Quectel Wireless Solutions 201808EC25AF Users Manual

EC25 Hardware Design
LTE Module Series
Rev. EC25_Hardware_Design_V1.5
Date: 2018-04-20
Status: Released
www.quectel.com
EC25 Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Email: info@quectel.com
Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm
For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm
Or Email to: support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.
EC25_Hardware_Design 1 / 112
EC25 Hardware Design
About the Document
History
Revision Date Author Description
1.0 2016-04-01 Woody WU Initial
1.1 2016-09-22
1.2 2016-11-04
Lyndon LIU/
Frank WANG
Lyndon LIU/
Michael ZHANG
1. Updated EC25 series frequency bands in Table 1.
2. Updated transmitting power, supported maximum
baud rate of main UART/internal protocols/USB
drivers of USB interface, firmware upgrade and
temperature range in Table 2.
3. Updated timing of turning on module in Figure 12.
4. Updated timing of turning off module in Figure 13.
5. Updated timing of resetting module in Figure 16.
6. Updated supported baud rates of main UART in
Chapter 3.11.
7. Added notes for ADC interface in Chapter 3.13.
8. Updated GNSS performance in Table 21.
9. Updated operating frequencies of module in Table 23.
10. Added current consumption in Chapter 6.4.
11. Updated RF output power in Chapter 6.5.
12. Added RF receiving sensitivity in Chapter 6.6.
1. Added SGMII and WLAN interfaces in Table 2.
2. Updated function diagram in Figure 1.
3. Updated pin assignment (Top View) in Figure 2.
4. Added description of SGMII and WLAN interfaces in
Table 4.
5. Added SGMII interface in Chapter 3.17.
6. Added WLAN interface in Chapter 3.18.
7. Added USB_BOOT interface in Chapter 3.19.
8. Added reference design of RF layout in Chapter 5.1.4.
9. Added note about SIMO in Chapter 6.6.
1.3 2017-01-24
EC25_Hardware_Design 2 / 112
Lyndon LIU/
Frank WANG
1. Updated function diagram in Figure 1.
2. Updated pin assignment (top view) in Figure 2.
EC25 Hardware Design
AnniceZHANG/
1.4 2018-03-05
Lyndon LIU/
Frank WANG
3. Added BT interface in Chapter 3.18.2.
4. Updated GNSS performance in Table 24.
5. Updated reference circuit of wireless connectivity
interfaces with FC20 module in Figure 29.
6. Updated current consumption of EC25-E module in
Table 33.
7. Updated EC25-A conducted RF receiving sensitivity
in Table 38.
8. AddedEC25-J conducted RF receiving sensitivity in
Table 40.
1. Updated functional diagram in Figure 1.
2. Updated frequency bands in Table 1.
3. Updated LTE, UMTS and GSM features in Table 2.
4. Updated description of pin 40/136/137/138.
5. Updated PWRKEY pulled down time to 500ms in
Chapter 3.7.1 and reference circuit in Figure 10.
6. Updated reference circuit of (U)SIM interface in
Figure 17&18.
7. Updated reference circuit of USB interface in Figure
19.
8. Updated PCM mode in Chapter 3.12.
9. Added SD card interface in Chapter 3.13.
10. Updated USB_BOOT reference circuit in Chapter
3.20.
11. Updated module operating frequencies in Table 26.
12. Updated antenna requirements in Table 30.
13. Updated EC25 series module current consumption in
Chapter 6.4.
14. Updated EC25 series module conducted RF receiving
sensitivity in Chapter 6.6.
15. Added thermal consideration description in Chapter
6.8.
16. Added dimension tolerance information in Chapter 7.
17. Added storage temperature range in Table 2 and
Chapter 6.3.
18. Updated RF output power in Table 41.
19. Updated GPRS multi-slot classes in Table 53.
20. Updated storage information in Chapter 8.1.
1. Added information of EC25-AF in Table 1.
2. Updated module operating frequencies in Table 27.
1.5 2018-04-20 Kinsey ZHANG
3. Added current consumption of EC25-AF module in
Table 40.
4. Changed GNSS current consumption of EC25 series
module into Table 41.
EC25_Hardware_Design 3 / 112
EC25 Hardware Design
5. Added EC25-AF conducted RF receiving sensitivity in
Table 50.
EC25_Hardware_Design 4 / 112
EC25 Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 5
Table Index ............................................................................................................................................... 8
Figure Index ............................................................................................................................................ 10
1 Introduction ..................................................................................................................................... 12
1.1. Safety Information ................................................................................................................. 13
2 Product Concept ............................................................................................................................. 14
2.1. General Description .............................................................................................................. 14
2.2. Key Features ......................................................................................................................... 15
2.3. Functional Diagram ............................................................................................................... 18
2.4. Evaluation Board ................................................................................................................... 19
3 Application Interfaces ..................................................................................................................... 20
3.1. General Description .............................................................................................................. 20
3.2. Pin Assignment ..................................................................................................................... 21
3.3. Pin Description ...................................................................................................................... 22
3.4. Operating Modes .................................................................................................................. 34
3.5. Power Saving ........................................................................................................................ 34
3.5.1.
Sleep Mode.................................................................................................................. 34
3.5.1.1. UART Application .............................................................................................. 34
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 35
3.5.1.3. USB Application with USB Suspend/Resume and RI Function.......................... 36
3.5.1.4. USB Application without USB Suspend Function .............................................. 37
3.5.2. Airplane Mode .............................................................................................................. 37
3.6. Power Supply ........................................................................................................................ 38
3.6.1. Power Supply Pins ....................................................................................................... 38
3.6.2. Decrease Voltage Drop ............................................................................................... 39
3.6.3. Reference Design for Power Supply ............................................................................ 40
3.6.4. Monitor the Power Supply ............................................................................................ 40
3.7. Turn on and off Scenarios ..................................................................................................... 40
3.7.1. Turn on Module Using the PWRKEY ........................................................................... 40
3.7.2. Turn off Module ............................................................................................................ 42
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 42
3.7.2.2. Turn off Module Using AT Command ................................................................ 43
3.8. Reset the Module .................................................................................................................. 43
3.9.
(U)SIM Interface .................................................................................................................... 45
3.10. USB Interface ........................................................................................................................ 47
3.11. UART Interfaces ................................................................................................................... 49
3.12. PCM and I2C Interfaces ........................................................................................................ 51
3.13. SD Card Interface ................................................................................................................. 54
3.14. ADC Interfaces ...................................................................................................................... 56
EC25_Hardware_Design 5 / 112
EC25 Hardware Design
3.15. Network Status Indication ..................................................................................................... 57
3.16. STATUS ................................................................................................................................ 58
3.17. Behaviors of RI ..................................................................................................................... 59
3.18. SGMII Interface ..................................................................................................................... 60
3.19. Wireless Connectivity Interfaces ........................................................................................... 62
3.19.1. WLAN Interface ........................................................................................................... 64
3.19.2. BT Interface* ................................................................................................................ 64
3.20. USB_BOOT Interface............................................................................................................ 65
4 GNSS Receiver ................................................................................................................................ 66
4.1. General Description .............................................................................................................. 66
4.2. GNSS Performance .............................................................................................................. 66
4.3. Layout Guidelines ................................................................................................................. 67
5 Antenna Interfaces .......................................................................................................................... 68
5.1. Main/Rx-diversity Antenna Interfaces.................................................................................... 68
5.1.1. Pin Definition ................................................................................................................ 68
5.1.2. Operating Frequency ................................................................................................... 68
5.1.3. Reference Design of RF Antenna Interface ................................................................. 70
5.1.4. Reference Design of RF Layout ................................................................................... 70
5.2. GNSS Antenna Interface ....................................................................................................... 72
5.3. Antenna Installation .............................................................................................................. 74
5.3.1. Antenna Requirement .................................................................................................. 74
5.3.2. Recommended RF Connector for Antenna Installation ................................................ 75
6 Electrical, Reliability and Radio Characteristics .......................................................................... 77
6.1. Absolute Maximum Ratings .................................................................................................. 77
6.2. Power Supply Ratings ........................................................................................................... 78
6.3. Operation and Storage Temperatures .................................................................................. 78
6.4. Current Consumption ............................................................................................................ 79
6.5. RF Output Power .................................................................................................................. 90
6.6. RF Receiving Sensitivity ....................................................................................................... 91
6.7. Electrostatic Discharge ......................................................................................................... 95
6.8. Thermal Consideration .......................................................................................................... 95
7 Mechanical Dimensions.................................................................................................................. 98
7.1. Mechanical Dimensions of the the Module ............................................................................ 98
7.2.
Recommended Footprint ..................................................................................................... 100
7.3. Design Effect Drawings of the Module ................................................................................ 101
8 Storage, Manufacturing and Packaging ...................................................................................... 102
8.1. Storage ............................................................................................................................... 102
8.2. Manufacturing and Soldering .............................................................................................. 103
8.3. Packaging ........................................................................................................................... 104
9 Appendix A References ................................................................................................................ 105
10 Appendix B GPRS Coding Schemes ........................................................................................... 109
EC25_Hardware_Design 6 / 112
EC25 Hardware Design
11 Appendix C GPRS Multi-slot Classes .......................................................................................... 110
12 Appendix D EDGE Modulationand Coding Schemes ................................................................. 112
EC25_Hardware_Design 7 / 112
EC25 Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE ....................................................................... 14
TABLE 2: KEY FEATURES OF EC25 MODULE .............................................................................................. 15
TABLE 3: I/O PARAMETERS DEFINITION ...................................................................................................... 22
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 22
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................ 34
TABLE 6: VBAT AND GND PINS ...................................................................................................................... 38
TABLE 7: PIN DEFINITION OF PWRKEY ........................................................................................................ 41
TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 43
TABLE 9: PIN DEFINITION OF THE (U)SIM INTERFACE ............................................................................... 45
TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 47
TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE ............................................................................ 49
TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE......................................................................... 49
TABLE 13: LOGIC LEVELS OF DIGITAL I/O ................................................................................................... 50
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ...................................................................... 52
TABLE 15: PIN DEFINITION OF SD CARD INTERFACE ................................................................................ 54
TABLE 16: PIN DEFINITION OF ADC INTERFACES ...................................................................................... 56
TABLE 17: CHARACTERISTIC OF ADC .......................................................................................................... 56
TABLE 18: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR .................... 57
TABLE 19: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ......... 57
TABLE 20: PIN DEFINITION OF STATUS ....................................................................................................... 58
TABLE 21: BEHAVIOR OF RI ........................................................................................................................... 59
TABLE 22: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 60
TABLE 23: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ............................................... 62
TABLE 24: PIN DEFINITION OF USB_BOOT INTERFACE............................................................................. 65
TABLE 25: GNSS PERFORMANCE ................................................................................................................. 66
TABLE 26: PIN DEFINITION OF RF ANTENNA ............................................................................................... 68
TABLE 27: MODULE OPERATING FREQUENCIES ....................................................................................... 68
TABLE 28: PIN DEFINITION OF GNSS ANTENNA INTERFACE .................................................................... 72
TABLE 29: GNSS FREQUENCY ...................................................................................................................... 73
TABLE 30: ANTENNA REQUIREMENTS ......................................................................................................... 74
TABLE 31: ABSOLUTE MAXIMUM RATINGS ................................................................................................. 77
TABLE 32: THE MODULE POWER SUPPLY RATINGS .................................................................................. 78
TABLE 33: OPERATION AND STORAGE TEMPERATURES ......................................................................... 78
TABLE 34: EC25-E CURRENT CONSUMPTION ............................................................................................. 79
TABLE 35: EC25-A CURRENT CONSUMPTION ............................................................................................. 81
TABLE 36: EC25-V CURRENT CONSUMPTION ............................................................................................. 82
TABLE 37: EC25-J CURRENT CONSUMPTION ............................................................................................. 83
TABLE 38: EC25-AU CURRENT CONSUMPTION .......................................................................................... 84
TABLE 39: EC25-AUT CURRENT CONSUMPTION ........................................................................................ 87
TABLE 40: EC25-AF CURRENT CONSUMPTION ........................................................................................... 88
TABLE 41: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................ 90
EC25_Hardware_Design 8 / 112
EC25 Hardware Design
TABLE 42: RF OUTPUT POWER ..................................................................................................................... 90
TABLE 43: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 91
TABLE 44: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 91
TABLE 45: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 92
TABLE 46: EC25-J CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 92
TABLE 47: EC25-AU CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 93
TABLE 48: EC25-AUT CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 93
TABLE 49: EC25-AUTL CONDUCTED RF RECEIVING SENSITIVITY ........................................................... 94
TABLE 50: EC25-AF CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 94
TABLE 51: ELECTROSTATICS DISCHARGE CHARACTERISTICS .............................................................. 95
TABLE 52: RELATED DOCUMENTS ............................................................................................................. 105
TABLE 53: TERMS AND ABBREVIATIONS ................................................................................................... 105
TABLE 54: DESCRIPTION OF DIFFERENT CODING SCHEMES ................................................................ 109
TABLE 55: GPRS MULTI-SLOT CLASSES .................................................................................................... 110
TABLE 56: EDGE MODULATION AND CODING SCHEMES ........................................................................ 112
EC25_Hardware_Design 9 / 112
EC25 Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 19
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 21
FIGURE 3: SLEEP MODE APPLICATION VIA UART ...................................................................................... 35
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 36
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 36
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 37
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ..................................................... 39
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ........................................................................... 39
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 40
FIGURE 10: TURN ON THE MODULE BY USING DRIVING CIRCUIT ........................................................... 41
FIGURE 11: TURN ON THE MODULE BY USING BUTTON ........................................................................... 41
FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 42
FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 43
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 44
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 44
FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 44
FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
................................................................................................................................................................... 46
FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR 46
FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 48
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 50
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 51
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 52
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 52
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ................................... 53
FIGURE 25: REFERENCE CIRCUIT OF SD CARD ......................................................................................... 55
FIGURE 26: REFERENCE CIRCUIT OF THE NETWORK INDICATOR ......................................................... 58
FIGURE 27: REFERENCE CIRCUITS OF STATUS ........................................................................................ 59
FIGURE 28: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 61
FIGURE 29: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION ................ 61
FIGURE 30: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
................................................................................................................................................................... 63
FIGURE 31: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 65
FIGURE 32: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................ 70
FIGURE 33: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ..................................................................... 71
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB ................................................. 71
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND) .................................................................................................................................................. 71
FIGURE 36: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND) .................................................................................................................................................. 72
FIGURE 37: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 73
EC25_Hardware_Design 10 / 112
EC25 Hardware Design
FIGURE 38: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM) ............................................... 75
FIGURE 39: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 75
FIGURE 40: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) .......................................................... 76
FIGURE 41: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE) ................. 96
FIGURE 42: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOMERS’ PCB)
................................................................................................................................................................... 96
FIGURE 43: MODULE TOP AND SIDE DIMENSIONS .................................................................................... 98
FIGURE 44: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 99
FIGURE 45: RECOMMENDED FOOTPRINT (TOP VIEW) ............................................................................ 100
FIGURE 46: TOP VIEW OF THE MODULE .................................................................................................... 101
FIGURE 47: BOTTOM VIEW OF THE MODULE ............................................................................................ 101
FIGURE 48: REFLOW SOLDERING THERMAL PROFILE ............................................................................ 103
FIGURE 49: TAPE AND REEL SPECIFICATIONS ........................................................................................ 104
EC25_Hardware_Design 11 / 112
EC25 Hardware Design
1 Introduction
This document defines the EC25 module and describes its air interface and hardware interface which are
connected with customers’ applications.
