Western Reserve Controls WRC-CANX-DF-DN and -SM Series IV User’s Manual
Revision 4.03
Although every effort has been made to insure the accuracy of this document, all information is subject to
change without notice. WRC takes no liability for any errors in this document or for direct, indirect,
incidental or consequential damage resulting from the use of this manual.
SmartMux-Lite, CAN-Bus Extender and WRC are trademarks of Western Reserve Controls, Inc.
DeviceNet is a trademark of ODVA, Inc.
SDS is a trademark of the Honeywell, Inc.
All other trademarks are property of their respective companies.
Label Markings
і
Western Reserve Controls WRC-CANX-DF-DN and -SM Series IV User’s Manual
The WRC-CANR-DF Fiber Optic CAN Bus Extenders convert a copper cable medium CAN-Bus
network to a fiber optic medium. The WRC-CANR-DF-DN uses multimode fiber optic cable, while the
WRC-CANR-DF-SM uses single-mode fiber optic cable. Both are always used in pairs with a length of
fiber media in between. The primary purposes of this type of configuration is to extend the maximum
length defined for one continuous network cable bus up to 2.2km (for multimode with WRC-CANR-DFDN) or 12km (for single-mode with WRC-CANR-DF-SM) and to provide network protection from external,
high-energy electrical interference, such as lightning storms, arc welders, etc. They can be connected in a
bus trunk line or drop line.
A WRC-CANR can be used for quite a number of helpful purposes, including
•To provide an electrically-isolated fiber transmission segment to your CAN bus for more
secure network in high-energy environmental conditions
• to extend the network beyond its absolute maximum at the slowest speed
• to implement a longer network for a given baud rate (e.g., pushing a 500K baud network
beyond 100 m for DeviceNet)
• to provide higher speed baud rates for a given network length
• to extend the length of the drop cable (e.g., longer drops than 6 m for DeviceNet)
• to provide 2600V electrical isolation between the 2 sub-nets
• to create a unique network topology instead of a conventional bus structure, such as a
star configuration
The Extenders are transparent to the other nodes on the bus. They receive and actively retransmit (store-and-forward) each message received at either side of the network without interpreting the
message or acting upon it. The Fiber Extenders perform all appropriate CAN Bus arbitration on the copper
bus as it re-transmits the message.
The WRC-CANR-DF-DN and WRC-CANR-DF-SM are members of WRC’s family of products that
extend the system communications lengths for DeviceNet, CANopen, SDS (Smart Distributed System),
J1939 and other CAN, V2.0, Part A or Part B, serial bus systems. By allowing the user to extend the bus
length for any given speed, they assist the user in cost-effectively implementing I/O or other nodes on
these buses at remote locations that would be more difficult or more expensive to do otherwise.
The unit derives its power through the copper network connector on Side A.
1.1. Series IV Specific Features
The Series IV WRC-CANR provides enhancements over previous the previous Series III
products, including:
* Single Mode Fiber Cable Option is now available.
* Expanded DIP Switch settings allow selection for CAN-bus (including CANopen) speeds up to 1 M
Baud in addition to the standard DeviceNet Baudrates
* 9.6K, 10K, 20K, 40K, 50K, 100K 125K, 250K, 500K, 800K and 1M baud
* Improved Reverse voltage protection and CAN data lines noise immunity
* Increased message internal buffers – Automatic Memory Technology (AMT) operation
* Eliminates the distinction between WRC’s earlier version Type 1 and Type 2 CANR
* WARNING: Series IV F/W Revision 4.002 is not backward compatible.
