES ........................................................................... 46
TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE ......................................................................... 46
TABLE 13: LOGIC LEVELS OF DIGITAL I/O .................................................................................................... 47
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 50
TABLE 15: PIN DEFINITION OF SPI INTERFACE ........................................................................................... 51
TABLE 16: PIN DEFINITION OF NETWORK STATUS INDICATOR ................................................................ 52
TABLE 17: WORKING STATE OF NETWORK STATUS INDICATOR .............................................................. 52
TABLE 18: PIN DEFINITION OF STATUS ........................................................................................................ 53
TABLE 19: PIN DEFINITION OF ADC INTERFACE ......................................................................................... 53
TABLE 20: CHARACTERISTICS OF ADC INTERFACE ................................................................................... 54
TABLE 21: DEFAULT BEHAVIORS OF RI ........................................................................................................ 54
TABLE 22: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 55
TABLE 23: GNSS PERFORMANCE ................................................................................................................. 57
TABLE 24: PIN DEFINITION OF RF ANTENNA ............................................................................................... 59
TABLE 25: MODULE OPERATING FREQUENCIES ........................................................................................ 59
TABLE 26: PIN DEFINITION OF GNSS ANTENNA INTERFACE ..................................................................... 63
TABLE 27: GNSS FREQUENCY ....................................................................................................................... 63
TABLE 28: ANTENNA REQUIREMENTS .......................................................................................................... 64
TABLE 29: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 67
TABLE 30: POWER SUPPLY RATINGS ........................................................................................................... 67
TABLE 31: OPERATION AND STORAGE TEMPERATURES .......................................................................... 68
TABLE 32: EG91-E CURRENT CONSUMPTION ............................................................................................. 69
TABLE 33: EG91-NA CURRENT CONSUMPTION ........................................................................................... 71
TABLE 34: EG91-NS CURRENT CONSUMPTION .......................................................................................... 72
TABLE 35: EG91-V CURRENT CONSUMPTION ............................................................................................. 73
TABLE 36: EG91-EC CURRENT CONSUMPTION .......................................................................................... 74
TABLE 37: GNSS CURRENT CONSUMPTION OF EG91 ............................................................................... 76
TABLE 38: RF OUTPUT POWER ..................................................................................................................... 76
TABLE 39: EG91-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 77
TABLE 40: EG91-NA CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 77
TABLE 41: EG91-NS CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 78
TABLE 42: EG91-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 78
EG91_Hardware_Design 7 / 93
LTE Module Series
EG91 Hardware Design
TABLE 43: EG91-EC CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 78
TABLE 44: ELECTROSTATIC DISCHARGE CHARACTERISTICS ................................................................. 79
TABLE 45: RECOMMENDED THERMAL PROFILE PARAMETERS ............................................................... 87
TABLE 46: RELATED DOCUMENTS ................................................................................................................ 90
TABLE 47: TERMS AND ABBREVIATIONS ...................................................................................................... 90
TABLE 48: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 94
TABLE 49: GPRS MULTI-SLOT CLASSES ...................................................................................................... 95
TABLE 50: EDGE MODULATION AND CODING SCHEMES ........................................................................... 97
EG91_Hardware_Design 8 / 93
LTE Module Series
EG91 Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 20
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 22
FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 31
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 32
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 33
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 34
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ...................................................... 35
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ............................................................................ 36
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 36
FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 37
FIGURE 11: TURN ON THE MODULE USING BUTTON ................................................................................. 38
FIGURE 12: POWER-ON SCENARIO .............................................................................................................. 38
FIGURE 13: POWER-OFF SCENARIO ............................................................................................................ 39
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 40
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 41
FIGURE 16: RESET SCENARIO ...................................................................................................................... 41
FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
................................................................................................................................................................... 43
FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR . 43
FIGURE 19: REFERENCE CIRCUIT OF USB INTERFACE ............................................................................ 45
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 47
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 48
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 49
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 49
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 50
FIGURE 25: REFERENCE CIRCUIT OF SPI INTERFACE WITH PERIPHERALS ......................................... 51
FIGURE 26: REFERENCE CIRCUIT OF NETWORK STATUS INDICATOR ................................................... 52
FIGURE 27: REFERENCE CIRCUIT OF STATUS ........................................................................................... 53
FIGURE 28: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 55
FIGURE 29: TIMING SEQUENCE FOR ENTERING INTO EMERGENCY DOWNLOAD MODE .................... 56
FIGURE 30: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61
FIGURE 31: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62
FIGURE 32: COPLANAR WAVEGUIDE DESIGN ON A 2-LAYER PCB ........................................................... 62
FIGURE 33: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND)
................................................................................................................................................................... 62
FIGURE 34: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND)
................................................................................................................................................................... 62
FIGURE 35: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 64
FIGURE 36: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM) ................................................ 65
FIGURE 37: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 66
FIGURE 38: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 66
EG91_Hardware_Design 9 / 93
LTE Module Series
EG91 Hardware Design
FIGURE 39: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE) .................. 80
FIGURE 40: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOMERS’ PCB)
................................................................................................................................................................... 81
FIGURE 41: MODULE TOP AND SIDE DIMENSIONS ..................................................................................... 82
FIGURE 42: MODULE BOTTOM DIMENSIONS (TOP VIEW) ......................................................................... 83
FIGURE 43: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 84
FIGURE 44: TOP VIEW OF THE MODULE ...................................................................................................... 85
FIGURE 45: BOTTOM VIEW OF THE MODULE .............................................................................................. 85
FIGURE 46: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 87
FIGURE 47: TAPE DIMENSIONS ..................................................................................................................... 88
FIGURE 48: REEL DIMENSIONS ..................................................................................................................... 89
FIGURE 49: TAPE AND REEL DIRECTIONS ................................................................................................... 89
EG91_Hardware_Design 10 / 93
LTE Module Series
EG91 Hardware Design
1 Introduction
This document defines the EG91module and describes its air interface and hardware interface which are
connected with customers’ applications.
This document can help customers quickly understand module interface specifications, electrical
andmechanical details, as well as other related information of EG91 module. Associated with application
note and user guide, customers can use EG91 module to design and set up mobile applications easily.
EG91_Hardware_Design 11 / 93
LTE Module Series
EG91 Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of operation, such as usage, service
or repair of any cellular terminal or mobile incorporating EG91module. Manufacturers of the cellular terminal
should send the following safety information to users and operating personnel, and incorporate these
guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers’
failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. Please comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. The operation
of wireless appliances in an aircraft is forbidden to prevent interference with
communication systems. If the device offers an Airplane Mode, then it should be
enabled prior to boarding an aircraft. Please consult the airline staff for more
restrictions on the use of wireless devices on boarding the aircraft.
Wireless devices may cause interference on sensitive medical equipment, so
please be aware of the restrictions on the use of wireless devices when in
hospitals,clinics or other healthcare facilities.
Cellular terminals or mobiles operating over radio signals and cellular network
cannot be guaranteed to connect in all possible conditions (for example, with
unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such
conditions, please remember using emergency call. In order to make or receive a
call, the cellular terminal or mobile must be switched on in a service area with
adequate cellular signal strength.
The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it
receives and transmits radio frequency signals. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EG91_Hardware_Design 12 / 93
LTE Module Series
EG91 Hardware Design
1.2. FCC/ISED Regulatory notices
Modification statement Quectel has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user’s authority to operate the equipment. Quectel n’approuve aucune modification apportée à l’appareil par l’utilisateur, quelle qu’en soit la nature. Tout changement ou modification peuvent annuler le droit d’utilisation de l’appareil par l’utilisateur. Interference statement This device complies with Part 15 of the FCC Rules and Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
RF exposure
This equipment complies with FCC and ISED radiation exposure limits set forth for an uncontrolled environment. The
antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body. Antenna
gain must be below:
Antenna Gain
WCDAM II:9.000dBi ❒ WCDAM V:6.000dBi
WCDAM VIII:10.416dBi
LTE Band2:8.500dBi LTE Band4:5.500dBi LTE Band5:9.916dBi LTE Band12:9.234dBi LTE Band13:9.673dBi L TE Band25:8.500dBi
L TE Band25:≤9.837dBi
This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
The host end product must include a user manual that clearly defines operating requirements and conditions that must be
observed to ensure compliance with current FCC RF exposure guidelines.
For portable devices, in addition to above, a separate approval is required to satisfy the SAR requirements of FCC Part
2.1093.
If the device is used for other equipment that separate approval is required for all other operating configurations, including
portable configurations with respect to 2.1093 and different antenna configurations.
Cet appareil est conforme aux limites d'exposition aux rayonnements de l’ISED pour un environnement non contrôlé. L'antenne doit être installé de façon à garder une distance minimale de 20 centimètres entre la source de rayonnements et votre corps. Gain de l'antenne doit être ci-dessous:
Gain de l‘antenne
EG91_Hardware_Design 13 / 93
LTE Module Series
EG91 Hardware Design
WCDAM II:9.00dBi ❒ WCDAM V:6.00dBi
WCDAM VIII:7.15dBi
LTE Band2:8.50dBi LTE Band4:5.50dBi LTE Band5:6.64dBi LTE Band12:6.15dBi LTE Band13:6.44dBi L TE Band25:8.50dBi
L TE Band25:≤6.63dBi
L'émetteur ne doit pas être colocalisé ni fonctionner conjointement avec à autre antenne ou autre émetteur.
FCC Class B digital device notice This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help. Labelling Requirements for the Host device
The host device shall be properly labelled to identify the modules within the host device. The certification label of the
module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to
display the FCC ID and ISED of the module, preceded by the words "Contains transmitter module", or the word "Contains",
or similar wording expressing the same meaning, as follows:
Contains FCC ID:XMR201903EG91NS
Contains IC: 10224A-20193EG91NS
The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and
the FCC ID and ISED.
L'appareil hôte doit être étiqueté comme il faut pour permettre l'identification des modules qui s'y trouvent. L'étiquette de certification du module donné doit être posée sur l'appareil hôte à un endroit bien en vue en tout temps. En l'absence d'étiquette, l'appareil hôte doit porter une étiquette donnant le FCC ID et l’ISED du module, précédé des mots « Contient un module d'émission », du mot « Contient » ou d'une formulation similaire exprimant le même sens, comme suit :
Contient FCC ID:XMR201903EG91NS
Contient IC: 10224A-20193EG91NS
Le manuel d'utilisation OEM de l'hôte doit également contenir des instructions claires sur la manière dont les utilisateurs
finaux peuvent trouver et / ou accéder au module et à l'ID FCC et l’ISED.
EG91_Hardware_Design 14 / 93
LTE Module Series
EG91 Hardware Design
CAN ICES-3 (B) / NMB-3 (B) This Class B digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de classe B est conforme à la norme canadienne ICES-003.
Installation Guidance
The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional
radiators in order to be properly authorized for operation as a Part 15 digital device.
The user’s manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or
modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the
Internet, the information required by this section may be included in the manual in that alternative form, provided the user
can reasonably be expected to have the capability to access information in that form.
To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with
the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator
under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host
manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be
compliant with the Part 15B unintentional radiator requirements.
EG91_Hardware_Design 15 / 93
LTE Module Series
EG91 Hardware Design
2 Product Concept
2.1. General Description
EG91module is an embedded 4G wireless communication module with receive diversity. It
supportsLTE-FDD/WCDMA/GSM wireless communication, andprovides data connectivity on
LTE-FDD,DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA,EDGE andGPRSnetworks. It can also provide
voice functionality
frequency bands of EG91series module.