This document can help customers quickly understand module interface specifications, electrical and
mechanical details, as well as other related information of EC25 module. Associated with application note
and user guide, customers can use EC25 module to design and set up mobile applications easily.
EC25_Hardware_Design 12 / 112
EC25 Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, and incorporate
these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the
customers’ failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a hands free kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care
facilities. These requests are designed to prevent possible interference with
sensitive medical equipment.
Cellular terminals or mobiles operating over radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid (U)SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC25_Hardware_Design 13 / 112
EC25 Hardware Design
2 Product Concept
2.1. General Description
EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive
diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA,
WCDMA, EDGE and GPRS networks. It also provides GNSS
specific application. EC25 contains seven variants: EC25-E, EC25-A, EC25-V, EC25-J, EC25-AU,
EC25-AUT, EC25-AF and EC25-AUTL. Customers can choose a dedicated type based on the region or
operator. The following table shows the frequency bands of EC25 series module.
1)
and voice functionality2) for customers’
Table 1: Frequency Bands of EC25 Series Module
Modules2) LTE Bands
EC25-E
EC25-A
EC25-V
EC25-J
EC25-AU3)
EC25-AUT
EC25-AF
FDD: B1/B3/B5/B7/B8/B20
TDD: B38/B40/B41
FDD: B2/B4/B12 B2/B4/B5 N Y
FDD: B4/B13 N N Y
FDD: B1/B3/B8/B18/B19/
B26
TDD: B41
FDD: B1/B2/B3/B4/B5/B7/
B8/B28
TDD: B40
FDD: B1/B3//B5/B7/B28 B1/B5 N Y
FDD: B2/B4//B5/B12/B13/
B14/B66/B71
WCDMA Bands
B1/B5/B8 900/1800MHz Y
B1/B6/B8/B19 N Y
B1/B2/B5/B8
B2/B4/B5 N Y
GSM Bands
850/900/
1800/1900MHz
Rx­diversity
Y
GNSS1)
GPS,
GLONASS,
BeiDou/
Compass,
Galileo,
QZSS
EC25-AUTL
EC25_Hardware_Design 14 / 112
FDD: B3/B7/B28 N N Y N
EC25 Hardware Design
NOTES
1)
1.
GNSS function is optional.
2)
2.
EC25 series module (EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU/EC25-AUT/EC25-AF/
EC25-AUTL) contains Telematics version and Data-only version. Telematics version supports voice and data functions, while Data-only version only supports data function.
3)
3.
B2 band on EC25-AU module does not support Rx-diversity.
4. Y = Supported. N = Not supported.
With a compact profile of 29.0mm × 32.0mm × 2.4mm, EC25 can meet almost all requirements for M2M
applications such as automotive, metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone, tablet PC, etc.
EC25 is an SMD type module which can be embedded into applications through its 144-pin pads,
including 80 LCC signal pads and 64 LGA pads.
2.2. Key Features
The following table describes the detailed features of EC25 module.
Table 2: Key Features of EC25 Module
Feature Details
Power Supply
Transmitting Power
Supply voltage: 3.3V~4.3V Typical supply voltage: 3.8V
Class 4 (33dBm±2dB) for GSM850
Class 4 (33dBm±2dB) for EGSM900
Class 1 (30dBm±2dB) for DCS1800
Class 1 (30dBm±2dB) for PCS1900
Class E2 (27dBm±3dB) for GSM850 8-PSK
Class E2 (27dBm±3dB) for EGSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class E2 (26dBm±3dB) for PCS1900 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Class 3 (23dBm±2dB) for LTE-TDD bands
Support up to non-CA Cat 4 FDD and TDD
LTE Features
Support 1.4MHz~20MHz RF bandwidth
Support MIMO in DL direction
LTE-FDD: Max 150Mbps (DL)/50Mbps (UL)
EC25_Hardware_Design 15 / 112
UMTS Features
GSM Features
EC25 Hardware Design
LTE-TDD: Max 130Mbps (DL)/30Mbps (UL)
Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA
Support QPSK, 16-QAM and 64-QAM modulation
DC-HSDPA: Max 42Mbps (DL)
HSUPA: Max 5.76Mbps (UL)
WCDMA: Max 384Kbps (DL)/384Kbps (UL)
GPRS:
Support GPRS multi-slot class 33 (33 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Max 107Kbps (DL)/85.6Kbps (UL)
EDGE:
Support EDGE multi-slot class 33 (33 by default)
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Max 296Kbps (DL)/236.8Kbps (UL)
Support
TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/CMUX*/HTTPS*/SMTP*/
Internet Protocol Features
MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols
Support PAP (Password Authentication Protocol) and CHAP (Challenge
Handshake Authentication Protocol) protocols which are usually used for
PPP connections
Text and PDU mode
SMS
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
(U)SIM Interface Support USIM/SIM card: 1.8V, 3.0V
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
Audio Features
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
Used for audio function with external codec
Support 16-bit linear data format
PCM Interface
Support long frame synchronization and short frame synchronization
Support master and slave modes, but must be the master in long frame
synchronization
Compliant with USB 2.0 specification (slave only); the data transfer rate can
USB Interface
reach up to 480Mbps
Used for AT command communication, data transmission, GNSS NMEA
output, software debugging, firmware upgrade and voice over USB*
EC25_Hardware_Design 16 / 112
EC25 Hardware Design
Support USB serial drivers for: Windows 7/8/8.1/10,
Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x
Main UART:
Used for AT command communication and data transmission
Baud rates reach up to 921600bps, 115200bps by default
UART Interface
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console and log output
115200bps baud rate
SD Card Interface Support SD 3.0 protocol
SGMII Interface
Wireless Connectivity
Interfaces
Support 10M/100M/1000M Ethernet work mode
Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network
Support a low-power SDIO 3.0 interface for WLAN and UART/PCM
interface for Bluetooth*
Rx-diversity Support LTE/WCDMA Rx-diversity
GNSS Features
AT Commands
Network Indication
Antenna Interfaces
Physical Characteristics
Gen8C Lite of Qualcomm
Protocol: NMEA 0183
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Two pins including NET_MODE and NET_STATUS to indicate network
connectivity status
Including main antenna interface (ANT_MAIN), Rx-diversity antenna
interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Size: (29.0±0.15)mm × (32.0±0.15)mm × (2.4±0.2)mm
Weight: approx. 4.9g
Operation temperature range: -35°C ~ +75°C
Temperature Range
Extended temperature range: -40°C ~ +85°C
Storage temperature range: -40°C~ +90°C
1)
2)
Firmware Upgrade USB interface and DFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive
NOTES
1)
1.
Within operation temperature range, the module is 3GPP compliant.
2)
2.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like
P
might reduce in their value and exceed the specified tolerances. When the temperature returns to
out
the normal operating temperature levels, the module will meet 3GPP specifications again.
3. “*” means under development.
EC25_Hardware_Design 17 / 112
EC25 Hardware Design
2.3. Functional Diagram
The following figure shows a block diagram of EC25 and illustrates the major functional parts.
Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
EC25_Hardware_Design 18 / 112
EC25 Hardware Design
ANT_MAIN ANT_DIVANT_GNSS
VBAT_RF
VBAT_BB
PWRKEY
RESET_N
ADCs
STATUS
APT
PMIC
VDD_EXT
Tx
Control
19.2 M
PAM
Duplex
PA
PRx DRx
Transceiver
IQ Cont rol
XO
USB USIM PCM UARTsI2C
SAW
LNA
Switch
SAW
SDRAM
Baseband
SGMII
NAND DDR2
WLAN SDBT*
GPIOs
Figure 1: Functional Diagram
NOTE
“*” means under development.
2.4. Evaluation Board
In order to help customers develop applications with EC25, Quectel supplies an evaluation board (EVB),
USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module.
EC25_Hardware_Design 19 / 112
EC25 Hardware Design
3 Application Interfaces
3.1. General Description
EC25 is equipped with 80 LCC pads plus 64 LGA pads that can be connected to cellular application
platform. Sub-interfaces included in these pads are described in detail in the following chapters:
Power supply
(U)SIM interface
USB interface
UART interfaces
PCM and I2C interfaces
SD card interface
ADC interfaces
Status indication
SGMII interface
Wireless connectivity interfaces
USB_BOOT interface
EC25_Hardware_Design 20 / 112
EC25 Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EC25 module.
Figure 2: Pin Assignment (Top View)
NOTES
1)
1.
means that these pins cannot be pulled up before startup.
2)
2.
PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
3)
3.
means these interface functions are only supported on Telematics version.
4. Pads 37~40, 118, 127 and 129~139 are used for wireless connectivity interfaces, among which pads
118, 127 and 129~138 are WLAN function pins, and the rest are Bluetooth (BT) function pins. BT
function is under development.
5. Pads 119~126 and 128 are used for SGMII interface.
EC25_Hardware_Design 21 / 112
EC25 Hardware Design
6. Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the
BT module.
7. Keep all RESERVED pins and unused pins unconnected.
8. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84
should not be designed in schematic and PCB decal, and these pins should be served as a keep out
area.
9. “*” means under development.
3.3. Pin Description
The following tables show the pin definition of EC25 modules.
Table 3: I/O Parameters Definition
Type Description
IO Bidirectional
DI Digital input
DO Digital output
PI Power input
PO Power output
AI Analog input
AO Analog output
OD Open drain
Table 4: Pin Description
Power Supply
Pin Name Pin No. I/O Description DC Characteristics Comment
VBAT_BB 59, 60 PI
Power supply for
module’s baseband
part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 0.8A.
EC25_Hardware_Design 22 / 112
EC25 Hardware Design
It must be able to
provide sufficient
current up to 1.8A in a
burst transmission.
Power supply for
external GPIO’s pull-up
circuits.
VBAT_RF 57, 58 PI
VDD_EXT 7 PO
Power supply for
module’s RF part
Provide 1.8V for
external circuit
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
Vnorm=1.8V
I
max=50mA
O
8, 9, 19,
22, 36, 46,
GND
48, 50~54,
Ground
56, 72,
85~112
Turn on/off
Pin Name Pin No. I/O Description DC Characteristics Comment
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
PWRKEY 21 DI
Turn on/off the
module
V
max=2.1V
IH
V
min=1.3V
IH
V
max=0.5V
IL
max=2.1V
V
RESET_N 20 DI Reset the module
IH
V
min=1.3V
IH
V
max=0.5V
IL
If unused, keep it
open.