1)
to meet customers’ specific application demands. The following table shows the
Table 1: Frequency Bands of EG91Series Module
Module
EG91-E
EG91-NA FDD: B2/B4/B5/B12/B13 B2/B4/B5 Not supported
EG91-NS
EG91-V FDD: B4/B13 Not supported Not supported
EG91-EC
LTE Bands (with Rx-diversity)
FDD:
B1/B3/B7/B8/B20/B28A
FDD:
B2/B4/B5/B12/B13/B25/
B26
FDD:
B1/B3/B7/B8/B20/B28
WCDMA (with Rx-diversity)
B1/B8 900/1800MHz Not supported
B2/B4/B5 Not supported
B1/B8 900/1800MHz
GSM GNSS2)
GPS, GLONASS,
BeiDou/Compass,G
alileo, QZSS
GPS, GLONASS,
BeiDou/Compass,
Galileo, QZSS
GPS, GLONASS,
BeiDou/Compass,
Galileo, QZSS
GPS, GLONASS,
BeiDou/Compass,
Galileo, QZSS
NOTES
1)
1.
EG91contains Telematicsversion and Data-only version. Telematics version supports voice and
datafunctions, while Data-only version only supports data function.
2)
2.
GNSS function is optional.
EG91_Hardware_Design 16 / 93
LTE Module Series
EG91 Hardware Design
With a compact profile of 29.0mm ×25.0mm ×2.3mm, EG91 can meet almost all requirements for M2M
applications such as automotive, smart metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone, tablet PC, etc.
EG91 is an SMD type module which can be embedded into applications through its 106 LGA pads.
EG91 is integrated with internet service protocols like TCP, UDP and PPP. Extended AT commands have
been developed for customers to use these internet service protocols easily.
2.2. Key Features
The following table describes the detailed features of EG91 module.
Table 2: Key Features of EG91 Module
Feature Details
Power Supply
Supply voltage: 3.3V~4.3V
Typical supply voltage: 3.8V
Class 4 (33dBm±2dB) for EGSM900
Class 1 (30dBm±2dB) for DCS1800
Transmitting Power
Class E2 (27dBm±3dB) for EGSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Support up to non-CA Cat 1 FDD
LTE Features
Support 1.4MHz~20MHz RF bandwidth
Support MIMO in DL direction
LTE-FDD: Max 10Mbps (DL), Max 5Mbps (UL)
Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA
Support QPSK, 16-QAM and 64-QAM modulation
UMTS Features
DC-HSDPA: Max 42Mbps (DL)
HSUPA: Max 5.76Mbps (UL)
WCDMA: Max 384Kbps (DL), Max 384Kbps (UL)
R99:
CSD: 9.6kbps
GPRS:
GSMFeatures
Support GPRS multi-slot class 33(33 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Max 107Kbps (DL), Max 85.6Kbps (UL)
EDGE:
EG91_Hardware_Design 17 / 93
EG91 Hardware Design
Internet Protocol Features
SMS
LTE Module Series
Support EDGE multi-slot class 33(33 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Max 296Kbps (DL)/Max 236.8Kbps (UL)
SupportTCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/NITZ/CMUX*/HTTPS*/
SMTP*/MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols
Support PAP (Password Authentication Protocol) and CHAP (Challenge
Handshake Authentication Protocol) protocols which are usually used for
PPP connections
Text and PDU modes
Point-to-point MO and MT
SMS cell broadcast
SMS storage: ME by default
(U)SIMInterfaces Support 1.8V and 3.0V (U)SIM cards
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
Audio Features
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
Used for audio function with external codec
Support 16-bit linear data format
PCM Interface
Support long frame synchronization and short frame synchronization
Support master and slave mode, but must be the master in long frame
synchronization
Compliant with USB 2.0 specification (slave only);the data transfer rate can
reach up to 480Mbps
Used for AT command communication, data transmission,GNSS NMEA
USB Interface
sentences output, software debugging, firmware upgrade and voice over
USB*
Support USB serial drivers for: Windows 7/8/8.1/10, Windows CE
5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x/8.x, etc.
Main UART:
Used for AT command communication and data transmission
Baud rates reach up to 921600bps, 115200bps by default
UART Interface
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console and log output
115200bps baud rate
Rx-diversity Support LTE/WCDMA Rx-diversity
GNSS Features Gen8C Lite of Qualcomm
EG91_Hardware_Design 18 / 93
LTE Module Series
EG91 Hardware Design
Protocol: NMEA 0183
AT Commands
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Network Indication NETLIGHTpin for network activitystatusindication
Antenna Interfaces
Including main antenna interface (ANT_MAIN), Rx-diversity antenna
1)
(ANT_DIV) interface and GNSS antenna interface(ANT_GNSS)
Size: (29.0±0.15)mm × (25.0±0.15)mm × (2.3±0.2)mm
Physical Characteristics
Package: LGA
Weight: approx. 3.8g
2)
3)
Temperature Range
Operation temperature range: -35°C ~ +75°C
Extended temperature range: -40°C ~ +85°C
Storage temperature range: -40°C ~ +90°C
Firmware Upgrade USB interface orDFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive
NOTES
1. 1)GNSS antenna interface is only supported on EG91-NA/-NS/-V/-EC.
2. 2) Within operationtemperature range, the module is 3GPP compliant.
3. 3) Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
might reduce in their value and exceed the specified tolerances. When the temperature
out
returns to normal operationtemperature levels, the module will meet 3GPP specificationsagain.
4. “*” means under development.
2.3. Functional Diagram
The following figure shows a block diagram of EG91 and illustrates the major functional parts.
Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
EG91_Hardware_Design 19 / 93
LTE Module Series
EG91 Hardware Design
VBAT_RF
VBAT_BB
PWRKEY
RESET_N
STATUS
PMIC
Tx
Control
ANT_MAIN ANT_DIV
PAM
Duplexer
PA
PRx DRx
ANT_GNSS
GPS
1)
SAW
LNA
SAW
Transceiver
IQ C ontrol
Baseband
Switch
SAW
NAND DDR2
SDRAM
19.2M XO
VDD_EXT
(U)SIM1
USB PCM UARTI2C
(U)SIM2
SPI
GPIOs
Figure 1: Functional Diagram
NOTE
1)
GNSS antenna interface is only supported on EG91-NA/-NS/-V/-EC.
2.4. Evaluation Board
Quectel provides a complete set of evaluation tools to facilitate the use and testing ofEG91 module. The
evaluation tool kit includes the evaluation board (UMTS<E EVB), USB data cable, earphone, antenna
and other peripherals.
EG91_Hardware_Design 20 / 93
LTE Module Series
EG91 Hardware Design
3 Application Interfaces
3.1. General Description
EG91is equipped with 62-pin 1.1mm pitch SMT pads plus 44-pin ground/reserved pads that can be
connected to customers’ cellular application platforms. Sub-interfaces included in these pads are
described in detail in the following chapters:
Power supply
(U)SIMinterfaces
USB interface
UART interfaces
PCMand I2C interfaces
SPI interface
Statusindication
USB_BOOT interface
EG91_Hardware_Design 21 / 93
EG91 Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EG91 module.
RESERVED (Pin 49 on EG91-E)
ANT_DIV (EG91-NA/-NS/-V/-EC)
LTE Module Series
NC
NC
GND
PCM _C LK
PCM _SY N C
PCM _D IN
PCM_DOUT
USB_VBUS
USB_DP
USB_DM
NC
NC
NC
NC
PW RKEY
NC
RESET_N
RESERVED
ANT _M AIN
GND
103
62
GND
61
60
GND
59
GND
58
NC
57
56
GND
55
1
2
82 81
80 79
3
4
5
6
7
63
64
10 2 10 1
USIM2_PRESENCE
83
84
USIM2_CLK
10 0
99
8
65
85
9
USIM2_RST
10
66
86
USIM2_DATA
11
12
13
67
68
USIM2_VDD
87
88
14
1)
15
16
89 90
69
91 92
71
70
72
17
18
19
20
21
22
23
24
25
26
104
54
VB AT_ RF
VB AT_ RF
GND
53
98
97
96
95
94
93
28
27
52
51
78
77
76
75
74
73
29
GND
NC
50
USB_BOOT
30
31
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
106
ANT_GNSS (EG91-NA/-NS/-V/-EC) ANT _DI V (EG 91-E)
GND
USIM_GND
USIM1_CLK
USIM1_DATA
USIM1_RST
USIM1_VDD
USIM1_PRESENCE
I2C_SDA
I2C_SCL
RI
DCD
RTS
CTS
TXD
RXD
VB AT_ BB
VB AT_ BB
105
DBG_RXD
PCM
ADC 0
DBG_TXD
RESERVED
SP I
PO WER USB UART
AP _R EAD Y
(U)SIM
ST ATU S
NETLIGHT
Figure 2:Pin Assignment (Top View)
EG91_Hardware_Design 22 / 93
DTR
GND
SP I_C LK
SP I_ MOSI
VDD _EX T
SP I_ MIS O
ANT
GND
NC
RESERVED
OTHE RS
LTE Module Series
EG91 Hardware Design
NOTES
1. 1)PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
2. Keep all RESERVEDpins and unused pins unconnected.
3. GND pads should be connected to ground in the design.
4. Definition of pin 49 and 56 are different amongEG91-E/-NS/-V/-EC and EG91-NA.For more details,
please refer to Table 4.
3.3. Pin Description
The following tables show the pin definition and description of EG91.
Table 3: IO Parameters Definition
Type Description
AI Analog input
AO Analog output
DI Digital input
DO Digital output
IO Bidirectional
OD Open drain
PI Power input
PO Power output
Table 4: Pin Description
Power Supply
Pin Name Pin No. I/O Description
Power supply for
VBAT_BB 32, 33 PI
module’s baseband
part
EG91_Hardware_Design 23 / 93
DC Characteristics
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
Comment
It must be able to
provide sufficient
current up to 0.8A.
LTE Module Series
EG91 Hardware Design
It must be able to
provide sufficient
current up to 1.8A in a
burst transmission.
VBAT_RF 52, 53 PI
Power supply for
module’s RF part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
Power supply for
VDD_EXT 29 PO
Provide 1.8V for
external circuit
Vnorm=1.8V
I
max=50mA
O
external GPIO’s pull up
circuits.
If unused, keep it open.
3, 31, 48,
50, 54, 55,
58, 59, 61,
GND
62, 67~74,
Ground
79~82,
89~91,
100~106
Turn-on/off
Pin Name Pin No. I/O Description DC Characteristics Comment
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
PWRKEY 15 DI
Turn on/off the
module
V
max=2.1V
IH
V
min=1.3V
IH
V
max=0.5V
IL
Pull-up to 1.8V
V
RESET_N 17 DI
Reset signal of the
module
max=2.1V
IH
V
min=1.3V
IH
V
max=0.5V
IL
internally.
Activelow.
If unused,keep it
open.
Status Indication
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
STATUS 20 DO
NETLIGHT 21 DO
Indicate the
module’s operating
status
Indicate the
module’s network
activity status
V
min=1.35V
OH
V
max=0.45V
OL
V
min=1.35V
OH
V
max=0.45V
OL
USB Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
USB_VBUS 8 PI
USB connection
detection
Vmax=5.25V
Vmin=3.0V
Vnorm=5.0V
Typical:5.0V
If unused,keep it
open.
EG91_Hardware_Design 24 / 93
LTE Module Series
EG91 Hardware Design
USB_DP 9 IO
USB_DM 10 IO
USB differential
data bus (+)
USB differential
data bus (-)
Compliant with USB
2.0 standard
specification.
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90Ω.
Require differential
impedance of 90Ω.
(U)SIM Interfaces
Pin Name Pin No. I/O Description DC Characteristics Comment
Connect to ground of
(U)SIM card
connector.
USIM_GND 47
Specified ground
for (U)SIM card
For 1.8V (U)SIM:
Vmax=1.9V
Vmin=1.7V
USIM1_VDD 43 PO
Power supply for
(U)SIMcard
For 3.0V (U)SIM:
Vmax=3.05V
Either 1.8V or 3.0V is
supported by the
module automatically.
Vmin=2.7V
I
max=50mA
O
For 1.8V (U)SIM:
V
max=0.6V
IL
V
min=1.2V
IH
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
max=1.0V
V
IL
V
min=1.95V
IH
V
max=0.45V
OL
V
min=2.55V
OH
USIM1_DATA 45 IO
Data signal of
(U)SIMcard
For 1.8V (U)SIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
max=0.45V
V
OL
V
min=2.55V
OH
USIM1_CLK 46 DO
Clock signal of
(U)SIMcard
EG91_Hardware_Design 25 / 93
EG91 Hardware Design
USIM1_RST 44 DO
USIM1_
PRESENCE
42 DI
USIM2_VDD 87 PO
USIM2_DATA 86 IO
USIM2_CLK 84 DO
USIM2_RST 85 DO
Reset signal of
(U)SIMcard
(U)SIMcard
insertion detection
Power supply for
(U)SIMcard
Data signal of
(U)SIMcard
Clock signal of
(U)SIMcard
Reset signal of
(U)SIMcard
For 1.8V (U)SIM:
max=0.45V
V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
V
max=0.45V
OL
V
min=2.55V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
For 1.8V (U)SIM:
Vmax=1.9V
Vmin=1.7V
For 3.0V (U)SIM:
Vmax=3.05V
Vmin=2.7V
I
max=50mA
O
For 1.8V (U)SIM:
V
max=0.6V
IL
V
min=1.2V
IH
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
max=1.0V
V
IL
V
min=1.95V
IH
V
max=0.45V
OL
V
min=2.55V
OH
For 1.8V (U)SIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
max=0.45V
V
OL
V
min=2.55V
OH
For 1.8V (U)SIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
max=0.45V
V
OL
LTE Module Series
1.8V power domain.
If unused, keep it
open.
Either 1.8V or 3.0V is
supported by the
module automatically.
EG91_Hardware_Design 26 / 93
LTE Module Series
EG91 Hardware Design
VOHmin=2.55V
V
min=-0.3V
USIM2_
PRESENCE
83 DI
(U)SIMcard
insertion detection
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
Main UART Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
V
RI 39 DO Ring indicator
DCD 38 DO
Data carrier
detection
CTS 36 DO Clear to send
RTS 37 DI Request to send
Data terminal
DTR 30 DI
ready. Sleep mode
control.
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
max=0.45V
min=1.35V
max=0.45V
min=1.35V
max=0.45V
min=1.35V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Pull-up by default.
Low level wakes up
the module.
If unused, keep it
open.
TXD 35 DO Transmit data
V
V
V
RXD 34 DI Receive data
V
V
V
max=0.45V
OL
min=1.35V
OH
min=-0.3V
IL
max=0.6V
IL
min=1.2V
IH
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
Debug UART Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
DBG_TXD 23 DO Transmit data
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
V
EG91_Hardware_Design 27 / 93
LTE Module Series
EG91 Hardware Design
open.
V
min=-0.3V
DBG_RXD 22 DI Receive data
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
PCM Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
V
min=-0.3V
PCM_DIN 6 DI PCM data input
PCM_
DOUT
7 DO PCM data output
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
PCM data frame
PCM_SYNC 5 IO
synchronization
signal
PCM_CLK 4 IO PCM clock
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
I2C Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
An external pull-up
I2C_SCL 40 OD
I2C serial clock.
Used for external
codec
resistor is required.
1.8V only.
If unused, keep it
open.
I2C serial data.
I2C_SDA 41 OD
Used for external
codec
EG91_Hardware_Design 28 / 93
An external pull-up
resistor is required.
1.8V only.
If unused, keep it
open.
LTE Module Series
EG91 Hardware Design
ADC Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
ADC0 24 AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
SPI Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
SPI_CLK 26 DO
SPI_MOSI 27 DO
SPI_MISO 28 DI
Clock signal of SPI
interface
Master output slave
input of SPI
interface
Master input slave
output of SPI
interface
V
max=0.45V
OL
V
min=1.35V
OH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
RF Interfaces
Pin Name Pin No. I/O Description DC Characteristics Comment
50 impedance.
If unused, keep it
open.
The pin is defined as
ANT_DIV on
ANT_GNSS
49
(EG91-N
A/-NS/
-V/-EC)
AI GNSS antenna pad
EG91-E.
49
ANT_DIV
(EG91-E
)
56
(EG91-
NA/-NS/
AI
Receive diversity
antenna pad
50 impedance.
If unused, keep it
open.
The pin is reserved on
EG91-E.
-V/-EC)
50 impedance.
ANT_MAIN 60 IO Main antenna pad
If unused, keep it
open.
Other Pins
Pin Name Pin No. I/O Description DC Characteristics Comment
EG91_Hardware_Design 29 / 93
LTE Module Series
EG91 Hardware Design
V
min=-0.3V
AP_READY 19 DI
USB_BOOT 75 DI
Application
processor sleep
state detection
Force the module to
enter into
emergency
download mode
IL
VILmax=0.6V
V
min=1.2V
IH
V
max=2.0V
IH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
It is recommended to
reserve the test
points.
RESERVED Pins
Pin Name Pin No. I/O Description DC Characteristics Comment
1,2, 11~14,
NC
16, 51,
57, 63~66,
76~78,
NC
Keep these pins
unconnected.
88, 92~99
Keep these pins
RESERVED 18, 25, 49 Reserved
unconnected.
Pin 49 is only
reserved on EG91-E.
NOTE
Keep all RESERVED pins and unused pins unconnected.
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode Details
Software is active. The module hasregistered on network, and it is ready
to send and receive data.
Network connection is ongoing. In this mode, the power consumption is
decided by network settingand data transfer rate.
Normal
Operation
Minimum
Functionality
Idle
Talk/Data
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and (U)SIM card will be invalid.
EG91_Hardware_Design 30 / 93
Mode
LTE Module Series
EG91 Hardware Design
Airplane
Mode
AT+CFUN command or W_DISABLE# pin can set the module to enter intoairplane
mode. In this case, RF function will be invalid.
In this mode, the current consumption of the module will be reduced to the minimal level.
Sleep Mode
Power Down
Mode
During this mode, the module can still receive paging message, SMS, voice call and
TCP/UDP data from the network normally.
In this mode, the power management unit shuts down the power supply. Software is not
active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF
and VBAT_BB) remains applied.
3.5. Power Saving
3.5.1. Sleep Mode
EG91 is able to reduce its current consumption to a minimum value during the sleep mode. The following
sub-chaptersdescribe the power saving procedures of EG91 module.
3.5.1.1. UART Application
If the host communicates with the module via UART interface, the following preconditions can let the
module enter into sleep mode.
Execute AT+QSCLK=1commandto enable sleep mode.
Drive DTR to high level.
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART
Driving the host DTR to low level will wake up the module.
EG91_Hardware_Design 31 / 93
LTE Module Series
EG91 Hardware Design
When EG91 has a URC to report, RI signal will wake up the host. Please refer to Chapter 3.17for
details about RI behavior.
AP_READY will detect the sleep state of host (can be configured to high level or low level detection).
Please refer to AT+QCFG="apready"*commandfor details.
NOTE
“*” means under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions
must be met to let the module enter into sleep mode.
Execute AT+QSCLK=1commandto enable sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspend state.
The following figure shows the connection between the module and the host.
Figure 4: Sleep Mode Application with USB Remote Wakeup
Sending data to EG91through USB will wake up the module.
When EG91has a URC to report, the module will send remote wakeup signals via USB busso as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wakeup function, the RI signal is
needed to wake up the host.
There are threepreconditions to let the module enter into the sleep mode.
EG91_Hardware_Design 32 / 93
LTE Module Series
EG91 Hardware Design
Execute AT+QSCLK=1commandto enable sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI
Sending data to EG91through USB will wake up the module.
When EG91has a URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, USB_VBUS should be disconnected with an
externalcontrol circuit to let the module enter into sleep mode.
Execute AT+QSCLK=1commandto enable sleep mode.
Ensure the DTR is held at high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Module Host
GPIO
USB_VBUS
USB_DP
USB_DM
AP_READY
GND
Power
Switch
RI EINT
VDD
USB_DP
USB_DM
GPIO
GND
EG91_Hardware_Design 33 / 93
LTE Module Series
EG91 Hardware Design
Figure 6: Sleep Mode Application without Suspend Function
Switching onthe power switch tosupply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and the host.Please
refer to document [1] for more details about EG91 power management application.
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set viathe following ways.
Hardware:
The W_DISABLE# pin is pulled up by default.Driving it to low level will let the module enter into airplane
mode.
Software: AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4.
AT+CFUN=0: Minimum functionality mode.Both (U)SIM and RF functions are disabled.  AT+CFUN=1: Full functionality mode (by default).  AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by
AT+QCFG="airplanecontrol" command and this command is under development.
2. The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EG91 provides four VBAT pins dedicated to connectwithanexternal power supply. There are two separate
voltage domains for VBAT.
Two VBAT_RF pins for module’sRF part.
Two VBAT_BB pins for module’s baseband part.
EG91_Hardware_Design 34 / 93
LTE Module Series
EG91 Hardware Design
The following table shows the details of VBAT pins and ground pins.
Table 6: Pin Definition of VBAT and GND
Pin Name Pin No. Description Min. Typ. Max. Unit
VBAT_RF 52,53
VBAT_BB 32,33
Power supply for module’s
RF part.
Power supply for module’s
baseband part.
3.3 3.8 4.3 V
3.3 3.8 4.3 V
3, 31, 48,50,
54, 55,58, 59,
GND
61,62, 67~74,
Ground - 0 - V
79~82,89~91,
100~106
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3Vto4.3V. Please make sure thatthe input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network.The voltage drop will be less in 3G and 4G networks.
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR(ESR=0.7) should be used,
and amulti-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It
is recommended to usethree ceramic capacitors (100nF, 33pF, 10pF)for composing the MLCC array, and
place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external
application has to be a single voltage source and can be expanded to two sub paths with star structure.
The width of VBAT_BB trace should be no less than 1mm, andthe width of VBAT_RF trace should be no
less than 2mm.In principle, the longerthe VBAT trace is, the wider it will be.
In addition, in order to avoid the damage caused by electric surge and ESD, it is suggested that a TVS
EG91_Hardware_Design 35 / 93
LTE Module Series
EG91 Hardware Design
diode with low reverse stand-off voltage V
current I
should be used. The following figure shows the star structure of the power supply.