Status Indication
Pin Name Pin No. I/O Description DC Characteristics Comment
STATUS 61 OD
Indicate the module
operating status
The drive current
should be less than
0.9mA.
An external pull-up
resistor is required. If
unused, keep it open.
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
NET_MODE 5 DO
Indicate the module
network registration
mode
V
min=1.35V
OH
V
max=0.45V
OL
open.
NET_
STATUS
Indicate the module
6 DO
network activity
status
V
min=1.35V
OH
V
max=0.45V
OL
1.8V power domain.
If unused, keep it
open.
USB Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
USB_VBUS 71 PI USB detection
Vmax=5.25V
Vmin=3.0V
Vnorm=5.0V
Typical: 5.0V
If unused, keep it
open.
EC25_Hardware_Design 23 / 112
EC25 Hardware Design
Require differential
impedance of 90Ω.
If unused, keep it
open.
Require differential
impedance of 90Ω.
If unused, keep it
open.
USB_DP 69 IO
USB_DM 70 IO
USB differential data
bus (+)
USB differential data
bus (-)
Compliant with USB
2.0 standard
specification.
Compliant with USB
2.0 standard
specification.
(U)SIM Interface Pin Name Pin No. I/O Description DC Characteristics Comment
USIM_GND 10
USIM_
PRESENCE
13 DI
Specified ground for
(U)SIM card
(U)SIM card
insertion detection
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
For 1.8V(U)SIM:
Vmax=1.9V
Vmin=1.7V
USIM_VDD 14 PO
Power supply for
(U)SIM card
For 3.0V(U)SIM:
Vmax=3.05V
Either 1.8V or 3.0V is
supported by the
module automatically.
Vmin=2.7V
I
max=50mA
O
For 1.8V (U)SIM:
V
max=0.6V
IL
V
min=1.2V
IH
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
V
max=1.0V
IL
V
min=1.95V
IH
V
max=0.45V
OL
V
min=2.55V
OH
USIM_DATA 15 IO
Data signal of
(U)SIM card
For 1.8V (U)SIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
V
max=0.45V
OL
V
min=2.55V
OH
USIM_CLK 16 DO
Clock signal of
(U)SIM card
EC25_Hardware_Design 24 / 112
EC25 Hardware Design
For 1.8V (U)SIM:
V
max=0.45V
OL
V
min=1.35V
OH
For 3.0V (U)SIM:
V
max=0.45V
OL
V
min=2.55V
OH
USIM_RST 17 DO
Reset signal of
(U)SIM card
Main UART Interface Pin Name Pin No. I/O Description DC Characteristics Comment
V
RI 62 DO Ring indicator
DCD 63 DO
Data carrier
detection
CTS 64 DO Clear to send
RTS 65 DI Request to send
DTR 66 DI
Data terminal ready,
sleep mode control
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
IL
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
max=0.45V
min=1.35V
max=0.45V
min=1.35V
max=0.45V
min=1.35V
min=-0.3V
max=0.6V
min=1.2V
max=2.0V
min=-0.3V
max=0.6V
min=1.2V
max=2.0V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Pulled up by default.
Low level wakes up
the module.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
TXD 67 DO Transmit data
RXD 68 DI Receive data
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
Debug UART Interface Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
If unused, keep it
open.
DBG_TXD 12 DO Transmit data
V
max=0.45V
OL
V
min=1.35V
OH
DBG_RXD 11 DI Receive data VILmin=-0.3V 1.8V power domain.
EC25_Hardware_Design 25 / 112
EC25 Hardware Design
VILmax=0.6V
VIHmin=1.2V
V
max=2.0V
IH
If unused, keep it
open.
ADC Interface Pin Name Pin No. I/O Description DC Characteristics Comment
General purpose
ADC0 45 AI
analog to digital
converter
General purpose
ADC1 44 AI
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
If unused, keep it
open.
PCM Interface Pin Name Pin No. I/O Description DC Characteristics Comment
V
min=-0.3V
PCM_IN 24 DI PCM data input
PCM_OUT 25 DO PCM data output
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
PCM data frame
PCM_SYNC 26 IO
synchronization
signal
PCM_CLK 27 IO PCM clock
VOLmax=0.45V
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
I2C Interface Pin Name Pin No. I/O Description DC Characteristics Comment
External pull-up
I2C_SCL 41 OD
I2C serial clock Used
for external codec.
resistor is required.
1.8V only. If unused,
keep it open.
EC25_Hardware_Design 26 / 112
EC25 Hardware Design
External pull-up
I2C_SDA 42 OD
I2C serial dataUsed
for external codec.
resistor is required.
1.8V only. If unused,
keep it open.
SD Card Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V signaling:
V
max=0.45V
OL
V
min=1.4V
OH
V
min=-0.3V
SDC2_
DATA3
28 IO
SD card SDIO bus
DATA3
IL
V
max=0.58V
IL
V
min=1.27V
IH
V
max=2.0V
IH
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
V
min=-0.3V
IL
V
max=0.76V
IL
V
min=1.72V
IH
V
max=3.34V
IH
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
1.8V signaling:
V
max=0.45V
OL
V
min=1.4V
OH
V
min=-0.3V
SDC2_
DATA2
SDC2_
DATA1
29 IO
30 IO
SD card SDIO bus
DATA2
SD card SDIO bus
DATA1
IL
V
max=0.58V
IL
V
min=1.27V
IH
V
max=2.0V
IH
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
V
min=-0.3V
IL
V
max=0.76V
IL
V
min=1.72V
IH
V
max=3.34V
IH
1.8V signaling:
V
max=0.45V
OL
V
min=1.4V
OH
V
min=-0.3V
IL
V
max=0.58V
IL
V
min=1.27V
IH
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
EC25_Hardware_Design 27 / 112
EC25 Hardware Design
SDC2_
DATA0
31 IO
SDC2_CLK 32 DO
SD card SDIO bus
DATA0
SD card SDIO bus
clock
VIHmax=2.0V
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
V
min=-0.3V
IL
V
max=0.76V
IL
V
min=1.72V
IH
V
max=3.34V
IH
1.8V signaling:
V
max=0.45V
OL
V
min=1.4V
OH
V
min=-0.3V
IL
V
max=0.58V
IL
V
min=1.27V
IH
V
max=2.0V
IH
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
V
min=-0.3V
IL
V
max=0.76V
IL
V
min=1.72V
IH
V
max=3.34V
IH
1.8V signaling:
V
max=0.45V
OL
V
min=1.4V
OH
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
1.8V signaling:
max=0.45V
V
OL
V
SDC2_CMD 33 IO
SD card SDIO bus
command
min=1.4V
OH
V
min=-0.3V
IL
V
max=0.58V
IL
V
min=1.27V
IH
V
max=2.0V
IH
3.0V signaling:
max=0.38V
V
OL
V
min=2.01V
OH
V
min=-0.3V
IL
SDIO signal level can
be selected according
to SD card supported
level, please refer to
SD 3.0 protocol for
more details.
If unused, keep it
open.
EC25_Hardware_Design 28 / 112
EC25 Hardware Design
VILmax=0.76V
VIHmin=1.72V
V
max=3.34V
IH
V
min=-0.3V
SD_INS_
DET
23 DI
SD card insertion
detect
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V/2.85V
configurable. Cannot
be used for SD card
power. If unused,
VDD_SDIO 34 PO
SD card SDIO bus
pull-up power
I
max=50mA
O
keep it open.
SGMII Interface Pin Name Pin No. I/O Description DC Characteristics Comment
For 1.8V:
V
max=0.45V
EPHY_RST_
N
119 DO Ethernet PHY reset
EPHY_INT_N 120 DI
Ethernet PHY
interrupt
OL
V
min=1.4V
OH
For 2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
For 1.8V:
V
max=0.45V
OL
V
min=1.4V
OH
V
max=0.58V
SGMII_
MDATA
SGMII MDIO
121 IO
(Management Data
Input/Output) data
IL
V
min=1.27V
IH
For 2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
V
max=0.71V
IL
V
min=1.78V
IH
1.8V/2.85V power
domain.
If unused, keep it
open.
For 1.8V:
V
max=0.45V
SGMII_
MCLK
SGMII MDIO
122 DO
(Management Data
Input/Output) clock
OL
V
min=1.4V
OH
For 2.85V:
V
max=0.35V
OL
V
min=2.14V
OH
1.8V/2.85V power
domain.
If unused, keep it
open.
EC25_Hardware_Design 29 / 112
EC25 Hardware Design
USIM2_VDD 128 PO
SGMII_TX_M 123 AO
SGMII_TX_P 124 AO
SGMII MDIO pull-up
power source
SGMII transmission
- minus
SGMII transmission
- plus
Configurable power
source.
1.8V/2.85V power
domain.
External pull-up for
SGMII MDIO pins.
If unused, keep it
open.
Connect with a 0.1uF
capacitor, close to the
PHY side.
If unused, keep it
open.
Connect with a 0.1uF
capacitor, close to the
PHY side.
If unused, keep it
open.
Connect with a 0.1uF
capacitor, close to
EC25 module.
If unused, keep it
SGMII_RX_P 125 AI
SGMII receiving
- plus
open.
Connect with a 0.1uF
capacitor, close to
EC25 module.
If unused, keep it
SGMII_RX_M 126 AI
SGMII receiving
-minus
open.
Wireless Connectivity Interfaces
Pin Name Pin No. I/O Description DC Characteristics Comment
V
max=0.45V
OL
V
min=1.35V
SDC1_
DATA3
SDC1_
DATA2
129 IO
130 IO
WLAN SDIO data
bus D3
WLAN SDIO data
bus D2
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
EC25_Hardware_Design 30 / 112
EC25 Hardware Design
SDC1_
DATA1
SDC1_
DATA0
131 IO
132 IO
SDC1_CLK 133 DO
WLAN SDIO data
bus D1
WLAN SDIO data
bus D0
WLAN SDIO bus
clock
V
OL
VOHmin=1.35V
V
IL
V
IL
V
IH
V
IH
V
OL
V
OH
V
IL
V
IL
V
IH
V
IH
V
OL
V
OH
max=0.45V
min=-0.3V
max=0.6V
min=1.2V
max=2.0V
max=0.45V
min=1.35V
min=-0.3V
max=0.6V
min=1.2V
max=2.0V
max=0.45V
min=1.35V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
SDC1_CMD 134 DO
PM_ENABLE 127 DO
WAKE_ON_
WIRELESS
135 DI
WLAN_EN 136 DO
COEX_UART
_RX
137 DI
WLAN SDIO bus
command
External power
control
Wake up the host
(EC25 module) by
FC20 module
WLAN function
control via FC20
module
LTE/WLAN&BT
coexistence signal
V
max=0.45V
OL
V
min=1.35V
OH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
V
max=0.45V
OL
V
min=1.35V
OH
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Active low.
If unused, keep it
open.
1.8V power domain.
Active high.
Cannot be pulled up
before startup.
If unused, keep it
open.
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
1.8V power domain.
COEX_UART
_TX
138 DO
LTE/WLAN&BT
coexistence signal
V
max=0.45V
OL
V
min=1.35V
OH
Cannot be pulled up
before startup.
If unused, keep it
open.
WLAN_SLP_
CLK
118 DO WLAN sleep clock
If unused, keep it
open.
EC25_Hardware_Design 31 / 112
EC25 Hardware Design
BT_RTS* 37 DI
BT_TXD* 38 DO
BT_RXD* 39 DI
BT_CTS* 40 DO
BT UART request to
send
BT UART transmit
data
BT UART receive
data
BT UART clear to
send
V
VILmax=0.6V
V
V
V
V
V
V
V
V
V
V
min=-0.3V
IL
min=1.2V
IH
max=2.0V
IH
max=0.45V
OL
min=1.35V
OH
min=-0.3V
IL
max=0.6V
IL
min=1.2V
IH
max=2.0V
IH
max=0.45V
OL
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
BT_EN* 139 DO
BT function control
via the BT module
V
max=0.45V
OL
V
min=1.35V
OH
1.8V power domain.
If unused, keep it
open.
RF Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
ANT_DIV 35 AI
Diversity antenna
pad
ANT_MAIN 49 IO Main antenna pad
50 impedance
If unused, keep it
open.
50 impedance
50 impedance
ANT_GNSS 47 AI GNSS antenna pad
If unused, keep it
open.
GPIO Pins
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
Cannot be pulled up
before startup.
Low level wakes up
the module.
If unused, keep it
WAKEUP_IN 1 DI Sleep mode control
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
open.
V
W_DISABLE# 4 DI
Airplane mode
control
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
1.8V power domain.
Pull-up by default.
At low voltage level,
EC25_Hardware_Design 32 / 112
EC25 Hardware Design
V
max=2.0V module can enter into
IH
airplane mode.