PP
VB AT
D1
WS4.5D3HV
C1
100uF
+
100nF
C2
C3
33pF
10pF
, low clamping voltage VC and high reverse peak pulse
RWM
C5
C4
100uF
Figure 8: Star Structure of the Power Supply
3.6.3. Reference Design for Power Supply
VB AT_R F
VB AT_BB
+
C6
100nFC733pFC810pF
Module
Power design for the module is very important, asthe performance of the module largely depends on the
power source. The power supply should be able to provide sufficient current up to 2A at least. If the
voltage drop between the input and output is not too high, it is suggested that an LDO should be usedto
supply power for the module. If there is a big voltage difference between the input source and the desired
output (VBAT), a buck converter is preferred to be used as the power supply.
The following figure shows a reference design for +5V input power source. The typicaloutput ofthe power
supply is about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
EG91_Hardware_Design 36 / 93
LTE Module Series
EG91 Hardware Design
3.6.4. Monitor the Power Supply
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Power-on/off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definitionof PWRKEY.
Table 7: Pin Definition of PWRKEY
Pin Name Pin No. Description DC Characteristics Comment
max=2.1V
PWRKEY 15 Turn on/off the module
V
IH
V
min=1.3V
IH
V
max=0.5V
IL
The output voltage is 0.8V
because of the diode drop in
the Qualcomm chipset.
When EG91 is in powerdown mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 500ms. It is recommended to use an open drain/collector driver to control the
PWRKEY.After STATUS pin outputting a high level, PWRKEY pin can be released. A simple reference
circuit is illustrated in the following figure.
Figure 10: Turn on the Module Using Driving Circuit
Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike
may generate from the finger. Therefore, aTVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shownin the following figure.
EG91_Hardware_Design 37 / 93
EG91 Hardware Design
Figure 11: Turn on the Module Using Button
The power-on scenario is illustrated in the following figure.
LTE Module Series
VBAT
PWRKEY
VDD_EXT
BOOT_CONFIG &
USB_BOOT Pins
RESET_N
STATUS
(DO)
NOTE
500ms
VIL≤0.5V
About 100ms
100ms, afte r this time, the BOOT_CONFIG & USB_BOOT pin s can be set high level by external circuit.
2.5s
Inactive
V
H
12s
=0.8V
ActiveUART
Inactive ActiveUSB
Figure 12: Power-on Scenario
EG91_Hardware_Design 38 / 93
13s
LTE Module Series
EG91 Hardware Design
NOTES
1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is
no less than 30ms.
2. PWRKEY can be pulled down directly to GND with a recommended 10K resistor if module needs to
be powered on automatically and shutdown is not needed.
3.7.2. Turn off Module
Either of the following methodscan be used to turn off the module:
Normal power-offprocedure: Turn off the module using the PWRKEY pin.
Normal power-off procedure: Turn off the module using AT+QPOWDcommand.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-off
procedure after the PWRKEY is released. The power-off scenario is illustrated inthe following figure.
Figure 13: Power-off Scenario
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWDcommandto turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer todocument [2] for details about the AT+QPOWDcommand.
EG91_Hardware_Design 39 / 93
LTE Module Series
EG91 Hardware Design
NOTES
1. In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shut down by PWRKEY or AT command, the power supply
can be cut off.
2. When turning off module with AT command, please keep PWRKEY at high level after the execution of
power-off command. Otherwise the module will be turned on again after successful turn-off.
3.8. Reset the Module
The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a
low level voltage for 150ms~460ms.
Table 8: Pin Definition of RESET_N
Pin Name Pin No. Description DC Characteristics Comment
max=2.1V
V
IH
RESET_N 17 Reset the module
V
min=1.3V
IH
V
max=0.5V
IL
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
EG91_Hardware_Design 40 / 93
EG91 Hardware Design
Figure 15: Reference Circuit of RESET_N by Using Button
The reset scenario is illustrated inthe following figure.
LTE Module Series
Figure 16: Reset Scenario
NOTES
1. Use RESET_N only when turning off the module by AT+QPOWDcommand and PWRKEY pin failed.
2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. (U)SIM Interfaces
EG91provides two (U)SIMinterfaces, and only one (U)SIMcard can work at a time. The (U)SIM1 and
(U)SIM2cards can be switched by AT+QDSIM* command. For more details, please refer to document [2].
The(U)SIM interfacescircuitrymeet ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIMcards
are supported.
EG91_Hardware_Design 41 / 93
LTE Module Series
EG91 Hardware Design
Table 9: Pin Definition of (U)SIM Interfaces
Pin Name Pin No. I/O Description Comment
Either 1.8V or 3.0V is
USIM1_VDD 43 PO Power supply for (U)SIM1 card
supported by the module
automatically.
USIM1_DATA 45 IO Data signal of (U)SIM1 card
USIM1_CLK 46 DO Clock signal of (U)SIM1card
USIM1_RST 44 DO Reset signal of (U)SIM1 card
USIM1_
PRESENCE
42 DI (U)SIM1 card insertion detection
USIM_GND 47 Specified ground for (U)SIMcard
Either 1.8V or 3.0V is
USIM2_VDD 87 PO Power supply for (U)SIM2 card
supported by the module
automatically.
USIM2_DATA 86 IO Data signal of (U)SIM2 card
USIM2_CLK 84 DO Clock signal of (U)SIM2 card
USIM2_RST 85 DO Reset signal of (U)SIM2 card
USIM2_
PRESENCE
83 DI (U)SIM2 card insertion detection
EG91 supports (U)SIMcard hot-plug via USIM_PRESENCE(USIM1_PRESENCE/USIM2_PRESENCE)
pin. The functionsupports low level and high level detection, andis disabled by default. Pleaserefer to
document [2] about AT+QSIMDETcommand for details.
The following figure shows a reference design for (U)SIM interface with an8-pin (U)SIMcard connector.
EG91_Hardware_Design 42 / 93
LTE Module Series
EG91 Hardware Design
Figure 17: Reference Circuitof (U)SIMInterface with an 8-Pin (U)SIMCard Connector
If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected.
Areference circuit of (U)SIM interface with a 6-pin (U)SIMcard connector is illustrated inthe following
figure.
Figure 18: Reference Circuitof (U)SIM Interface with a 6-Pin (U)SIM Card Connector
In order to enhance the reliability and availability of the (U)SIM cardin customers’ applications, please
follow the criteria below in the (U)SIMcircuit design:
Keep placementof (U)SIMcard connector to the module as close as possible. Keep the trace length
as less than 200mm as possible.
Keep (U)SIMcard signals away from RF and VBAT traces.
EG91_Hardware_Design 43 / 93
LTE Module Series
EG91 Hardware Design
Assure the ground trace between the module and the (U)SIMcard connector short and wide. Keep
the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as
close to (U)SIM card connector as possible.If the ground is complete on customers’ PCB,
USIM_GND can be connected to PCB ground directly.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVSdiode array whose parasitic
capacitance should not be more than15pF. The 0resistors should be added in series between the
module and the (U)SIMcard to facilitate debugging. The 33pFcapacitors are used for filtering
interference of EGSM900.Please note that the (U)SIMperipheral circuit should be close to the
(U)SIMcard connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion areapplied, and should be placed close to the (U)SIMcard connector.
NOTE
“*” means under development.
3.10. USB Interface
EG91 contains one integrated Universal Serial Bus (USB) interfacewhich complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output,software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Definition of USB Interface
Pin Name Pin No. I/O Description Comment
USB_DP 9 IO USB differential data bus (+)
USB_DM 10 IO USB differential data bus (-)
Require differential
impedance of 90Ω.
Require differential
impedance of 90Ω.
USB_VBUS 8 PI USB connection detection Typical:5.0V
GND 3 Ground
For more details about USB 2.0 specifications, please visit http://www.usb.org/home
.
EG91_Hardware_Design 44 / 93
LTE Module Series
EG91 Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in customers’ design. The
following figure shows areference circuit of USB interface.
Figure 19: Reference Circuit of USB Interface
A common mode choke L1 is recommended to be added in series between the module and
customer’sMCU in order to suppress EMI spurious transmission. Meanwhile, the 0 resistors (R3 and R4)
should beadded in series between the module and the test points so as to facilitate debugging, and the
resistors are
not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4
componentsmust be placed close to the module, and also these resistors should be placed close to each
other. Theextra stubs of trace must be as short as possible.
The following principles should be complied with when design the USB interface, so as to meet USB 2.0
specification.
It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90Ω.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding onnot only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1. EG91 module can only be used as a slave device.
2. “*” means under development.
EG91_Hardware_Design 45 / 93
LTE Module Series
EG91 Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and thedebug UART interface. The
following shows their features.
The main UART interface supports 9600bps, 19200bps, 38400bps, 57600bps, 115200bps,
230400bps, 460800bps, 921600bps and 3000000bps baud rates, and the default is 115200bps. It
supports RTS and CTS hardware flow control, and is used for AT command communication only.
The debug UART interface supports 115200bpsbaud rate. It is used forLinux console and log output.
The following tables show the pin definition of the two UART interfaces.
Table 11: Pin Definition of Main UART Interfaces
Pin Name Pin No. I/O Description Comment
RI 39 DO Ring indicator
DCD 38 DO Data carrier detection
CTS 36 DO Clear to send
RTS 37 DI Request to send
1.8V power domain
DTR 30 DI Sleep mode control
TXD 35 DO Transmit data
RXD 34 DI Receive data
Table 12: Pin Definition of Debug UART Interface
Pin Name Pin No. I/O Description Comment
DBG_TXD 23 DO Transmit data 1.8V power domain
DBG_RXD 22 DI Receive data 1.8V power domain
The logic levels are described in the following table.
EG91_Hardware_Design 46 / 93
LTE Module Series
EG91 Hardware Design
Table 13:Logic Levels of Digital I/O
Parameter Min. Max. Unit
VIL -0.3 0.6 V
VIH 1.2 2.0 V
VOL 0 0.45 V
VOH 1.35 1.8 V
The module provides 1.8V UART interfaces. A level translator should be used if customers’ application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instruments is
recommended. The following figure shows areference design.
Figure 20: Reference Circuit with Translator Chip
Please visit http://www.ti.com
formore information.
Another example with transistor translation circuit is shown as below. Thecircuitdesign of dotted line
section can refer to the circuitdesign of solid linesection, in terms of both module input and output circuit
design. Please pay attention to the direction of connection.
EG91_Hardware_Design 47 / 93
LTE Module Series
EG91 Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EG91 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes and one I2C interface:
Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long frame synchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports
256KHz, 512KHz, 1024KHz or 2048KHz PCM_CLK at 8KHz PCM_SYNC, and also supports 4096KHz
PCM_CLK at 16KHz PCM_SYNC.
In auxiliary mode, the data is also sampled on the falling edge of the PCM_CLK and transmitted on the
rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates
with a 256KHz, 512KHz, 1024KHz or 2048KHz PCM_CLK and an 8KHz, 50% duty cycle PCM_SYNC.
EG91 supports 16-bit linear data format. The following figures show theprimary mode’s timing relationship
with 8KHz PCM_SYNC and 2048KHz PCM_CLK, as well asthe auxiliary mode’s timing relationship with
8KHz PCM_SYNC and 256KHz PCM_CLK.
EG91_Hardware_Design 48 / 93
LTE Module Series
EG91 Hardware Design
125us
PCM_CLK
PCM_SYNC
PCM_DOUT
PCM_DIN
12 256255
MSB
LSB
LSBMSB
MSB
MSB
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
EG91_Hardware_Design 49 / 93
LTE Module Series
EG91 Hardware Design
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name Pin No. I/O Description Comment
PCM_DIN 6 DI PCM data input 1.8V power domain
PCM_DOUT 7 DO PCM data output 1.8V power domain
PCM_SYNC 5 IO
PCM data frame
synchronization signal
1.8V power domain
PCM_CLK 4 IO PCM data bit clock 1.8V power domain
I2C_SCL 40 OD I2C serial clock Require an external pull-up to 1.8V
I2C_SDA 41 OD I2C serial data Require an external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronizationformat with 2048KHzPCM_CLK and 8KHz PCM_SYNC.Please refer to
document [2] aboutAT+QDAIcommand for details.
The following figure shows areference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1. It is recommended to reserve an RC (R=22, C=22pF) circuit on the PCM lines, especially for
PCM_CLK.
2. EG91 works as a master device pertaining to I2C interface.
EG91_Hardware_Design 50 / 93
LTE Module Series
EG91 Hardware Design
3.13. SPI Interface
SPI interface of EG91acts asthe master only. It provides a duplex, synchronous and serial communication
link with the peripheral devices. It isdedicated to one-to-one connection, withoutchip select.Its operation
voltage is 1.8V with clock rates up to 50MHz.
The following table shows the pin definition of SPI interface.
Table 15: Pin Definition of SPI Interface
Pin Name Pin No. I/O Description Comment
SPI_CLK 26 DO Clock signal of SPI interface 1.8V power domain
SPI_MOSI 27 DO
SPI_MISO 28 DI
The following figure shows areference design of SPI interface with peripherals.
Figure 25: Reference Circuit of SPI Interface with Peripherals
NOTE
Master output slave input of SPI
interface
Master input slave output of SPI
interface
1.8V power domain
1.8V power domain
The module provides 1.8V SPI interface. A level translator should be used between the module and the
host if customer’s applicationis equipped with a 3.3V processoror device interface.
3.14. Network Status Indication
The module provides one network indication pin: NETLIGHT. The pin is used to drive a network status
indication LED.
EG91_Hardware_Design 51 / 93
LTE Module Series
EG91 Hardware Design
The following tables describe the pin definition and logic level changes of NETLIGHT in different network
status.
Table 16: Pin Definition of Network StatusIndicator
Pin Name Pin No. I/O Description Comment
NETLIGHT 21 DO Indicate the module’snetwork activity status 1.8V power domain
Table 17: Working State of Network Status Indicator
Pin Name Logic Level Changes Network Status
Flicker slowly (200ms High/1800ms Low) Network searching
Flicker slowly (1800ms High/200ms Low) Idle
NETLIGHT
Flicker quickly (125ms High/125ms Low) Data transfer is ongoing
Always High Voice calling
A reference circuit is shown in the following figure.
Figure 26: Reference Circuit of Network Status Indicator
3.15. STATUS
The STATUS pin is set as the module’s operation status indicator. It will output high level when the
module is powered on. The following table describes the pin definition of STATUS.
EG91_Hardware_Design 52 / 93
EG91 Hardware Design
Table 18: Pin Definition of STATUS
Pin Name Pin No. I/O Description Comment
LTE Module Series
STATUS 20 DO Indicate the module’soperatingstatus
The following figure showsthe reference circuit of STATUS.
Figure 27: Reference Circuit of STATUS
1.8V power domain.
If unused, keep it open.
3.16. ADC Interface
The module provides one analog-to-digital converter (ADC) interface. AT+QADC=0 command can
beused to read the voltage value on ADC0 pin. For more details about the command, please refer to
document [2].
In order to improve the accuracy of ADC voltage values, the traces of ADC should be surrounded by
ground.
Table 19: Pin Definition of ADC Interface
Pin Name Pin No. I/O Description Comment
ADC0 24 AI
Force the module to enter into
emergency download mode
The following table describes the characteristics of ADC interface.
If unused, keep this pin
open.
EG91_Hardware_Design 53 / 93
LTE Module Series
EG91 Hardware Design
Table 20: Characteristics of ADC Interface
Parameter Min. Typ. Max. Unit
ADC0 Voltage Range 0.3 VBAT_BB V
ADC Resolution 15 bits
NOTES
1. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
2. It is recommended to use resistor divider circuit for ADC application.
3.17. Behaviors of RI
AT+QCFG="risignaltype","physical"command can be used to configure RI behavior.The default RI
behaviors can be changed by AT+QCFG="urc/ri/ring" command. Please refer to document [2] for
details.
No matter on which port URC is presented, URC will trigger the behavior ofRI pin.
NOTE
URC can be outputted from UART port, USB AT port and USB modem port through configuration via
AT+QURCCFG command. The default port is USB AT port.
The default behaviors of the RI are shown as below.
Table 21: Default Behaviors of RI
State Response
Idle RI keeps athigh level
URC RI outputs 120ms low pulse when a new URC returns
EG91_Hardware_Design 54 / 93
LTE Module Series
EG91 Hardware Design
3.18. USB_BOOT Interface
EG91provides a USB_BOOT pin. Customerscan pull up USB_BOOT to VDD_EXT before powering on
the module, thus the module will enter into emergency download mode when powered on. In this mode,
the module supports firmware upgrade over USB interface.
Table 22: Pin Definition of USB_BOOT Interface
Pin Name Pin No. I/O Description Comment
1.8V power domain.
USB_BOOT 75 DI
Force the module to enter into
emergency download mode
The following figures showthereference circuit of USB_BOOT interface and timing sequence of entering
into emergency download mode.
Active high.
It is recommended to
reserve test point.
Module
VDD_EXT
Test point
USB_BOOT
Close to test poin t
TVS
Figure 28: Reference Circuit of USB_BOOT Interface
4.7K
EG91_Hardware_Design 55 / 93
LTE Module Series
EG91 Hardware Design
NOTE
VBAT
PWRKEY
VDD_EXT
USB_BOOT
RESET_N
500ms
VH=0.8V
V
0. 5V
IL
About 100ms
Setting USB_BOOT to high level between VBAT rising on and VDD_EXT rising on can let the module enter into emergency download mode.
Figure 29: Timing Sequence for Entering into Emergency Download Mode
NOTES
1. Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is
no less than 30ms.
2. When using MCU to control module to enter into the emergency download mode, follow the above
timing sequence. It is not recommended to pull up USB_BOOT to 1.8V before powering up the VBAT.
Short the test points as shown in Figure 28 can manually force the module to enter into download
mode.
EG91_Hardware_Design 56 / 93
LTE Module Series
EG91 Hardware Design
4 GNSS Receiver
4.1. General Description
EG91 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EG91 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via
USB interface by default.
By default, EG91 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows GNSS performance of EG91.
Table 23: GNSS Performance
Parameter Description Conditions Typ. Unit
Cold start Autonomous -146 dBm
Sensitivity
(GNSS)
TTFF
(GNSS)
Reacquisition Autonomous -157 dBm
Tracking Autonomous -157 dBm
Cold start
@open sky
Warm start
@open sky
Autonomous 34.6 s
XTRA enabled 11.57 s
Autonomous 26.09 s
XTRA enabled 3.7 s
EG91_Hardware_Design 57 / 93
LTE Module Series
EG91 Hardware Design
Autonomous 1.8 s
XTRA enabled 3.4 s
Autonomous
@open sky
<2.5 m
Accuracy
(GNSS)
Hot start
@open sky
CEP-50
NOTES
1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep
on positioning for 3 minutes.
2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in customers’ design.
Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be
kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep the characteristic impedance for ANT_GNSS trace as 50Ω.
Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information.
EG91_Hardware_Design 58 / 93
LTE Module Series
EG91 Hardware Design
5 Antenna Interfaces
EG91 antenna interfaces include a main antenna interface and anRx-diversity antennainterface which is
used toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS
antenna interface which is only supported on EG91-NA/-NS/-V/-EC. The impedance of the antenna port
is50.
5.1. Main/Rx-diversityAntenna Interfaces
5.1.1. Pin Definition
The pin definitionof main antenna and Rx-diversityantenna interfaces is shown below.
Table 24: Pin Definition of RF Antenna
Pin Name Pin No. I/O Description Comment
ANT_MAIN 60 IO Main antenna pad 50 impedance
ANT_DIV
(EG91-E)
ANT_DIV
(EG91-NA/-NS/-V/-EC)
49 AI Receive diversity antenna pad 50 impedance
56 AI Receive diversity antenna pad 50 impedance
5.1.2. Operating Frequency
Table 25: Module Operating Frequencies
3GPP Band Transmit Receive Unit
EGSM900 880~915 925~960 MHz
DCS1800 1710~1785 1805~1880 MHz
WCDMA B1 1920~1980 2110~2170 MHz
WCDMA B2 1850~1910 1930~1990 MHz
EG91_Hardware_Design 59 / 93
LTE Module Series
EG91 Hardware Design
WCDMA B4 1710~1755 2110~2155 MHz
WCDMA B5 824~849 869~894 MHz
WCDMA B8 880~915 925~960 MHz
LTE-FDD B1 1920~1980 2110~2170 MHz
LTE FDD B2 1850~1910 1930~1990 MHz
LTE-FDD B3 1710~1785 1805~1880 MHz
LTE FDD B4 1710~1755 2110~2155 MHz
LTE FDD B5 824~849 869~894 MHz
LTE-FDD B7 2500~2570 2620~2690 MHz
LTE-FDD B8 880~915 925~960 MHz
LTE FDD B12 699~716 729~746 MHz
LTE FDD B13 777~787 746~756 MHz
LTE-FDD B20 832~862 791~821 MHz
LTE-FDD B25 1850~1915 1930~1995 MHz
LTE-FDD B26 814~849 859~894 MHz
LTE-FDD B28 703~748 758~803 MHz
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. Aπ-type matching circuit
should be reserved for better RF performance. The capacitors are not mounted by default.
EG91_Hardware_Design 60 / 93
LTE Module Series
EG91 Hardware Design
Figure 30: Reference Circuit of RF Antenna Interface
NOTES
1. Keep a proper distance between the main antenna and theRx-diversityantenna to improve the
receiving sensitivity.
2. ANT_DIV function is enabledby default.AT+QCFG="diversity",0command can be used to disable
receive diversity.
3. Place the π-type matching components (R1/C1/C2, R2/C3/C4) as close to the antenna as possible.
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
height from the reference ground to the signal layer (H), and the space between the RF trace and the
ground (S). Microstrip and coplanar waveguide are typically used in RF layout to control characteristic
impedance. The following figures are reference designs of microstrip or coplanar waveguide with different
PCB structures.
.
EG91_Hardware_Design 61 / 93
LTE Module Series
EG91 Hardware Design
Figure 31: Microstrip Line Design on a 2-layer PCB
Figure 32: Coplanar Waveguide Design on a 2-layer PCB
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)
Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)
EG91_Hardware_Design 62 / 93
LTE Module Series
EG91 Hardware Design
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:
Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50Ω.
The GND pins adjacent to RF pins should not bedesigned as thermal relief pads, and should be fully
connected to ground.
The distance between the RF pinsand the RFconnector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround
RF traces and the reference ground could help to improve RF performance. The distance between
the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [5].
5.2. GNSS Antenna Interface
The GNSS antenna interface is only supported on EG91-NA/-NS/-V/-EC. The following tables show pin
definition and frequency specification of GNSS antenna interface.