If unused, keep it
open.
V
min=-0.3V
AP_READY 2 DI
Application
processor sleep
state detection
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
1.8V power domain.
If unused, keep it
open.
USB_BOOT Interface
Pin Name Pin No. I/O Description DC Characteristics Comment
1.8V power domain.
Cannot be pulled up
before startup.
It is recommended to
reserve test point.
USB_BOOT 115 DI
Force the module to
enter into
emergency
download mode
V
min=-0.3V
IL
V
max=0.6V
IL
V
min=1.2V
IH
V
max=2.0V
IH
RESERVED Pins
Pin Name Pin No. I/O Description DC Characteristics Comment
3, 18, 43,
RESERVED
55, 73~84,
113, 114,
116, 117,
Reserved
Keep these pins
unconnected.
140-144.
NOTES
1. “*” means under development.
2. Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the
BT module.
EC25_Hardware_Design 33 / 112
EC25 Hardware Design
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode Details
Normal
Idle
Operation
Talk/Data
Minimum
Functionality
Mode
Airplane Mode
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and (U)SIM card will be
invalid.
AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In
this case, RF function will be invalid.
In this mode, the current consumption of the module will be reduced to the minimal
Sleep Mode
level. During this mode, the module can still receive paging message, SMS, voice
call and TCP/UDP data from the network normally.
Power Down
Mode
In this mode, the power management unit shuts down the power supply. Software is
not active. The serial interface is not accessible. Operating voltage (connected to
VBAT_RF and VBAT_BB) remains applied.
3.5. Power Saving
Software is active. The module has registered on the network, and it is
ready to send and receive data.
Network connection is ongoing. In this mode, the power consumption is
decided by network setting and data transfer rate.
3.5.1. Sleep Mode
EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following
section describes power saving procedures of EC25 module.
3.5.1.1. UART Application
If the host communicates with module via UART interface, the following preconditions can let the module
enter into sleep mode.
Execute AT+QSCLK=1 command to enable sleep mode.
Drive DTR to high level.
EC25_Hardware_Design 34 / 112
EC25 Hardware Design
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART
Driving the host DTR to low level will wake up the module.
When EC25 has a URC to report, RI signal will wake up the host. Please refer to Chapter 3.17 for
details about RI behaviors.
AP_READY will detect the sleep state of the host (can be configured to high level or low level
detection). Please refer to AT+QCFG="apready"* command for details.
NOTE
“*” means under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup function, the following three preconditions
must be met to let the module enter into the sleep mode.
Execute AT+QSCLK=1 command to enable sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC25_Hardware_Design 35 / 112
EC25 Hardware Design
The following figure shows the connection between the module and the host.
Figure 4: Sleep Mode Application with USB Remote Wakeup
Sending data to EC25 through USB will wake up the module.
When EC25 has a URC to report, the module will send remote wake-up signals via USB bus so as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is
needed to wake up the host.
There are three preconditions to let the module enter into the sleep mode.
Execute AT+QSCLK=1 command to enable the sleep mode.
Ensure the DTR is held at high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI
EC25_Hardware_Design 36 / 112
EC25 Hardware Design
Sending data to EC25 through USB will wake up the module.
When EC25 has a URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, USB_VBUS should be disconnected via an additional
control circuit to let the module enter into sleep mode.
Execute AT+QSCLK=1 command to enable sleep mode.
Ensure the DTR is held at high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Figure 6: Sleep Mode Application without Suspend Function
Switching on the power switch to supply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and the host. For more
details about EC25 power management application, please refer to document [1].
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set via the following ways.
EC25_Hardware_Design 37 / 112
EC25 Hardware Design
Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane
mode.
Software: AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4.
AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.  AT+CFUN=1: Full functionality mode (by default).  AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled by
AT+QCFG="airplanecontrol" command, and this command is under development.
2. The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EC25 provides four VBAT pins to connect with the external power supply, and there are two separate
voltage domains for VBAT.
Two VBAT_RF pins for module’s RF part
Two VBAT_BB pins for module’s baseband part
The following table shows the details of VBAT pins and ground pins.
Table 6: VBAT and GND Pins
Pin Name Pin No. Description Min. Typ. Max. Unit
VBAT_RF 57, 58
VBAT_BB 59, 60
8, 9, 19, 22, 36,
GND
EC25_Hardware_Design 38 / 112
46, 48, 50~54,
56, 72, 85~112
Power supply for module’s RF
part
Power supply for module’s
baseband part
Ground - 0 - V
3.3 3.8 4.3 V
3.3 3.8 4.3 V
EC25 Hardware Design
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network. The voltage drop will be less in 3G and 4G networks.
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR (ESR=0.7) should be used,
and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It
is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array,
and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external
application has to be a single voltage source and can be expanded to two sub paths with star structure.
The width of VBAT_BB trace should be no less than 1mm; and the width of VBAT_RF trace should be no
less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.
In addition, in order to get a stable power source, it is suggested that a zener diode whose reverse zener
voltage is 5.1V and dissipation power is more than 0.5W should be used. The following figure shows the
star structure of the power supply.
Figure 8: Star Structure of the Power Supply
EC25_Hardware_Design 39 / 112
EC25 Hardware Design
3.6.3. Reference Design for Power Supply
Power design for the module is very important, as the performance of the module largely depends on the
power source. The power supply should be able to provide sufficient current up to 2A at least. If the
voltage drop between the input and output is not too high, it is suggested that an LDO should be used to
supply power for the module. If there is a big voltage difference between the input source and the desired
output (VBAT), a buck converter is preferred to be used as the power supply.
The following figure shows a reference design for +5V input power source. The typical output of the power
supplyis about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, then the power supply
can be cut off.
3.6.4. Monitor the Power Suppl y
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Turn on and off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definition of PWRKEY.
EC25_Hardware_Design 40 / 112
EC25 Hardware Design
Table 7: Pin Definition of PWRKEY
Pin Name Pin No. I/O Description Comment
PWRKEY 21 DI Turn on/off the module
The output voltage is 0.8V because of
the diode drop in the Qualcomm chipset.
When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 500ms. It is recommended to use an open drain/collector driver to control the
PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be
released. A simple reference circuit is illustrated in the following figure.
PWRKEY
500ms
4.7K 10nF
Turn on pulse
47K
Figure 10: Turn on the Module by Using Driving Circuit
The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic
strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shown in the following figure.
Figure 11: Turn on the Module by Using Button
EC25_Hardware_Design 41 / 112
EC25 Hardware Design
The turn on scenario is illustrated in the following figure.
Figure 12: Timing of Turning on Module
NOTE
Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them should
be no no less than 30ms.
3.7.2. Turn off Module
The following procedures can be used to turn off the module:
Normal power down procedure: Turn off the module using the PWRKEY pin.
Normal power down procedure: Turn off the module using AT+QPOWD command.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down
procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure.
EC25_Hardware_Design 42 / 112
EC25 Hardware Design
Figure 13: Timing of Turning off Module
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWD command to turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer to document [2] for details about AT+QPOWD command.
NOTES
1. Inorder to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shut down by PWRKEY or AT command, then the power
supply can be cut off.
2. When turn off module with AT command, please keep PWRKEY at high level after the execution of
power-off command. Otherwise the module will be turned on again after successfully turn-off.
3.8. Reset the Module
The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a
low level voltage for time between 150ms and 460ms.
Table 8: RESET_N Pin Description
Pin Name Pin No. I/O Description Comment
RESET_N 20 DI Reset the module 1.8V power domain
EC25_Hardware_Design 43 / 112
EC25 Hardware Design
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
Figure 15: Reference Circuit of RESET_N by Using Button
The reset scenario is illustrated inthe following figure.
Figure 16: Timing of Resetting Module
EC25_Hardware_Design 44 / 112
EC25 Hardware Design
NOTES
1. Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed.
2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. (U)SIM Interface
The(U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards
are supported.
Table 9: Pin Definition of the (U)SIM Interface
Pin Name Pin No. I/O Description Comment
USIM_VDD 14 PO Power supply for (U)SIM card
Either 1.8V or 3.0V is supported
by the module automatically.
USIM_DATA 15 IO Data signal of (U)SIM card
USIM_CLK 16 DO Clock signal of (U)SIM card
USIM_RST 17 DO Reset signal of (U)SIM card
USIM_
PRESENCE
13 DI (U)SIM card insertion detection
USIM_GND 10 Specified ground for (U)SIM card
EC25 supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and
high level detections, and it is disabled by default. Please refer to document [2] for more details about
AT+QSIMDET command.
EC25_Hardware_Design 45 / 112
EC25 Hardware Design
The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.
Figure 17: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector
If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A
reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following
figure.
Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector
In order to enhance the reliability and availability of the (U)SIM card in customers’ applications, please
follow the criteria below in (U)SIM circuit design:
EC25_Hardware_Design 46 / 112
EC25 Hardware Design
Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length
as less than 200mm as possible.
Keep (U)SIM card signals away from RF and VBAT traces.
Assure the ground between the module and the (U)SIM card connector short and wide. Keep the
trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as
close to (U)SIM card connector as possible. If the ground is complete on customers’ PCB,
USIM_GND can be connected to PCB ground directly.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic
capacitance should not be more than 15pF. The 0 resistors should be added in series between the
module and the (U)SIM card to facilitate debugging. The 33pF capacitors are used for filtering
interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the
(U)SIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion are applied, and it should be placed close to the (U)SIM card connector.
3.10. USB Interface
EC25 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output, software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Description of USB Interface
Pin Name Pin No. I/O Description Comment
USB_DP 69 IO USB differential data bus (+)
USB_DM 70 IO USB differential data bus (-)
USB_VBUS 71 PI USB connection detection Typical 5.0V
Require differential
impedance of 90
Require differential
impedance of 90
GND 72 Ground
For more details about the USB 2.0 specifications, please visit http://www.usb.org/home
.
EC25_Hardware_Design 47 / 112
EC25 Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in customers’ designs. The
following figure shows a reference circuit of USB interface.
Figure 19: Reference Circuit of USB Application
A common mode choke L1 is recommended to be added in series between the module and customer’s
MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 resistors (R3 and R4) should be
added in series between the module and the test points so as to facilitate debugging, and the resistors are
not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components
must be placed close to the module, and also these resistors should be placed close to each other. The
extra stubs of trace must be as short as possible.
The following principles should be complied with when design the USB interface, so as to meet USB 2.0
specification.
It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90Ω.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding on not only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1. EC25 module can only be used as a slave device.
2. “*” means under development.
EC25_Hardware_Design 48 / 112
EC25 Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and the debug UART interface. The
following shows their features.
The main UART interface supports 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps,
230400bps, 460800bps and 921600bps baud rates, and the default is 115200bps. This interface is
used for data transmission and AT command communication.
The debug UART interface supports 115200bps baud rate. It is used for Linux console and log
output.
The following tables show the pin definition of the UART interfaces.
Table 11: Pin Definition of Main UART Interface
Pin Name Pin No. I/O Description Comment
RI 62 DO Ring indicator
DCD 63 DO Data carrier detection
CTS 64 DO Clear to send
RTS 65 DI Request to send
1.8V power domain
DTR 66 DI Data terminal ready
TXD 67 DO Transmit data
RXD 68 DI Receive data
Table 12: Pin Definition of Debug UART Interface
Pin Name Pin No. I/O Description Comment
DBG_TXD 12 DO Transmit data
1.8V power domain
DBG_RXD 11 DI Receive data
EC25_Hardware_Design 49 / 112
EC25 Hardware Design
The logic levels are described in the following table.
Table 13: Logic Levels of Digital I/O
Parameter Min. Max. Unit
VIL -0.3 0.6 V
VIH 1.2 2.0 V
VOL 0 0.45 V
VOH 1.35 1.8 V
The module provides 1.8V UART interface. A level translator should be used if customers’ application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instruments
is recommended. The following figure shows a reference design.
Figure 20: Reference Circuit with Translator Chip
Please visit http://www.ti.com
for more information.
Another example with transistor translation circuit is shown as below. The circuit design of dotted line
section can refer to the design of solid line section, in terms of both module’s input and output circuit
designs, but please pay attention to the direction of connection.
EC25_Hardware_Design 50 / 112
EC25 Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes and one I2C interface:
Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long frame synchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports
256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz
PCM_CLK at 16kHz PCM_SYNC.
In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a
256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC.
EC25 supports 16-bit linear data format. The following figures show the primary mode’s timing
relationship with 8KHz PCM_SYNC and 2048KHz PCM_CLK, as well as the auxiliary mode’s timing
relationship with 8KHz PCM_SYNC and 256KHz PCM_CLK.
EC25_Hardware_Design 51 / 112
EC25 Hardware Design
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name Pin No. I/O Description Comment
PCM_IN 24 DI PCM data input 1.8V power domain
EC25_Hardware_Design 52 / 112
EC25 Hardware Design
PCM_OUT 25 DO PCM data output 1.8V power domain
PCM_SYNC 26 IO
PCM data frame
synchronization signal
1.8V power domain
PCM_CLK 27 IO PCM data bit clock 1.8V power domain
I2C_SCL 41 OD I2C serial clock Require external pull-up to 1.8V
I2C_SDA 42 OD I2C serial data Require external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048KHz PCM_CLK and 8KHz PCM_SYNC. Please refer to
document [2] for more details about AT+QDAI command.
The following figure shows a reference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1. It is recommended to reserve an RC (R=22, C=22pF) circuits on the PCM lines, especially for
PCM_CLK.
2. EC25 works as a master device pertaining to I2C interface.
EC25_Hardware_Design 53 / 112
EC25 Hardware Design
3.13. SD Card Interface
EC25 supports SDIO 3.0 interface for SD card.
The following table shows the pin definition of SD card interface.
Table 15: Pin Definition of SD Card Interface
Pin Name Pin No. I/O Description Comment
SDIO signal level can be
selected according to SD
SDC2_DATA3 28 IO SD card SDIO bus DATA3
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDC2_DATA2 29 IO SD card SDIO bus DATA2
SDC2_DATA1 30 IO SD card SDIO bus DATA1
SDC2_DATA0 31 IO SD card SDIO bus DATA0
SDC2_CLK 32 DO SD card SDIO bus clock
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDIO signal level can be
selected according to SD
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
SDC2_CMD 33 IO SD card SDIO bus command
SDIO signal level can be
selected according to SD
EC25_Hardware_Design 54 / 112
EC25 Hardware Design
VDD_SDIO 34 PO SD card SDIO bus pull up power
card supported level,
please refer to SD 3.0
protocol for more details.
If unused, keep it open.
1.8V/2.85V configurable.
Cannot be used for SD
card power. If unused,
keep it open.
SD_INS_DET 23 DI SD card insertion detection
The following figure shows a reference design of SD card.
1.8V power domain.
If unused, keep it open.
Figure 25: Reference Circuit of SD card
In SD card interface design, in order to ensure good communication performance with SD card, the
following design principles should be complied with:
SD_INS_DET must be connected.
The voltage range of SD card power supply VDD_3V is 2.7V~3.6V and a sufficient current up to 0.8A
should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used
for SDIO pull-up resistors, an externally power supply is needed for SD card.
To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these
resistors is among 10KΩ~100KΩ and the recommended value is 100K. VDD_SDIO should be used
as the pull-up power.
In order to adjust signal quality, it is recommended to add 0 resistors R1~R6 in series between the
module and the SD card. The bypass capacitors C1~C6 are reserved and not mounted by default. All
resistors and bypass capacitors should be placed close to the module.
In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near
the SD card connector with junction capacitance less than 15pF.
EC25_Hardware_Design 55 / 112
EC25 Hardware Design
Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals,
etc., as well as noisy signals such as clock signals, DCDC signals, etc.
It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace
is 50 (±10%).
Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of
SDIO bus should be less than 15pF.
It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm
and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the
exterior total trace length should be less than 23mm.
3.14. ADC Interfaces
The module provides two analog-to-digital converter (ADC) interfaces. AT+QADC=0 command can be used to read the voltage value on ADC0 pin. AT+QADC=1 command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer to document [2].
In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.
Table 16: Pin Definition of ADC Interfaces
Pin Name Pin No. Description
ADC0 45 General purpose analog to digital converter
ADC1 44 General purpose analog to digital converter
The following table describes the characteristic of ADC function.
Table 17: Characteristic of ADC
Parameter Min. Typ. Max. Unit
ADC0 Voltage Range 0.3 VBAT_BB V
ADC1 Voltage Range 0.3 VBAT_BB V
ADC Resolution 15 Bits
EC25_Hardware_Design 56 / 112
EC25 Hardware Design
NOTES
1. ADC input voltage must not exceed VBAT_BB.
2. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
3. It is recommended to use a resistor divider circuit for ADC application.
3.15. Network Status Indication
The network indication pins can be used to drive network status indication LEDs. The module provides
two pins which are NET_MODE and NET_STATUS. The following tables describe the pin definition and
logic level changes in different network status.
Table 18: Pin Definition of Network Connection Status/Activity Indicator
Pin Name Pin No. I/O Description Comment
1.8V power domain
Cannot be pulled up
before startup
1.8V power domain
NET_MODE 5 DO
NET_STATUS 6 DO
Indicate the module network
registration mode.
Indicate the module network activity
status.
Table 19: Working State of the Network Connection Status/Activity Indicator
Pin Name Logic Level Changes Network Status
Always High Registered on LTE network
NET_MODE
Always Low Others
Flicker slowly (200ms High/1800ms Low) Network searching
Flicker slowly (1800ms High/200ms Low) Idle
NET_STATUS
Flicker quickly (125ms High/125ms Low) Data transfer is ongoing
Always High Voice calling
EC25_Hardware_Design 57 / 112
EC25 Hardware Design
A reference circuit is shown in the following figure.
Figure 26: Reference Circuit of the Network Indicator
3.16. STATUS
The STATUS pin is an open drain output for indicating the module’s operation status. It can be connected
to a GPIO of DTE with a pull-up resistor, or as LED indication circuit as below. When the module is turned
on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance
state.
Table 20: Pin Definition of STATUS
Pin Name Pin No. I/O Description Comment
STATUS 61 OD Indicate the module’s operation status
The following figure shows different circuit designs of STATUS, and customers can choose either one
according to customers’ application demands.
An external pull-up resistor
is required.
If unused, keep it open.
EC25_Hardware_Design 58 / 112
EC25 Hardware Design
3.17. Behaviors of RI
Figure 27: Reference Circuits of STATUS
AT+QCFG="risignaltype","physical" command can be used to configure RI behavior.
No matter on which port URC is presented, URC will trigger the behavior of RI pin.
NOTE
URC can be outputted from UART port, USB AT port and USB modem port through configuration via
AT+QURCCFG command. The default port is USB AT port.
In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.
Table 21: Behavior of RI
State Response
Idle RI keeps at high level
URC RI outputs 120ms low pulse when a new URC returns
The RI behavior can be changed by AT+QCFG="urc/ri/ring" command. Please refer to document [2]
for details.
EC25_Hardware_Design 59 / 112
EC25 Hardware Design
3.18. SGMII Interface
EC25 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key
features of the SGMII interface are shown below:
IEEE802.3 compliance
Support 10M/100M/1000M Ethernet work mode
Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network
Support VLAN tagging
Support IEEE1588 and Precision Time Protocol (PTP)
Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
Management interfaces support dual voltage 1.8V/2.85V
The following table shows the pin definition of SGMII interface.
Table 22: Pin Definition of the SGMII Interface
Pin Name Pin No. I/O Description Comment Control Signal Part
EPHY_RST_N 119 DO Ethernet PHY reset 1.8V/2.85V power domain
EPHY_INT_N 120 DI Ethernet PHY interrupt 1.8V power domain
SGMII_MDATA 121 IO
SGMII_MCLK 122 DO
SGMII MDIO (Management Data
Input/Output) data
SGMII MDIO (Management Data
Input/Output) clock
1.8V/2.85V power domain
1.8V/2.85V power domain
Configurable power source.
USIM2_VDD 128 PO SGMII MDIO pull-up power source
1.8V/2.85V power domain.
External pull-up power source for
SGMII MDIO pins.
SGMII Signal Part
SGMII_TX_M 123 AO SGMII transmission-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_TX_P 124 AO SGMII transmission-plus
SGMII_RX_P 125 AI SGMII receiving-plus
SGMII_RX_M 126 AI SGMII receiving-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
Connect with a 0.1uF capacitor,
close to EC25 module.
Connect with a 0.1uF capacitor,
close to EC25 module.
EC25_Hardware_Design 60 / 112
EC25 Hardware Design
The following figure shows the simplified block diagram for Ethernet application.
Figure 28: Simplified Block Diagram for Ethernet Application
The following figure shows a reference design of SGMII interface with PHY AR8033 application.
Figure 29: Reference Circuit of SGMII Interface with PHY AR8033 Application
In order to enhance the reliability and availability in customers’ applications, please follow the criteria
below in the Ethernet PHY circuit design:
Keep SGMII data and control signals away from other sensitive circuits/signals such as RF circuits,
analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
Keep the maximum trace length less than 10-inch and keep skew on the differential pairs less than
20mil.
The differential impedance of SGMII data trace is 100Ω±10%, and the reference ground of the area
should be complete.
Make sure the trace spacing between SGMII RX and TX is at least 3 times of the trace width, and the
same to the adjacent signal traces.
EC25_Hardware_Design 61 / 112
EC25 Hardware Design
3.19. Wireless Connectivity Interfaces
EC25 supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.
The following table shows the pin definition of wireless connectivity interfaces.
Table 23: Pin Definition of Wireless Connectivity Interfaces
Pin Name Pin No. I/O Description Comment WLAN Part
SDC1_DATA3 129 IO WLAN SDIO data bus D3 1.8V power domain
SDC1_DATA2 130 IO WLAN SDIO data bus D2 1.8V power domain
SDC1_DATA1 131 IO WLAN SDIO data bus D1 1.8V power domain
SDC1_DATA0 132 IO WLAN SDIO data bus D0 1.8V power domain
SDC1_CLK 133 DO WLAN SDIO bus clock 1.8V power domain
SDC1_CMD 134 IO WLAN SDIO bus command 1.8V power domain
1.8V power domain.
WLAN_EN 136 DO
WLAN function control via FC20
module.
Active high.
Cannot be pulled up
before startup.
Coexistence and Control Part
PM_ENABLE 127 DO External power control
WAKE_ON_
WIRELESS
135 DI
Wake up the host (EC25 module) by
FC20 module
1.8V power domain
Active high.
1.8V power domain
1.8V power domain.
COEX_UART_RX 137 DI LTE/WLAN&BT coexistence signal
Cannot be pulled up
before startup.
1.8V power domain.
COEX_UART_TX 138 DO LTE/WLAN&BT coexistence signal
Cannot be pulled up
before startup.
WLAN_SLP_CLK 118 DO WLAN sleep clock
BT Part*
BT_RTS* 37 DI BT UART request to send 1.8V power domain
BT_TXD* 38 DO BT UART transmit data 1.8V power domain
EC25_Hardware_Design 62 / 112
EC25 Hardware Design
BT_RXD* 39 DI BT UART receive data 1.8V power domain
1.8V power domain.
BT_CTS* 40 DO BT UART clear to send
Cannot be pulled up
before startup.
PCM_IN1) 24 DI PCM data input 1.8V power domain
PCM_OUT1) 25 DO PCM data output 1.8V power domain
PCM_SYNC1) 26 IO
PCM data frame synchronization
signal
1.8V power domain
PCM_CLK1) 27 IO PCM data bit clock 1.8V power domain
BT_EN* 139 DO BT function control via BT module.
1.8V power domain
Active high.
The following figure shows a reference design of wireless connectivity interfaces with Quectel FC20
module.
POWER
WLAN
Module
SDC1_DAT A3
SDC1_DAT A2
SDC1_DAT A1
SDC1_DATA0
WLAN_SLP_CLK
WAKE_ ON _WIRELE SS
PM_ENABLE
VDD_EXT VIO
SDC1_CLK
SDC1_CMD
WLAN_EN
DCDC/LDO
FC20 Module
VDD_3V3
SDIO_D3
SDIO_D2
SDIO_D1
SDIO_D0
SDIO_CLK
SDIO_CMD
WLAN_EN
32K HZ_IN
WAKE_ ON_WIRELE SS
COEX
COEX_ UART_RX
COEX_UART_TX
LTE_UART_TXD
LTE_UART_RXD
Figure 30: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module
NOTES
1. FC20 module can only be used as a slave device.
2. When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to
output signals.
3. For more information about wireless connectivity interfaces, please refer to document [5].
EC25_Hardware_Design 63 / 112
EC25 Hardware Design
4. “*” means under development.
1)
5.
Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on BT
module.
3.19.1. WLAN Interface
EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design.
SDIO interface supports the SDR mode (up to 50MHz).
As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the
SDIO 3.0 specification, please comply with the following principles:
It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal
trace is 50Ω±10%.
Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals,
etc., as well as noisy signals such as clock signals, DCDC signals, etc.
It is recommended to keep matching length between CLK andDATA/CMD less than 1mm and total
routing length less than 50mm.
Keep termination resistors within 15Ω~24 on clock lines near the module and keep the route
distance from the module clock pins to termination resistors less than 5mm.
Make sure the adjacent trace spacing is 2 times of the trace width and bus capacitance is less than
15pF.
NOTE
WLAN is an optional function for EC25-AF which not included in current product.
3.19.2. BT Interface*
EC25 supports a dedicated UART interface and a PCM interface for BT application.
Further information about BT interface will be added in future version of this document.
NOTE
“*” means under development.
BT is an optional function for EC25-AF which not included in current product.