Table 26: Pin Definition of GNSS Antenna Interface
Pin Name Pin No. I/O Description Comment
ANT_GNSS
(EG91-NA/-NS/-V/-EC)
49 AI GNSS antenna 50Ωimpedance
Table 27: GNSS Frequency
Type Frequency Unit
GPS 1575.42±1.023 MHz
GLONASS 1597.5~1605.8 MHz
Galileo 1575.42±2.046 MHz
BeiDou 1561.098±2.046 MHz
QZSS 1575.42 MHz
A reference design of GNSS antenna is shown as below.
EG91_Hardware_Design 63 / 93
LTE Module Series
EG91 Hardware Design
Figure 35: Reference Circuit of GNSS Antenna
NOTES
1. An external LDO can be selected to supply power according to the active antenna requirement.
2. If the module is designed with a passive antenna, then the VDD circuit is not needed.
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 28: Antenna Requirements
Type Requirements
Frequency range: 1559MHz~1609MHz
Polarization: RHCP or linear
VSWR: < 2 (Typ.)
GNSS1)
GSM/WCDMA/LTE
EG91_Hardware_Design 64 / 93
Passive antenna gain: > 0dBi
Active antenna noise figure: < 1.5dB
Active antenna gain: > 0dBi
Active antenna embedded LNA gain: < 17dB
VSWR: 2
Efficiency: > 30%
Max Input Power: 50 W
Input Impedance: 50
Cable insertion loss: <1dB
LTE Module Series
EG91 Hardware Design
(EGSM900,WCDMA B5/B8,
LTE B5/B8/B12/B13/B20/B26/B28)
Cable Insertion Loss: <1.5dB
(DCS1800, WCDMA B1/B2/B4, LTE B1/B2/B3/B4/B25)
Cable insertion loss: <2dB
(LTE B7)
NOTE
1)
It is recommended to use a passive GNSS antenna when LTE B13 is supported, as the use of active
antenna may generate harmonics which will affect the GNSS performance.
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector
provided by Hirose.
Figure 36: Dimensions of the U.FL-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.
EG91_Hardware_Design 65 / 93
LTE Module Series
EG91 Hardware Design
Figure 37:Mechanicals of U.FL-LP Connectors
The following figure describes the space factor of mated connector.
Figure 38:Space Factor of Mated Connector (Unit: mm)
For more details, please visit http://www.hirose.com
.
EG91_Hardware_Design 66 / 93
LTE Module Series
EG91 Hardware Design
6 Electrical, Reliability and
RadioCharacteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 29: Absolute Maximum Ratings
Parameter Min. Max. Unit
VBAT_RF/VBAT_BB -0.3 4.7 V
USB_VBUS -0.3 5.5 V
Peak Current of VBAT_BB 0 0.8 A
Peak Current of VBAT_RF 0 1.8 A
Voltage at Digital Pins -0.3 2.3 V
6.2. Power Supply Ratings
Table 30: Power Supply Ratings
Parameter Description Conditions Min. Typ. Max. Unit
The actual input voltages
VBAT
EG91_Hardware_Design 67 / 93
VBAT_BB and
VBAT_RF
must stay between the
minimum and maximum
values.
3.3 3.8 4.3 V
LTE Module Series
EG91 Hardware Design
I
VBAT
USB_VBUS
Voltage drop during
burst transmission
Peak supply current
(during
transmissionslot)
USB
connectiondetection
Maximum power control
level on EGSM900
Maximum power control
level on EGSM900
400 mV
1.8 2.0 A
3.0 5.0 5.25 V
6.3. Operation and Storage Temperatures
The operation and storage temperaturesare listed in the following table.
Table 31: Operation and Storage Temperatures
Parameter Min. Typ. Max. Unit
Operation Temperature Range1) -35 +25 +75 ºC
ExtendedTemperatureRange2) -40 +85 ºC
Storage Temperature Range -40 +90 ºC
NOTES
1)
1.
Within operation temperature range, the module is 3GPP compliant.
2)
2.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
might reduce in their value and exceed the specified tolerances. When the temperature
out
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
EG91_Hardware_Design 68 / 93
EG91 Hardware Design
6.4. Current Consumption
The values of current consumption are shown below.
LTE Module Series
Table 32: EG91-E Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 13 uA
AT+CFUN=0 (USB disconnected)
1.1 mA
GSM DRX=2 (USB disconnected) 2.0 mA
GSM DRX=5 (USB suspended) 1.9 mA
GSM DRX=9 (USB disconnected) 1.3 mA
WCDMA PF=64 (USB disconnected) 1.7 mA
Sleep state
WCDMA PF=64 (USB suspended) 2.1 mA
WCDMA PF=512 (USB disconnected) 1.1 mA
LTE-FDD PF=64 (USB disconnected) 2.1 mA
I
VBAT
Idle state
GPRS data
transfer
LTE-FDD PF=64 (USB suspended) 2.6 mA
LTE-FDD PF=256 (USB disconnected) 1.4 mA
GSM DRX=5 (USB disconnected) 19.0 mA
GSM DRX=5 (USB connected) 29.0 mA
WCDMA PF=64 (USB disconnected) 19.0 mA
WCDMA PF=64 (USB connected) 29.0 mA
LTE-FDDPF=64 (USB disconnected) 19.0 mA
LTE-FDDPF=64 (USB connected) 29.0 mA
EGSM900 4DL/1UL @32.67dBm 260 mA
EGSM900 3DL/2UL @32.59dBm 463 mA
EGSM900 2DL/3UL @30.74dBm 552 mA
EG91_Hardware_Design 69 / 93
LTE Module Series
EG91 Hardware Design
EGSM900 1DL/4UL @29.26dBm 619 mA
DCS1800 4DL/1UL @29.2dBm 165 mA
DCS1800 3DL/2UL @29.13dBm 267 mA
DCS1800 2DL/3UL @29.01dBm 406 mA
DCS1800 1DL/4UL @28.86dBm 467 mA
EGSM900 4DL/1UL PCL=8 @27.1dBm 163 mA
EGSM900 3DL/2UL PCL=8 @27.16dBm 274 mA
EGSM900 2DL/3UL PCL=8 @26.91dBm 383 mA
EDGE data
transfer
WCDMA
datatransfer
EGSM900 1DL/4UL PCL=8 @26.12dBm 463 mA
DCS1800 4DL/1UL PCL=2 @25.54dBm 136 mA
DCS1800 3DL/2UL PCL=2 @25.68dBm 220 mA
DCS1800 2DL/3UL PCL=2 @25.61dBm 306 mA
DCS1800 1DL/4UL PCL=2 @25.41dBm 396 mA
WCDMA B1 HSDPACH10700 @22.29dBm 507 mA
WCDMA B1 HSUPA CH10700 @21.79dBm 516 mA
WCDMA B8 HSDPACH3012 @22.47dBm 489 mA
WCDMA B8 HSUPA CH3012 @21.98dBm 482 mA
LTE-FDD B1 CH18300 @22.98dBm 685 mA
LTE-FDD B3 CH19575 @23.23dBm 698 mA
LTE-FDD B7 CH21100 @23.46dBm 723 mA
LTE datatransfer
LTE-FDD B8 CH21625 @23.35dBm 655 mA
LTE-FDD B20 CH24300 @23.41dBm 723 mA
LTE-FDD B28A CH27360 @23.16dBm 660 mA
GSM
voice call
EGSM900 PCL=5 @32.5dBm 258 mA
DCS1800PCL=0 @29.23dBm 159 mA
EG91_Hardware_Design 70 / 93
LTE Module Series
EG91 Hardware Design
WCDMA
voice call
WCDMA B1 CH10700 @23.06dBm 555 mA
WCDMA B8 CH3012 @23.45dBm 535 mA
Table 33: EG91-NA Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 13 uA
AT+CFUN=0 (USB disconnected)
1.0 mA
WCDMA PF=64 (USB disconnected) 2.2 mA
WCDMA PF=64 (USB suspended) 2.5 mA
Sleep state
WCDMA PF=512 (USB disconnected) 1.4 mA
LTE-FDD PF=64 (USB disconnected) 2.6 mA
I
VBAT
Idle state
WCDMA
datatransfer
LTE-FDD PF=64 (USB suspended) 2.9 mA
LTE-FDD PF=256 (USB disconnected) 1.7 mA
WCDMA PF=64 (USB disconnected) 14.0 mA
WCDMA PF=64 (USB connected) 26.0 mA
LTE-FDDPF=64 (USB disconnected) 15.0 mA
LTE-FDDPF=64 (USB connected) 26.0 mA
WCDMA B2 HSDPA CH9938@22.45 dBm 569 mA
WCDMA B2 HSUPACH9938 @21.73 dBm 559 mA
WCDMA B4 HSDPACH1537@23.05 dBm 572 mA
WCDMA B4 HSUPACH1537@22.86 dBm 586 mA
WCDMA B5 HSDPA CH4407@23 dBm 518 mA
WCDMA B5 HSUPACH4407 @22.88 dBm 514 mA
LTE
datatransfer
LTE-FDD B2 CH1100@23.29 dBm 705 mA
LTE-FDD B4 CH2175@23.19 dBm 693 mA
EG91_Hardware_Design 71 / 93
LTE Module Series
EG91 Hardware Design
LTE-FDD B5 CH2525@23.39dBm 601 mA
LTE-FDD B12 CH5060@23.16 dBm 650 mA
LTE-FDD B13 CH5230 @23.36 dBm 602 mA
WCDMA B2 CH9938 @23.34 dBm 627 mA
WCDMA
voice call
WCDMA B4 CH1537@23.47 dBm 591 mA
WCDMA B5 CH4357@23.37 dBm 536 mA
Table 34: EG91-NS Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 8 uA
AT+CFUN=0 (USB disconnected)
1.2 mA
WCDMA PF=64 (USB disconnected) 2 mA
WCDMA PF=64 (USB suspended) 2.3 mA
Sleep state
WCDMA PF=512 (USB disconnected) 1.3 mA
LTE-FDD PF=64 (USB disconnected) 2.5 mA
I
VBAT
Idle state
WCDMA
datatransfer
LTE-FDD PF=64 (USB suspended) 2.8 mA
LTE-FDD PF=256 (USB disconnected) 1.6 mA
WCDMA PF=64 (USB disconnected) 19.9 mA
WCDMA PF=64 (USB connected) 30.1 mA
LTE-FDDPF=64 (USB disconnected) 21.2 mA
LTE-FDDPF=64 (USB connected) 30.9 mA
WCDMA B2 HSDPA CH9938@22.4 dBm 527 mA
WCDMA B2 HSUPACH9938 @22.31 dBm 547 mA
WCDMA B4 HSDPACH1537@23.01 dBm 575 mA
WCDMA B4 HSUPACH1537@22.69 dBm 589 mA
EG91_Hardware_Design 72 / 93
LTE Module Series
EG91 Hardware Design
WCDMA B5 HSDPA CH4407@23.05 dBm 553 mA
WCDMA B5 HSUPACH4407 @22.91 dBm 556 mA
LTE-FDD B2 CH1100@23.26 dBm 724 mA
LTE-FDD B4 CH2175@23.52 dBm 693 mA
LTE-FDD B5 CH2525@23.51dBm 613 mA
LTE
datatransfer
LTE-FDD B12 CH5060@23.39 dBm 634 mA
LTE-FDD B13 CH5230 @23.54 dBm 576 mA
LTE-FDD B25CH8590@23.64 dBm 739 mA
LTE-FDD B26CH8765@23.34 dBm 647 mA
WCDMA B2 CH9938 @23.39 dBm 571 mA
WCDMA
voice call
WCDMA B4 CH1738@23.27 dBm 593 mA
WCDMA B5 CH4357@23.35 dBm 554 mA
Table 35: EG91-V Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 9 uA
AT+CFUN=0 (USB disconnected)
LTE-FDD PF=64 (USB disconnected) TBD mA
Sleep state