EC25_Hardware_Design 64 / 112
EC25 Hardware Design
3.20. USB_BOOT Interface
EC25 provides a USB_BOOT pin. Developers can pull up USB_BOOT to VDD_EXT before powering on
the module, thus the module will enter into emergency download mode when powered on. In this mode,
the module supports firmware upgrade over USB interface.
Table 24: Pin Definition of USB_BOOT Interface
Pin Name Pin No. I/O Description Comment
1.8V power domain.
USB_BOOT 115 DI
Force the module enter into
emergency download mode
The following figure shows a reference circuit of USB_BOOT interface.
Active high.
It is recommended to
reserve test point.
Module
VDD_EXT
Test point
USB_BOOT
Cl ose to tes t po in t
TVS
Figure 31: Reference Circuit of USB_BOOT Interface
4.7K
EC25_Hardware_Design 65 / 112
EC25 Hardware Design
4 GNSS Receiver
4.1. General Description
EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via
USB interface by default.
By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows GNSS performance of EC25.
Table 25: GNSS Performance
Parameter Description Conditions Typ. Unit
Cold start Autonomous -146 dBm
Sensitivity
(GNSS)
TTFF
(GNSS)
Reacquisition Autonomous -157 dBm
Tracking Autonomous -157 dBm
Cold start
@open sky
Warm start
@open sky
Autonomous 35 s
XTRA enabled 18 s
Autonomous 26 s
XTRA enabled 2.2 s
EC25_Hardware_Design 66 / 112
EC25 Hardware Design
Autonomous 2.5 s
XTRA enabled 1.8 s
Autonomous
@open sky
<1.5 m
Accuracy
(GNSS)
Hot start
@open sky
CEP-50
NOTES
1. Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep
on positioning for 3 minutes.
2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in customers’ designs.
Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be
kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep 50 characteristic impedance for the ANT_GNSS trace.
Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information.
EC25_Hardware_Design 67 / 112
EC25 Hardware Design
5 Antenna Interfaces
EC25 antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is
used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS
antenna interface. The impedance of the antenna port is 50Ω.
5.1. Main/Rx-diversity Antenna Interfaces
5.1.1. Pin Definition
The pin definition of main antenna and Rx-diversityantenna interfaces is shown below.
Table 26: Pin Definition of RF Antenna
Pin Name Pin No. I/O Description Comment
ANT_MAIN 49 IO Main antenna pad 50 impedance
50 impedance
ANT_DIV 35 AI Receive diversity antenna pad
If unused, keep it
open.
5.1.2. Operating Frequency
Table 27: Module Operating Frequencies
3GPP Band Transmit Receive Unit
GSM850 824~849 869~894 MHz
EGSM900 880~915 925~960 MHz
DCS1800 1710~1785 1805~1880 MHz
PCS1900 1850~1910 1930~1990 MHz
WCDMA B1 1920~1980 2110~2170 MHz
EC25_Hardware_Design 68 / 112
EC25 Hardware Design
WCDMA B2 1850~1910 1930~1990 MHz
WCDMA B4 1710~1755 2110~2155 MHz
WCDMA B5 824~849 869~894 MHz
WCDMA B6 830~840 875~885 MHz
WCDMA B8 880~915 925~960 MHz
WCDMA B19 830~845 875~890 MHz
LTE FDD B1 1920~1980 2110~2170 MHz
LTE FDD B2 1850~1910 1930~1990 MHz
LTE FDD B3 1710~1785 1805~1880 MHz
LTE FDD B4 1710~1755 2110~2155 MHz
LTE FDD B5 824~849 869~894 MHz
LTE FDD B7 2500~2570 2620~2690 MHz
LTE FDD B8 880~915 925~960 MHz
LTE FDD B12 699~716 729~746 MHz
LTE FDD B13 777~787 746~756 MHZ
LTE FDD B14 788~798 758~768 MHZ
LTE FDD B18 815~830 860~875 MHz
LTE FDD B19 830~845 875~890 MHz
LTE FDD B20 832~862 791~821 MHz
LTE FDD B28 703~748 758~803 MHz
LTE TDD B38 2570~2620 2570~2620 MHz
LTE TDD B40 2300~2400 2300~2400 MHz
LTE TDD B41 2555~2655 2555~2655 MHz
LTE TDD B66 1710~1780 2100~2200 MHz
LTE TDD B71 663~698 617~652 MHz
EC25_Hardware_Design 69 / 112
EC25 Hardware Design
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A π-type matching
circuit should be reserved for better RF performance. The capacitors are not mounted by default.
Figure 32: Reference Circuit of RF Antenna Interface
NOTES
1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the
receiving sensitivity.
2. ANT_DIV function is enabled by default.
3. Place the π-type matching components (R1&C1&C2, R2&C3&C4) as close to the antenna as
possible.
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures
EC25_Hardware_Design 70 / 112
EC25 Hardware Design
.
Figure 33: Microstrip Line Design on a 2-layer PCB
Figure 34: Coplanar Waveguide Line Design on a 2-layer PCB
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
EC25_Hardware_Design 71 / 112
EC25 Hardware Design
Figure 36: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:
Please use an impedance simulation tool to control the characteristic impedance of RF traces as
50.
The GND pins adjacent to RF pins should not be designed as thermal relief pads, and they should be
fully connected to ground.
The distance between the RF pins and the RF connector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around
RF traces and the reference ground could help to improve RF performance. The distance between
the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [6].
5.2. GNSS Antenna Interface
The following tables show pin definition and frequency specification of GNSS antenna interface.
Table 28: Pin Definition of GNSS Antenna Interface
Pin Name Pin No. I/O Description Comment
ANT_GNSS 47 AI GNSS antenna
EC25_Hardware_Design 72 / 112
50 impedance
If unused, keep it open.
EC25 Hardware Design
Table 29: GNSS Frequency
Type Frequency Unit
GPS/Galileo/QZSS 1575.42±1.023 MHz
GLONASS 1597.5~1605.8 MHz
BeiDou 1561.098±2.046 MHz
A reference design of GNSS antenna is shown as below.
Figure 37: Reference Circuit of GNSS Antenna
NOTES
1. An external LDO can be selected to supply power according to the active antenna requirement.
2. If the module is designed with a passive antenna, then the VDD circuit is not needed.
EC25_Hardware_Design 73 / 112
EC25 Hardware Design
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 30: Antenna Requirements
Type Requirements
Frequency range: 1561MHz~1615MHz
Polarization: RHCP or linear
VSWR: < 2 (Typ.)
GNSS1)
Passive antenna gain: > 0dBi
Active antenna noise figure: < 1.5dB
Active antenna gain: > 0dBi
Active antenna embedded LNA gain: < 17 dB
VSWR: 2
Efficiency: > 30%
Max Input Power: 50W
Input Impedance: 50
Cable Insertion Loss: < 1dB
GSM/WCDMA/LTE
(GSM850, GSM 900, WCDMA B5/B6/B8/B19,
LTE-FDD B5/B8/B12/B13/B14/B18/B19/B20/B26/B28/B71)
Cable Insertion Loss: < 1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4,
LTE-FDD B1/B2/B3/B4/B66)
Cable Insertion loss: < 2dB
(LTE-FDD B7, LTE-TDD B38/B40/B41)
NOTE
1)
It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of
active antenna may generate harmonics which will affect the GNSS performance.
EC25_Hardware_Design 74 / 112
EC25 Hardware Design
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector
provided by Hirose.
Figure 38: Dimensions of the U.FL-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.
Figure 39: Mechanicals of U.FL-LP Connectors
EC25_Hardware_Design 75 / 112
EC25 Hardware Design
The following figure describes the space factor of mated connector.
Figure 40: Space Factor of Mated Connector (Unit: mm)
For more details, please visit http://hirose.com
.
EC25_Hardware_Design 76 / 112
EC25 Hardware Design
6 Electrical, Reliability and Radio
Characteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 31: Absolute Maximum Ratings
Parameter Min. Max. Unit
VBAT_RF/VBAT_BB -0.3 4.7 V
USB_VBUS -0.3 5.5 V
Peak Current of VBAT_BB 0 0.8 A
Peak Current of VBAT_RF 0 1.8 A
Voltage at Digital Pins -0.3 2.3 V
Voltage at ADC0 0 VBAT_BB V
Voltage at ADC1 0 VBAT_BB V
EC25_Hardware_Design 77 / 112
EC25 Hardware Design
6.2. Power Supply Ratings
Table 32: The Module Power Supply Ratings
Parameter Description Conditions Min. Typ. Max. Unit
The actual input voltages
VBAT_BB and
VBAT_RF
VBAT
must stay between the
minimum and maximum
values.
3.3 3.8 4.3 V
I
VBAT
Voltage drop during
burst transmission
Peak supply current
(during transmission
slot)
Maximum power control
level on EGSM900.
Maximum power control
level on EGSM900.
400 mV
1.8 2.0 A
USB_VBUS USB detection 3.0 5.0 5.25 V
6.3. Operation and Storage Temperatures
The operation and storage temperatures are listed in the following table.
Table 33: Operation and Storage Temperatures
Parameter Min. Typ. Max. Unit
OperationTemperature Range1) -35 +25 +75 ºC
Extended Operation Range2) -40 +85 ºC
Storage Temperature Range -40 +90 ºC
NOTES
1)
1.
Within operation temperature range, the module is 3GPP compliant.
2)
2.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like P
might reduce in their value and exceed the specified tolerances. When the temperature
out
EC25_Hardware_Design 78 / 112
EC25 Hardware Design
returns to the normal operating temperature levels, the module will meet 3GPP specifications again.
6.4. Current Consumption
The values of current consumption are shown below.