LTE-FDD PF=64 (USB suspended) TBD mA
I
VBAT
LTE-FDD PF=256 (USB disconnected) TBD mA
LTE-FDDPF=64 (USB disconnected) 16.5 mA
Idle state
LTE-FDDPF=64 (USB connected) 30.8 mA
LTE-FDD B4 CH2175@23.36dBm 715 mA
LTEdatatransfer
LTE-FDD B13 CH5230@23.38dBm 642 mA
EG91_Hardware_Design 73 / 93
TBD mA
LTE Module Series
EG91 Hardware Design
Table 36: EG91-EC Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down TBD uA
I
VBAT
Sleep state
AT+CFUN=0 (USB disconnected)
TBD mA
GSM DRX=2 (USB disconnected) TBD mA
GSM DRX=5 (USB suspended) TBD mA
GSM DRX=9 (USB disconnected) TBD mA
WCDMA PF=64 (USB disconnected) TBD mA
WCDMA PF=64 (USB suspended) TBD mA
WCDMA PF=512 (USB disconnected) TBD mA
LTE-FDD PF=64 (USB disconnected) TBD mA
LTE-FDD PF=64 (USB suspended) TBD mA
LTE-FDD PF=256 (USB disconnected) TBD mA
GSM DRX=5 (USB disconnected) TBD mA
Idle state
GPRS data
transfer
GSM DRX=5 (USB connected) TBD mA
WCDMA PF=64 (USB disconnected) TBD mA
WCDMA PF=64 (USB connected) TBD mA
LTE-FDDPF=64 (USB disconnected) TBD mA
LTE-FDDPF=64 (USB connected) TBD mA
EGSM900 4DL/1UL @TBDdBm TBD mA
EGSM900 3DL/2UL @TBDdBm TBD mA
EGSM900 2DL/3UL @TBDdBm TBD mA
EGSM900 1DL/4UL @TBDdBm TBD mA
DCS1800 4DL/1UL @TBDdBm TBD mA
DCS1800 3DL/2UL @TBDdBm TBD mA
EG91_Hardware_Design 74 / 93
LTE Module Series
EG91 Hardware Design
DCS1800 2DL/3UL @TBDdBm TBD mA
DCS1800 1DL/4UL @TBDdBm TBD mA
EGSM900 4DL/1UL PCL=8 @TBDdBm TBD mA
EGSM900 3DL/2UL PCL=8 @TBDdBm TBD mA
EGSM900 2DL/3UL PCL=8 @TBDdBm TBD mA
EDGE data
transfer
WCDMA
datatransfer
EGSM900 1DL/4UL PCL=8 @TBDdBm TBD mA
DCS1800 4DL/1UL PCL=2 @TBDdBm TBD mA
DCS1800 3DL/2UL PCL=2 @TBDdBm TBD mA
DCS1800 2DL/3UL PCL=2 @TBDdBm TBD mA
DCS1800 1DL/4UL PCL=2 @TBDdBm TBD mA
WCDMA B1 HSDPA@TBD dBm TBD mA
WCDMA B1 HSUPA @TBD dBm TBD mA
WCDMA B8 HSDPA@TBD dBm TBD mA
WCDMA B8 HSUPA @TBD dBm TBD mA
LTE-FDD B1@TBD dBm TBD mA
LTE-FDD B3@TBD dBm TBD mA
LTE
datatransfer
LTE-FDD B7@TBD dBm TBD mA
LTE-FDD B8@TBD dBm TBD mA
LTE-FDD B20@TBD dBm TBD mA
LTE-FDD B28@TBD dBm TBD mA
GSM
voice call
WCDMA
voice call
EGSM900 PCL=5 @TBDdBm TBD mA
DCS1800PCL=0 @TBDdBm TBD mA
WCDMA B1@TBD dBm TBD mA
WCDMA B8@TBD dBm TBD mA
EG91_Hardware_Design 75 / 93
LTE Module Series
EG91 Hardware Design
Table 37: GNSS Current Consumption of EG91
Parameter Description Conditions Typ. Unit
Cold start @Passive Antenna 54 mA
I
VBAT
(GNSS)
Searching
(AT+CFUN=0)
Tracking
(AT+CFUN=0)
Hot Start @Passive Antenna 54 mA
Lost state @Passive Antenna 53 mA
Open Sky @Passive Antenna 32 mA
6.5. RF Output Power
The following table shows the RF output power of EG91 module.
Table 38: RF Output Power
Frequency Max. Min.
EGSM900 33dBm±2dB 5dBm±5dB
DCS1800 30dBm±2dB 0dBm±5dB
EGSM900 (8-PSK) 27dBm±3dB 5dBm±5dB
DCS1800(8-PSK) 26dBm±3dB 0dBm±5dB
WCDMA B1/B2/B4/B5/B8 24dBm+1/-3dB <-49dBm
LTE-FDD B1/B2/B3/B4/B5/B7/
B8/B12/B13/B20/B25/B26/B28A/B28B
23dBm±2dB <-39dBm
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. Thedesign conforms to the
GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.
EG91_Hardware_Design 76 / 93
EG91 Hardware Design
6.6. RF Receiving Sensitivity
The following tables show the conducted RF receiving sensitivity of EG91 module.
LTE Module Series
Table 39: EG91-E Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP
EGSM900 -108.6dBm NA NA -102dBm
DCS1800 -109.4 dBm NA NA -102dbm
WCDMA B1 -109.5dBm -110dBm -112.5dBm -106.7dBm
WCDMA B8 -109.5dBm -110dBm -112.5dBm -103.7dBm
LTE-FDD B1(10M) -97.5dBm -98.3dBm -101.4dBm -96.3dBm
LTE-FDD B3(10M) -98.3dBm -98.5dBm -101.5dBm -93.3dBm
LTE-FDD B7(10M) -96.3dBm -98.4dBm -101.3dBm -94.3dBm
LTE-FDD B8(10M) -97.1dBm -99.1dBm -101.2dBm -93.3dBm
LTE-FDD B20(10M) -97dBm -99dBm -101.3dBm -93.3dBm
LTE-FDD B28A(10M) -98.3dBm -99dBm -101.4dBm -94.8dBm
Table 40: EG91-NA Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP
WCDMA B2 -110dBm -111dBm -112.5dBm -104.7dBm
WCDMA B4 -110dBm -111dBm -112.5dBm -106.7dBm
WCDMA B5 -111dBm -111.5dBm -113dBm -104.7dBm
LTE-FDD B2 (10M) -98dBm -99dBm -102.2dBm -94.3dBm
LTE-FDD B4 (10M) -97.8dBm -99.5dBm -102.2dBm -96.3dBm
LTE-FDD B5 (10M) -99.6dBm -100.3dBm -103dBm -94.3dBm
LTE-FDD B12 (10M) -99.5dBm -100dBm -102.5dBm -93.3dBm
EG91_Hardware_Design 77 / 93
LTE Module Series
EG91 Hardware Design
LTE-FDD B13 (10M) -99.2dBm -100dBm -102.5dBm -93.3dBm
Table 41: EG91-NS Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP
WCDMA B2 -110dBm -111dBm -112.5dBm -104.7dBm
WCDMA B4 -110dBm -111dBm -112.5dBm -106.7dBm
WCDMA B5 -111dBm -111.5dBm -113dBm -104.7dBm
LTE-FDD B2 (10M) -98dBm -99dBm -102.2dBm -94.3dBm
LTE-FDD B4 (10M) -97.8dBm -99.5dBm -102.2dBm -96.3dBm
LTE-FDD B5 (10M) -99.4dBm -100dBm -102.7dBm -94.3dBm
LTE-FDD B12 (10M) -99.5dBm -100dBm -102.5dBm -93.3dBm
LTE-FDD B13 (10M) -99.2dBm -100dBm -102.5dBm -93.3dBm
LTE-FDD B25 (10M) -97.6dBm -99dBm -102.2dBm -92.8dBm
LTE-FDD B26 (10M) -99.1dBm -99.9dBm -102.7dBm -93.8dBm
Table 42: EG91-V Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP
LTE-FDD B4 (10M) -98.2dBm -99.2dBm -102.2dBm -96.3dBm
LTE-FDD B13 (10M) -99.2dBm -100dBm -102.5dBm -93.3dBm
Table 43: EG91-EC Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO 3GPP
EGSM900 TBD TBD TBD -102dBm
DCS1800 TBD TBD TBD -102dbm
WCDMA B1 TBD TBD TBD -106.7dBm
EG91_Hardware_Design 78 / 93
LTE Module Series
EG91 Hardware Design
WCDMA B8 TBD TBD TBD -103.7dBm
LTE-FDD B1 (10M) TBD TBD TBD -96.3dBm
LTE-FDD B3 (10M) TBD TBD TBD -93.3dBm
LTE-FDD B7 (10M) TBD TBD TBD -94.3dBm
LTE-FDD B8 (10M)
TBD TBD TBD -93.3dBm
LTE-FDD B20 (10M) TBD TBD TBD -93.3dBm
LTE-FDD B28 (10M) TBD TBD TBD -94.8dBm
6.7. Electrostatic Discharge
The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module’s electrostatic discharge characteristics.
Table 44: Electrostatic Discharge Characteristics
Test Points Contact Discharge Air Discharge Unit
VBAT, GND ±5 ±10 KV
All Antenna Interfaces ±4 ±8 KV
Other Interfaces ±0.5 ±1 KV
6.8. Thermal Consideration
In order to achieve better performance of the module, it is recommended to comply with the following
principles for thermal consideration:
On customers’ PCB design, please keep placement of the module away from heating sources,
especially high power components such as ARM processor, audio power amplifier, power supply, etc.
EG91_Hardware_Design 79 / 93
LTE Module Series
EG91 Hardware Design
Do not place components on the opposite side of the PCB area where the module is mounted, in
order to facilitate adding of heatsink when necessary.
Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as
to ensure better heat dissipation performance.
The reference ground of the area where the module is mounted should be complete, and add ground
vias as many as possible for better heat dissipation.
Make sure the ground pads of the module and PCB are fully connected.
According to customers’ application demands, the heatsink can be mounted on the top of the module,
or the opposite side of the PCB area where the module is mounted, or both of them.
The heatsink should be designed with as many fins as possible to increase heat dissipation area.
Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and
module/PCB.
The following shows two kinds of heatsink designs for reference and customers can choose one or bothof
them according to their application structure.
Figure 39: Referenced Heatsink Design (Heatsink at the Top of the Module)
EG91_Hardware_Design 80 / 93
LTE Module Series
EG91 Hardware Design
EG91 Module
Application Board
Thermal Pad
Heatsink
Shielding Cover
Thermal Pad
Heatsink
Application Board
Figure 40: Referenced Heatsink Design (Heatsink at the Backsideof Customers’ PCB)
NOTES
1. The module offers the best performance when the internal BB chip stays below 105°C. When the
maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but
provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB
chip temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will
recover to network connected state after the maximum temperature falls below 115°C. Therefore, the
thermal design should be maximally optimized to make sure the maximum BB chip temperature
always maintains below 105°C. Customers can execute AT+QTEMP command and get the
maximum BB chip temperature from the first returned value.