Table 34: EC25-E Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 11 uA
I
VBAT
Sleep state
AT+CFUN=0 (USB disconnected)
1.16 mA
GSM DRX=2 (USB disconnected) 2.74 mA
GSM DRX=9 (USB disconnected) 2.0 mA
WCDMA PF=64 (USB disconnected) 2.15 mA
WCDMA PF=128 (USB disconnected) 1.67 mA
LTE-FDD PF=64 (USB disconnected) 2.60 mA
LTE-FDD PF=128 (USB disconnected) 1.90 mA
LTE-TDD PF=64 (USB disconnected) 2.79 mA
LTE-TDD PF=128 (USB disconnected) 2.00 mA
GSM DRX=5 (USB disconnected) 19.5 mA
GSM DRX=5 (USB connected) 29.5 mA
WCDMA PF=64 (USB disconnected) 21.0 mA
Idle state
WCDMA PF=64 (USB connected) 31.0 mA
LTE-FDD PF=64 (USB disconnected) 20.7 mA
LTE-FDD PF=64 (USB connected) 30.8 mA
LTE-TDD PF=64 (USB disconnected) 20.8 mA
EC25_Hardware_Design 79 / 112
EC25 Hardware Design
LTE-TDD PF=64 (USB connected) 32.0 mA
EGSM900 4DL/1UL @33.22dBm 271.0 mA
EGSM900 3DL/2UL @33.0dBm 464.0 mA
EGSM900 2DL/3UL @30.86dBm 524.0 mA
GPRS data
transfer
(GNSS OFF)
EDGE data
transfer
(GNSS OFF)
EGSM900 1DL/4UL @29.58dBm 600 mA
DCS1800 4DL/1UL @29.92dBm 192.0 mA
DCS1800 3DL/2UL @29.84dBm 311.0 mA
DCS1800 2DL/3UL @29.67dBm 424.0 mA
DCS1800 1DL/4UL @29.48dBm 539.0 mA
EGSM900 4DL/1UL PCL=8 @27.40dBm 174.0 mA
EGSM900 3DL/2UL PCL=8 @27.24dBm 281.0 mA
EGSM900 2DL/3UL PCL=8 @27.11dBm 379.0 mA
EGSM900 1DL/4UL PCL=8 @26.99dBm 480.0 mA
DCS1800 4DL/1UL PCL=2 @25.82dBm 159.0 mA
DCS1800 3DL/2UL PCL=2 @25.85dBm 251.0 mA
WCDMA
datatransfer
(GNSS OFF)
LTE datatransfer
(GNSS OFF)
DCS1800 2DL/3UL PCL=2 @25.68dBm 340.0 mA
DCS1800 1DL/4UL PCL=2 @25.57dBm 433.0 mA
WCDMA B1 HSDPA @22.47dBm 613.0 mA
WCDMA B1 HSUPA @22.44dBm 609.0 mA
WCDMA B5 HSDPA @23.07dBm 671.0 mA
WCDMA B5 HSUPA @23.07dBm 669.0 mA
WCDMA B8 HSDPA @22.67dBm 561.0 mA
WCDMA B8 HSUPA @22.39dBm 557.0 mA
LTE-FDD B1 @23.27dBm 754.0 mA
LTE-FDD B3 @23.54dBm 774.0 mA
EC25_Hardware_Design 80 / 112
EC25 Hardware Design
LTE datatransfer
(GNSS OFF)
GSM
voice call
WCDMA voice
call
LTE-FDD B5 @22.83dBm 762.0 mA
LTE-FDD B7 @23.37dBm 842.0 mA
LTE-FDD B8 @23.48dBm 720.0 mA
LTE-FDD B20 @22.75dBm 714.0 mA
LTE-TDD B38 @23.05dBm 481.0 mA
LTE-TDD B40 @23.17dBm 431.8 mA
LTE-TDD B41 @23.02dBm 480.0 mA
EGSM900 PCL=5 @33.08dBm 264.0 mA
DCS1800 PCL=0 @29.75dBm 190.0 mA
WCDMA B1 @23.22dBm 680.0 mA
WCDMA B5 @23.18dBm 677.0 mA
WCDMA B8 @23.54dBm 618.0 mA
Table 35: EC25-A Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 10 uA
AT+CFUN=0 (USB disconnected)
1.1 mA
WCDMA PF=64 (USB disconnected) 1.8 mA
Sleep state
WCDMA PF=128 (USB disconnected) 1.5 mA
LTE-FDD PF=64 (USB disconnected) 2.2 mA
I
VBAT
LTE-FDD PF=128 (USB disconnected) 1.6 mA
WCDMA PF=64 (USB disconnected) 21.0 mA
WCDMA PF=64 (USB connected) 31.0 mA
Idle state
LTE-FDD PF=64 (USB disconnected) 21.0 mA
LTE-FDD PF=64 (USB connected) 31.0 mA
EC25_Hardware_Design 81 / 112
EC25 Hardware Design
WCDMA B2 HSDPA @21.9dBm 591.0 mA
WCDMA B2 HSUPA @21.62dBm 606.0 mA
WCDMA
WCDMA B4 HSDPA @22.02dBm 524.0 mA
datatransfer
(GNSS OFF)
WCDMA B4 HSUPA @21.67dBm 540.0 mA
WCDMA B5 HSDPA @22.71dBm 490.0 mA
WCDMA B5 HSUPA @22.58dBm 520.0 mA
LTE-FDD B2 @22.93dBm 715.0 mA
LTE datatransfer
(GNSS OFF)
LTE-FDD B4 @22.96dBm 738.0 mA
LTE-FDD B12 @23.35dBm 663.0 mA
WCDMA B2 @22.93dBm 646.0 mA
WCDMA voice
call
WCDMA B4 @23dBm 572.0 mA
WCDMA B5 @23.78dBm 549.0 mA
Table 36: EC25-V Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 10 uA
0.85 mA
Sleep state
AT+CFUN=0 (USB disconnected)
LTE-FDD PF=64 (USB disconnected) 2.0 mA
LTE-FDD PF=128 (USB disconnected) 1.5 mA
LTE-FDD PF=64 (USB disconnected) 20.0 mA
I
VBAT
LTE-FDD PF=64 (USB connected) 31.0 mA
WCDMA B2 HSUPA @21.62dBm 606.0 mA
Idle state
WCDMA B4 HSDPA @22.02dBm 524.0 mA
WCDMA B4 HSUPA @21.67dBm 540.0 mA
WCDMA B5 HSDPA @22.71dBm 490.0 mA
EC25_Hardware_Design 82 / 112
EC25 Hardware Design
WCDMA B5 HSUPA @22.58dBm 520.0 mA
LTE
LTE-FDD B4 @23.14dBm 770.0 mA
datatransfer
(GNSS OFF)
LTE-FDD B13 @23.48dBm 531.0 mA
Table 37: EC25-J Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 10 uA
AT+CFUN=0 (USB disconnected)
1.1 mA
WCDMA PF=64 (USB disconnected) 1.9 mA
WCDMA PF=128 (USB disconnected) 1.5 mA
Sleep state
LTE-FDD PF=64 (USB disconnected) 2.5 mA
LTE-FDD PF=128 (USB disconnected) 1.8 mA
I
VBAT
LTE-TDD PF=64 (USB disconnected) 2.6 mA
LTE-TDD PF=128 (USB disconnected) 1.9 mA
WCDMA PF=64 (USB disconnected) 21.0 mA
WCDMA PF=64 (USB connected) 31.0 mA
LTE-FDD PF=64 (USB disconnected) 21.0 mA
Idle state
LTE-FDD PF=64 (USB connected) 32.0 mA
LTE-TDD PF=64 (USB disconnected) 21.0 mA
LTE-TDD PF=64 (USB connected) 32.0 mA
WCDMA B1 HSDPA @22.32dBm 550.0 mA
WCDMA B1 HSUPA @22.64dBm 516.0 mA
WCDMA
datatransfer
WCDMA B6 HSDPA @22.02dBm 524.0 mA
(GNSS OFF)
WCDMA B6 HSUPA @22.33dBm 521.0 mA
WCDMA B19 HSDPA @22.67dBm 517.0 mA
EC25_Hardware_Design 83 / 112
EC25 Hardware Design
LTE
datatransfer
(GNSS OFF)
WCDMA B19 HSUPA @22.33dBm 522.0 mA
LTE-FDD B1 @23.16dBm 685.0 mA
LTE-FDD B3 @23.22dBm 766.0 mA
LTE-FDD B8 @23.22dBm 641.0 mA
LTE-FDD B18 @23.35dBm 661.0 mA
LTE-FDD B19 @23.16dBm 677.0 mA
LTE-FDD B26 @22.87dBm 690.0 mA
LTE-TDD B41 @22.42dBm 439.0 mA
WCDMA B1 @22.33dBm 605.0 mA
WCDMA voice
call
WCDMA B6 @23.28dBm 549.0 mA
WCDMA B19 @23.28dBm 549.0 mA
Table 38: EC25-AU Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 11 uA
AT+CFUN=0
AT+CFUN=0 (USB disconnected)
1.3 mA
1.46 mA
GSM850 DRX=5 (USB disconnected) 1.8 mA
EGSM900 DRX=5 (USB disconnected) 2.0 mA
I
VBAT
DCS1800 DRX=5 (USB disconnected) 1.9 mA
Sleep state
PCS1900 DRX=5 (USB disconnected) 1.9 mA
WCDMA PF=64 (USB disconnected) 2.0 mA
WCDMA PF=128 (USB disconnected) 1.6 mA
LTE-FDD PF=64 (USB disconnected) 2.2 mA
LTE-FDD PF=128 (USB disconnected) 1.6 mA
EC25_Hardware_Design 84 / 112
Idle state
EC25 Hardware Design
LTE-TDD PF=64 (USB disconnected) 2.3 mA
LTE-TDD PF=128 (USB disconnected) 1.6 mA
EGSM900 DRX=5 (USB disconnected) 22.0 mA
EGSM900 DRX=5 (USB connected) 34.0 mA
WCDMA PF=64 (USB disconnected) 22.0 mA
WCDMA PF=64 (USB connected) 33.0 mA
LTE-FDD PF=64 (USB disconnected) 24.0 mA
LTE-FDD PF=64 (USB connected) 35.0 mA
LTE-TDD PF=64 (USB disconnected) 24.0 Ma
GPRS data
transfer
(GNSS OFF)
LTE-TDD PF=64 (USB connected) 35.0 mA
GSM850 1UL/4DL @32.53dBm 232.0 mA
GSM850 2UL/3DL @32.34dBm 384.0 mA
GSM850 3UL/2DL @30.28dBm 441.0 mA
GSM850 4UL/1DL @29.09dBm 511.0 mA
EGSM900 1UL/4DL @32.34dBm 241.0 mA
EGSM900 2UL/3DL @32.19dBm 397.0 mA
EGSM900 3UL/2DL @30.17dBm 459.0 mA
EGSM900 4UL/1DL @28.96dBm 533.0 mA
DCS1800 1UL/4DL @29.71dBm 183.0 mA
DCS1800 2UL/3DL @29.62dBm 289.0 mA
DCS1800 3UL/2DL @29.49dBm 392.0 mA
DCS1800 4UL/1DL @29.32dBm 495.0 mA
PCS1900 1UL/4DL @29.61dBm 174.0 mA
PCS1900 1UL/4DL @29.48dBm 273.0 mA
PCS1900 1UL/4DL @29.32dBm 367.0 mA
EC25_Hardware_Design 85 / 112
EC25 Hardware Design
PCS1900 1UL/4DL @29.19dBm 465.0 mA
GSM850 1UL/4DL @27.09dBm 154.0 mA
GSM850 2UL/3DL @26.94dBm 245.0 mA
GSM850 3UL/2DL @26.64dBm 328.0 mA
GSM850 4UL/1DL @26.53dBm 416.0 mA
EGSM900 1UL/4DL @26.64dBm 157.0 mA
EGSM900 2UL/3DL @26.95dBm 251.0 mA
EGSM900 3UL/2DL @26.57dBm 340.0 mA
EDGE data
transfer
(GNSS OFF)
EGSM900 4UL/1DL @26.39dBm 431.0 mA
DCS18001 UL/4DL @26.03dBm 152.0 mA
DCS1800 2UL/3DL @25.62dBm 240.0 mA
DCS1800 3UL/2DL @25.42dBm 325.0 mA
DCS1800 4UL/1DL @25.21dBm 415.0 mA
PCS1900 1UL/4DL @25.65dBm 148.0 mA
PCS1900 1UL/4DL @25.63dBm 232.0 mA
PCS1900 1UL/4DL @25.54dBm 313.0 mA
PCS1900 1UL/4DL @25.26dBm 401.0 mA
WCDMA B1 HSDPA @22.34dBm 625.0 mA
WCDMA B1 HSUPA @21.75dBm 617.0 mA
WCDMA B2 HSDPA @22.51dBm 610.0 mA
WCDMA data
(GNSS OFF)
WCDMA B2 HSUPA @22. 14dBm 594.0 mA
WCDMA B5 HSDPA @22.98dBm 576.0 mA
WCDMA B5 HSUPA @22.89dBm 589.0 mA
WCDMA B8 HSDPA @22.31dBm 556.0 mA
WCDMA B8 HSUPA @22.11dBm 572.0 mA
EC25_Hardware_Design 86 / 112
EC25 Hardware Design
LTE-FDD B1 @23.28dBm 817.0 mA
LTE-FDD B2 @23.34dBm 803.0 mA
LTE-FDD B3 @23.2dBm 785.0 mA
LTE
datatransfer
(GNSS OFF)
GSM voice
call
WCDMA
voice call
LTE-FDD B4 @22.9dBm 774.0 mA
LTE-FDD B5 @23.45dBm 687.0 mA
LTE-FDD B7 @22.84dBm 843.0 mA
LTE-FDD B8 @22.92dBm 689.0 mA
LTE-FDD B28 @23.23dBm 804.0 mA
LTE-TDD B40 @23.3dBm 429.0 mA
GSM850 PCL5 @32.66dBm 228.0 mA
EGSM900 PCL5 @32.59dBm 235.0 mA
DCS1800 PCL0 @29.72dBm 178.0 mA
PCS1900 PCL0 @29.82dBm 170.0 mA
WCDMA B1 @23.27dBm 687.0 mA
WCDMA B2 @23.38dBm 668.0 mA
WCDMA B5 @23.38dBm 592.0 mA
WCDMA B8 @23.32dBm 595.0 mA
Table 39: EC25-AUT Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 10 uA
AT+CFUN=0 (USB disconnected)
1.0 mA
I
VBAT
Sleep state
WCDMA PF=64 (USB disconnected) 1.9 mA
WCDMA PF=128 (USB disconnected) 1.5 mA
LTE-FDD PF=64 (USB disconnected) 2.3 mA
LTE-FDD PF=128 (USB disconnected) 1.9 mA
EC25_Hardware_Design 87 / 112
EC25 Hardware Design
I
VBAT
Idle state
WCDMA
datatransfer
(GNSS OFF)
LTE
datatransfer
(GNSS OFF)
WCDMA PF=64 (USB disconnected) 23.0 mA
WCDMA PF=64 (USB connected) 33.0 mA
LTE-FDD PF=64 (USB disconnected) 17.0 mA
LTE-FDD PF=64 (USB connected) 29.0 mA
LTE-TDD PF=64 (USB disconnected) 21.0 mA
LTE-TDD PF=64 (USB connected) 32.0 mA
WCDMA B1 HSDPA @22.24dBm 500.0 mA
WCDMA B1 HSUPA @22.05dBm 499.0 mA
WCDMA B5 HSDPA @22.39dBm 418.0 mA
WCDMA B5 HSUPA @22dBm 486.0 mA
LTE-FDD B1 @23.28dBm 707.0 mA
LTE-FDD B3 @23.36dBm 782.0 mA
LTE-FDD B5 @23.32dBm 588.0 mA
LTE-FDD B7 @23.08dBm 692.0 mA
LTE-FDD B28-A @23.37dBm 752.0 mA
LTE-FDD B28-B @23.48dBm 770.0 mA
WCDMA voice
call
WCDMA B1 @23.22dBm 546.0 mA
WCDMA B5 @23.01dBm 511.0 mA
Table 40: EC25-AF Current Consumption
Parameter Description Conditions Typ. Unit
OFF state Power down 10 uA
I
VBAT
Sleep state
AT+CFUN=0 (USB disconnected)
WCDMA PF=64 (USB disconnected) 1.8 mA
1.0 mA
WCDMA PF=128 (USB disconnected) 1.4 mA
EC25_Hardware_Design 88 / 112
EC25 Hardware Design
I
VBAT
Idle state
WCDMA
datatransfer
(GNSS OFF)
LTE-FDD PF=64 (USB disconnected) 2.2 mA
LTE-FDD PF=128 (USB disconnected) 1.8 mA
WCDMA PF=64 (USB disconnected) 23.3 mA
WCDMA PF=64 (USB connected) 33.4 mA
LTE-FDD PF=64 (USB disconnected) 17.6 mA
LTE-FDD PF=64 (USB connected) 29.4 mA
WCDMA B2 HSDPA @22.36dBm 509.0 mA
WCDMA B2 HSUPA @22.27dBm 511.0 mA
WCDMA B4 HSDPA @22.22dBm 521.0 mA
WCDMA B4 HSUPA @22.31dBm 518.0 mA
WCDMA B5 HSDPA @22.39dBm 496.0 mA
LTE
datatransfer
(GNSS OFF)
WCDMA voice
call
WCDMA B5 HSUPA @22dBm 502.0 mA
LTE-FDD B2 @23.2dBm 600.0 mA
LTE-FDD B4 @23.85dBm 634.0 mA
LTE-FDD B5 @23.0dBm 600.0 mA
LTE-FDD B12 @23.08dBm 692.0 mA
LTE-FDD B13 @23.1dBm 660.0 mA
LTE-FDD B14 @23.5dBm 676.0 mA
LTE-FDD B66 @22.9dBm 662.0 mA
LTE-FDD B71 @22.88dBm 600.0 mA
WCDMA B2 @23.24dBm 570.0 mA
WCDMA B4 @23.2dBm 581.0 mA
WCDMA B5 @23.4dBm 500.0 mA
EC25_Hardware_Design 89 / 112
EC25 Hardware Design
Table 41: GNSS Current Consumption of EC25 Series Module
Parameter Description Conditions Typ. Unit
Cold start @Passive Antenna 54.0 mA
Lost state @Passive Antenna 53.9 mA
Instrument Environment 30.5 mA
Open Sky @Passive Antenna 33.2 mA
I
VBAT
(GNSS)
Searching
(AT+CFUN=0)
Tracking
(AT+CFUN=0)
Open Sky @Active Antenna 40.8 mA
6.5. RF Output Power
The following table shows the RF output power of EC25 module.
Table 42: RF Output Power
Frequency Max. Min.
GSM850/EGSM900 33dBm±2dB 5dBm±5dB
DCS1800/PCS1900 30dBm±2dB 0dBm±5dB
GSM850/EGSM900 (8-PSK) 27dBm±3dB 5dBm±5dB
DCS1800/PCS1900 (8-PSK) 26dBm±3dB 0dBm±5dB
WCDMA bands 24dBm+1/-3dB <-49dBm
LTE-FDD bands 23dBm±2dB <-39dBm
LTE-TDD bands 23dBm±2dB <-39dBm
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. The design conforms to the
GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.
EC25_Hardware_Design 90 / 112
EC25 Hardware Design
6.6. RF Receiving Sensitivity
The following tables show conducted RF receiving sensitivity of EC25 series module.
Table 43: EC25-E Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
EGSM900 -109.0dBm / / -102.0dBm
DCS1800 -109.0dBm / / -102.0dbm
WCDMA B1 -110.5dBm / / -106.7dBm
WCDMA B5 -110.5dBm / / -104.7dBm
WCDMA B8 -110.5dBm / / -103.7dBm
LTE-FDD B1 (10M) -98.0dBm -98.0dBm -101.5dBm -96.3dBm
LTE-FDD B3 (10M) -96.5dBm -98.5dBm -101.5dBm -93.3dBm
LTE-FDD B5 (10M) -98.0dBm -98.5dBm -101.0dBm -94.3dBm
LTE-FDD B7 (10M) -97.0dBm -94.5dBm -99.5dBm -94.3dBm
LTE-FDD B8 (10M) -97.0dBm -97.0dBm -101.0dBm -93.3dBm
LTE-FDD B20 (10M) -97.5dBm -99.0dBm -102.5dBm -93.3dBm
LTE-TDD B38 (10M) -96.7dBm -97.0dBm -100.0dBm -96.3dBm
LTE-TDD B40 (10M) -96.3dBm -98.0dBm -101.0dBm -96.3dBm
LTE-TDD B41 (10M) -95.2dBm -95.7dBm -99.0dBm -94.3dBm
Table 44: EC25-A Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
WCDMA B2 -110.0dBm / / -104.7dBm
WCDMA B4 -110.0dBm / / -106.7dBm
WCDMA B5 -110.5dBm / / -104.7dBm
EC25_Hardware_Design 91 / 112
EC25 Hardware Design
LTE-FDD B2 (10M) -98.0dBm -98.0dBm -101.0dBm -94.3dBm
LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm
LTE-FDD B12 (10M) -96.5dBm -98.0dBm -101.0dBm -93.3dBm
Table 45: EC25-V Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm
LTE-FDD B13 (10M) -95.0dBm -97.0dBm -100.0dBm -93.3dBm
Table 46: EC25-J Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
WCDMA B1 -110.0dBm / / -106.7dBm
WCDMA B6 -110.5dBm / / -106.7dBm
WCDMA B8 -110.5dBm / / -103.7dBm
WCDMA B19 -110.5dBm / / -106.7dBm
LTE-FDD B1 (10M) -97.5dBm -98.7dBm -100.2dBm -96.3dBm
LTE-FDD B3 (10M) -96.5dBm -97.1dBm -100.5dBm -93.3dBm
LTE-FDD B8 (10M) -98.4dBm -99.0dBm -101.2dBm -93.3dBm
LTE-FDD B18 (10M) -99.5dBm -99.0dBm -101.7dBm -96.3dBm
LTE-FDD B19 (10M) -99.2dBm -99.0dBm -101.4dBm -96.3dBm
LTE-FDD B26 (10M) -99.5dBm -99.0dBm -101.5dBm -93.8dBm
LTE-TDD B41 (10M) -95.0dBm -95.7dBm -99.0dBm -94.3dBm
EC25_Hardware_Design 92 / 112
EC25 Hardware Design
Table 47: EC25-AU Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
GSM850 -109.0dBm / / -102.0dBm
EGSM900 -109.0dBm / / -102.0dBm
DCS1800 -109.0dBm / / -102.0dBm
PCS1900 -109.0dBm / / -102.0dBm
WCDMA B1 -110.0dBm / / -106.7dBm
WCDMA B2 -110.0dBm / / -104.7dBm
WCDMA B5 -111.0dBm / / -104.7dBm
WCDMA B8 -111.0dBm / / -103.7dBm
LTE-FDD B1 (10M) -97.2dBm -97.5dBm -100.2dBm -96.3dBm
LTE-FDD B2 (10M) -98.2dBm / / -94.3dBm
LTE-FDD B3 (10M) -98.7dBm -98.6dBm -102.2dBm -93.3dBm
LTE-FDD B4 (10M) -97.7dBm -97.4dBm -100.2dBm -96.3dBm
LTE-FDD B5 (10M) -98.0dBm -98.2dBm -101.0dBm -94.3dBm
LTE-FDD B7 (10M) -97.7dBm -97.7dBm -101.2dBm -94.3dBm
LTE-FDD B8 (10M) -99.2dBm -98.2dBm -102.2dBm -93.3dBm
LTE-FDD B28 (10M) -98.6dBm -98.7dBm -102.0dBm -94.8dBm
LTE-TDD B40 (10M) -97.2dBm -98.4dBm -101.2dBm -96.3dBm
Table 48: EC25-AUT Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
WCDMA B1 -110.0dBm / / -106.7dBm
WCDMA B5 -110.5dBm / / -104.7dBm
LTE-FDD B1 (10M) -98.5dBm -98.0dBm -101.0dBm -96.3dBm
EC25_Hardware_Design 93 / 112
EC25 Hardware Design
LTE-FDD B3 (10M) -98.0dBm -96.0dBm -100.0dBm -93.3dBm
LTE-FDD B5 (10M) -98.0dBm -99.0dBm -102.5dBm -94.3dBm
LTE-FDD B7 (10M) -97.0dBm -95.0dBm -98.5dBm -94.3dBm
LTE-FDD B28 (10M) -97.0dBm -99.0dBm -102.0dBm -94.8dBm
Table 49: EC25-AUTL Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
LTE-FDD B3 (10M) -98.0dBm -96.0dBm -100.0dBm -93.3dBm
LTE-FDD B7 (10M) -97.0dBm -95.0dBm -98.5dBm -94.3dBm
LTE-FDD B28 (10M) -97.0dBm -99.0dBm -102.0dBm -94.8dBm
Table 50: EC25-AF Conducted RF Receiving Sensitivity
Frequency Primary Diversity SIMO1) 3GPP (SIMO)
WCDMA B2 -109.5dBm -111dbm -113dbm -104.7dBm
WCDMA B4 -108dBm -111dbm -111.5dbm -106.7dBm
WCDMA B5 -110.5dBm -111.5dbm -114dbm -104.7dBm
LTE-FDD B2 (10M) -98.2dBm -99.1dBm -101.7dBm -94.3dBm
LTE-FDD B4 (10M) -97.3dBm -98.6dBm -101.1dBm -96.3dBm
LTE-FDD B5 (10M) -99dBm -100.3dBm -101.3dBm -94.3Bm
LTE-FDD B12 (10M) -99dBm -99.2dBm -102.1dBm -93.3dBm
LTE-FDD B13 (10M) -98.1dBm -98.4dBm -100.2dBm -93.3dBm
LTE-FDD B14 (10M) -97.9dBm -98.6dBm -99.5dBm -93.3dBm
LTE-FDD B66 (10M) -96.7dBm -98.1dBm -99.4dBm -96.5dBm
LTE-FDD B71 (10M) -99.2dBm -99.4dBm -101.5dBm -94.2dBm
EC25_Hardware_Design 94 / 112
EC25 Hardware Design
NOTE
1)
SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two
antennas at the receiver side, which can improve RX performance.
6.7. Electrostatic Discharge
The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module electrostatics discharge characteristics.
Table 51: Electrostatics Discharge Characteristics
Tested Points Contact Discharge Air Discharge Unit
VBAT, GND ±5 ±10 kV
All Antenna Interfaces ±4 ±8 kV
Other Interfaces ±0.5 ±1 kV
6.8. Thermal Consideration
In order to achieve better performance of the module, it is recommended to comply with the following
principles for thermal consideration:
On customers’ PCB design, please keep placement of the module away from heating sources,
especially high power components such as ARM processor, audio power amplifier, power supply,
etc.
Do not place components on the opposite side of the PCB area where the module is mounted, in
order to facilitate adding of heatsink when necessary.
Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as
to ensure better heat dissipation performance.
The reference ground of the area where the module is mounted should be complete, and add ground
vias as many as possible for better heat dissipation.
Make sure the ground pads of the module and PCB are fully connected.
EC25_Hardware_Design 95 / 112
EC25 Hardware Design
According to customers’ application demands, the heatsink can be mounted on the top of the module,
or the opposite side of the PCB area where the module is mounted, or both of them.
The heatsink should be designed with as many fins as possible to increase heat dissipation area.
Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and
module/PCB.
The following shows two kinds of heatsink designs for reference and customers can choose one or both
of them according to their application structure.
Figure 41: Referenced Heatsink Design (Heatsink at the Top of the Module)
Figure 42: Referenced Heatsink Design (Heatsink at the Backside of Customers’ PCB)
EC25_Hardware_Design 96 / 112
EC25 Hardware Design
NOTE
The module offers the best performance when the internal BB chip stays below 105°C. When the
maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but provides
reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip
temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will recover to
network connected state after the maximum temperature falls below 115°C. Therefore, the thermal design
should be maximally optimized to make sure the maximum BB chip temperature always maintains below
105°C. Customers can execute AT+QTEMP command and get the maximum BB chip temperature from
the first returned value.
EC25_Hardware_Design 97 / 112
EC25 Hardware Design
7 Mechanical Dimensions
This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm.
The tolerances for dimensions without tolerance values are ±0.05mm.
7.1. Mechanical Dimensions of the the Module
29.0±0.15
32.0± 0 .15
Figure 43: Module Top and Side Dimensions
2.4±0.2
0.8
EC25_Hardware_Design 98 / 112
EC25 Hardware Design
Figure 44: Module Bottom Dimensions (Bottom View)
EC25_Hardware_Design 99 / 112
Loading...