2. For more detailed guidelines on thermal design, please refer to document [6].
EG91_Hardware_Design 81 / 93
LTE Module Series
EG91 Hardware Design
7 Mechanical Dimensions
This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm.
The tolerances for dimensions without tolerance values are ±0.05mm.
7.1. Mechanical Dimensions of the Module
25±0.15
2.30±0.2
29±0.15
Figure 41: Module Top and Side Dimensions
EG91_Hardware_Design 82 / 93
d
i
4
B
m
T
G
d
w
s
n
E
LTE Mo
91 Hard
ule Serie
are Desig
Figure
2: Module
ottom Di
ensions (
opView)
EG91_Har
ware_Des
gn
83 / 93
d
a
P
i
o
m
e
o
m
n
o
n
G
e
d
w
s
n
s
E
LTE Mo
91 Hard
ule Serie
are Desig
7.2.
Recom
ended
Footpri
t
Figure
43: Recom
mended F
otprint (T
p View)
NOTE
For easym
in thehost
EG91_Har
intenance
CB.
ware_Des
the modul
gn
e, please k
ep about 3
84 / 93
m betwee
the modul
and other
component
d
t
i
e
FFig
s
T
o
m
r
f
c
G
M
r
d
w
s
n
e
E
LTE Mo
91 Hard
ule Serie
are Desig
7.3.
Design
igure 44:
Effect D
op View o
awings
the Modul
of the
e
odule
ure 45: B
ttom View
of the Mod
ule
NOTE
These are
module tha
EG91_Har
design eff
you get fro
ware_Des
ct drawing
m Quectel.
gn
of EG91
odule. Fo
85 / 93
r more ac
urate pictu
es, please
refer to th
LTE Module Series
EG91 Hardware Design
8 Storage, Manufacturing and
Packaging
8.1. Storage
EG91is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are listed below.
1. Shelf life in vacuum-sealed bag: 12 months at <40ºC/90%RH.
2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other
high temperature processes must be:
Mounted within 168 hours at the factory environment of 30ºC/60%RH.
Stored at <10% RH.
3. Devices require bake before mounting, if any circumstances below occurs:
When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity
is >10% before opening the vacuum-sealed bag. Device mounting cannot be finished within 168 hours at factory conditions of ≤30ºC/60%RH.
If baking is required, devices may be baked for 8 hours at 120ºC±5ºC.
NOTE
As the plastic package cannot be subjected to high temperature, it should be removed from devices
before high temperature (120ºC) baking. If shorter baking time is desired, please refer to
IPC/JEDECJ-STD-033 for baking procedure.
EG91_Hardware_Design 86 / 93
LTE Module Series
EG91 Hardware Design
8.2. Manufacturing and Soldering
Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the
stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted
properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality,
thethickness of stencil for the module is recommended to be 0.15mm~0.18mm. For more details, please
refer todocument [4].
It is suggested that the peak reflow temperature is 240ºC~245ºC, and the absolute maximum reflow
temperature is 245ºC. To avoid damage to the module caused by repeated heating, it is strongly
recommended that the module should be mounted after reflow soldering for the other side of PCB has
been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and
related parameters are shown below.
Temp. (°C)
245
240
220
200
Soak Zone
150
100
A
Max slope: 1~3°C/sec
Figure 46: Reflow Soldering Thermal Profile
Table 45: Recommended Thermal Profile Parameters
Reflow Zone
Max slope: 2~3°C/sec
B
C
D
Cooling down slope: 1~4°C/sec
Factor Recommendation
Soak Zone
Max slope 1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C) 60 to 120 sec
Reflow Zone
EG91_Hardware_Design 87 / 93
EG91 Hardware Design
Max slope 2 to 3°C/sec
Reflow time (D: over 220°C) 40 to 60 sec
Max temperature 240°C ~ 245°C
Cooling down slope 1 to 4°C/sec
LTE Module Series
Reflow Cycle
Max reflow cycle 1
8.3. Packaging
EG91is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until
the devices are ready to be soldered onto the application.
The reel is 330mm in diameter and each reel contains 250pcs modules. The following figures show the
packaging details, measured in mm.
Figure 47: Tape Dimensions
EG91_Hardware_Design 88 / 93
LTE Module Series
EG91 Hardware Design
48.5
13
Cover tap
e
Direction of feed
100
+0.20
44.5
-0.00
Figure 48: Reel Dimensions
Carrier tape
packing module
1083
Figure 49: Tape and Reel Directions
Carrier tape unfolding
EG91_Hardware_Design 89 / 93
EG91 Hardware Design
9 Appendix A References
Table 46: Related Documents
SN Document Name Remark
LTE Module Series
[1]
[2] Quectel_EG9x_AT_Commands_Manual
[3]
[4] Quectel_Module_Secondary_SMT_User_Guide Module Secondary SMT User Guide
[5] Quectel_RF_Layout_Application_Note RF Layout Application Note
[6] Quectel_LTE_Module_Thermal_Design_Guide
Table 47: Terms and Abbreviations
Quectel_EC2x&EG9x&EM05_Power_Management_A
pplication_Note
Quectel_EC25&EC21_GNSS_AT_Commands_
Manual
Power Management Application Note
for EC25, EC21, EC20 R2.0, EC20
R2.1, EG95, EG91 and EM05
AT Commands Manual for EG95 and
EG91
GNSS AT Commands Manual for EC25
and EC21 modules
Thermal design guide for LTE modules
including EC25, EC21, EC20 R2.0,
EC20 R2.1, EG91, EG95, EG25-G,
EP06, EG06, EM06 and AG35.
Abbreviation Description
AMR Adaptive Multi-rate
bps Bits Per Second
CHAP Challenge Handshake Authentication Protocol
CS Coding Scheme
CSD Circuit Switched Data
CTS Clear To Send
DC-HSPA+ Dual-carrier High Speed Packet Access
EG91_Hardware_Design 90 / 93
EG91 Hardware Design
DFOTA Delta Firmware Upgrade Over-The-Air
DL Downlink
DTR Data Terminal Ready
DTX Discontinuous Transmission
EFR Enhanced Full Rate
ESD Electrostatic Discharge
FDD Frequency Division Duplex
FR Full Rate
GMSK Gaussian Minimum Shift Keying
LTE Module Series
GSM Global System for Mobile Communications
HR Half Rate
HSPA High Speed Packet Access
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access
I/O Input/Output
Inorm Normal Current
LED Light Emitting Diode
LNA Low Noise Amplifier
LTE Long Term Evolution
MIMO Multiple Input Multiple Output
MO Mobile Originated
MS Mobile Station (GSM engine)
MSL Moisture Sensitivity Level
MT Mobile Terminated
PAP Password Authentication Protocol
EG91_Hardware_Design 91 / 93
EG91 Hardware Design
PCB Printed Circuit Board
PDU Protocol Data Unit
PPP Point-to-Point Protocol
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RHCP Right Hand Circularly Polarized
Rx Receive
SMS Short Message Service
LTE Module Series
TDD Time Division Duplexing
TX Transmitting Direction
UL Uplink
UMTS Universal Mobile Telecommunications System
URC Unsolicited Result Code
(U)SIM (Universal) Subscriber Identity Module
Vmax Maximum Voltage Value
Vnorm Normal Voltage Value
Vmin Minimum Voltage Value
VIHmax Maximum Input High Level Voltage Value
VIHmin Minimum Input High Level Voltage Value
VILmax Maximum Input Low Level Voltage Value
VILmin Minimum Input Low Level Voltage Value
VImax Absolute Maximum Input Voltage Value
VImin Absolute Minimum Input Voltage Value
VOHin Minimum Output High Level Voltage Value
EG91_Hardware_Design 92 / 93
EG91 Hardware Design
VOLmax Maximum Output Low Level Voltage Value
VOLmin Minimum Output Low Level Voltage Value
VSWR Voltage Standing Wave Ratio
WCDMA Wideband Code Division Multiple Access
LTE Module Series
EG91_Hardware_Design 93 / 93
LTE Module Series
EG91 Hardware Design
10 Appendix B GPRS Coding Schemes
Table 48: Description of Different Coding Schemes
Scheme
Code Rate
USF
Pre-coded USF
Radio Block excl.USF and BCS
BCS
Tail
Coded Bits
Punctured Bits
Data Rate Kb/s
CS-1 CS-2 CS-3 CS-4
1/2 2/3 3/4 1
3 3 3 3
3 6 6 12
181 268 312 428
40 16 16 16
4 4 4 -
456 588 676 456
0 132 220 -
9.05 13.4 15.6 21.4
EG91_Hardware_Design 94 / 93
LTE Module Series
EG91 Hardware Design
11 Appendix C GPRS Multi-slot Classes
Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot
classes are product dependent, and determine the maximum achievable data rates in both the uplink and
downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots,
while the second number indicates the amount of uplink timeslots. The active slots determine the total
number of slots the GPRS device can use simultaneously for both uplink and downlink communications.
The description of different multi-slot classes is shown in the following table.
Table 49: GPRS Multi-slot Classes
Multislot Class Downlink Slots Uplink Slots Active Slots
1 1 1 2
2 2 1 3
3 2 2 3
4 3 1 4
5 2 2 4
6 3 2 4
7 3 3 4
8 4 1 5
9 3 2 5
10 4 2 5
11 4 3 5
12 4 4 5
13 3 3 NA
14 4 4 NA
EG91_Hardware_Design 95 / 93
LTE Module Series
EG91 Hardware Design
15 5 5 NA
16 6 6 NA
17 7 7 NA
18 8 8 NA
19 6 2 NA
20 6 3 NA
21 6 4 NA
22 6 4 NA
23 6 6 NA
24 8 2 NA
25 8 3 NA
26 8 4 NA
27 8 4 NA
28 8 6 NA
29 8 8 NA
30 5 1 6
31 5 2 6
32 5 3 6
33 5 4 6
EG91_Hardware_Design 96 / 93
LTE Module Series
EG91 Hardware Design
12 Appendix D EDGE Modulation and
Coding Schemes
Table 50: EDGE Modulation and Coding Schemes
Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot
CS-1: GMSK / 9.05kbps 18.1kbps 36.2kbps
CS-2: GMSK / 13.4kbps 26.8kbps 53.6kbps
CS-3: GMSK / 15.6kbps 31.2kbps 62.4kbps
CS-4: GMSK / 21.4kbps 42.8kbps 85.6kbps
MCS-1 GMSK C 8.80kbps 17.60kbps 35.20kbps
MCS-2 GMSK B 11.2kbps 22.4kbps 44.8kbps
MCS-3 GMSK A 14.8kbps 29.6kbps 59.2kbps
MCS-4 GMSK C 17.6kbps 35.2kbps 70.4kbps
MCS-5 8-PSK B 22.4kbps 44.8kbps 89.6kbps
MCS-6 8-PSK A 29.6kbps 59.2kbps 118.4kbps
MCS-7 8-PSK B 44.8kbps 89.6kbps 179.2kbps
MCS-8 8-PSK A 54.4kbps 108.8kbps 217.6kbps
MCS-9 8-PSK A 59.2kbps 118.4kbps 236.8kbps
EG91_Hardware_Design 97 / 93
Loading...