1.2. Standard Features
The WRC-CANR-DF-DN and WRC-CANR-DF-SM have the following features:
* Extends CAN-Bus cable lengths - trunk line or drop lines
* Expands the usable applications for CAN-Bus systems
* Allows operation at higher speeds for specific distances
* Provides superior electrical interference protection to copper cables
* Switch-selectable Autobaud or fixed baud rate operation
* Automatic speed selection - no configuration required
* Isolates the two sections of the copper bus
* Transparent to the Master and Slave devices on the bus
* No address selection needed
* No configuration parameters
* DeviceNet; SDS; CANopen; J1939; CAN, V2.0, Part A and Part B compatible
* Powered from the 24Vdc supplied by bus network or the user
* Sealed NEMA-4X enclosure
* Standard round, mini-style M18 connector with male pins for copper cable
* For WRC-CANR-DF-DN: Standard Fiber Optic ST female connector, 62.5/125µm technology
* For WRC-CANR-DF-SM: Standard Fiber Optic ST female connector, 9/125µm technology
* Standard CAN chips manage bus error detection
* Standard CAN chips handle message bus contention
* Less than 900 µsec latency
* Jumper-selectable termination built in on cable side
* 4 bi-color (red/green) status LEDs
* 2 green fiber transmit and receive LEDs
1.3. Basic Operation
Two CANR-DF units are included in an order and both are required for each application – both
units are identical. It does not matter which is placed in which position with respect to the network topology
or other devices on the network.
There are two bus connections for each CANR-DF, referred to as the Copper Cable Network Side
(Side A) and Fiber Cable Network Side (Side B). The CAN Bus copper cable is connected to side A of the
CANR-DF receives its power from side A.
Figure 1-1 shows a typical application.
Whenever a message is transmitted on the Bus to which CANR-DF is connected, CANR-DF
receives the message on the side where it was initiated and performs a store-and-forward of the message
to the other side. This action is performed in each direction and is performed for any valid CAN message
independent of who generated it or to whom it is intended.
There is approximately a 900 µsec propagation delay of the message through the CANR-DF.
2
Western Reserve Controls WRC-CANR-DF-DN and –SM User’s Manual
PUB 14.2 Revision 4.03
The CANR-DF is not addressed as a specific device on the Bus and cannot be interrogated by
other nodes. It is transparent to all other nodes on the bus.
Fiber-optic extenders -
especially useful for outdoor applications
Host PLC
Host PLC
Up to 2.2 km
Extender
Extender
Figure 1-1 Typical fiber optic bus extension application
Extender
Extender
1.4. Reference Documents
The following documents are referenced in this User’s Manual
Western Reserve Controls WRC-CANR-DF-DN and –SM User’s Manual
PUB 14.2 Revision 4.03
2. Quick Start
To quickly and easily install your CAN-Bus Fiber Optic Extenders in your DeviceNet system, follow
the instructions below. For more details, see Section 4.
WARNING: Series IV F/W Revision 4.002 is not backward compatible.
1. These units are used in pairs. You need two (2) CANR-DF units and two (2) 62.5/125µµµµm, multi-
mode fiber cable lengths or two (2) 9/125µµµµm single mode fiber cable lengths with ST male
connectors.
2. Leave the DIP switches on the 8-position switch block SW1 in the factory setting position of FF or all
OPEN positions to set the baudrate of each CANR-DF to Autobaud.
3. Using on-board jumper W1, terminate CAN-Bus network, as appropriate. (This is especially critical at
the higher baud rates.)
• For trunk lines, install W1.
• For drop lines, remove W1.
4. Connect the fiber cables to the CANR of one unit. Make sure they are clearly marked on both ends
to differentiate between the two lines.
5. Make sure that there is power on the CAN-Bus Network and plug the Network cable with a 5-pin
round female MINI connector into the CAN-Bus Extender.
6. The CANR-DF Extender will undergo its initialization sequence, flashing the LEDs. After
approximately 5 seconds, the Module Status LED (labeled “MS”) will go on solid green and network
LEDs (labeled “NSA” and “NSB”) will flash green. The DGN led might stay solid red until the fiber
cables are connected to the other CANR and both CANRs are powered up.
7. Repeat steps 2-6 above for the second CANR-DF.
Note: Be sure to connect the fiber from the TX port on one device to the RX port on the other.
8. Connect the desired network devices to both sides of the copper CAN bus.
9. Both Network A and B Status LEDs (NSA and NSB) will go on solid on each unit once a valid CAN
message is received into either side of the Extender and the baudrate auto-detect has been
successfully performed.
10. You may observe the small green LEDs marked RXF and TXF, next to the fiber ports, illuminate when
data is received or transmitted.
11. The CAN-Bus Extenders are now operating on the network and they are ready operate in the CAN
network.
12. If any of the LED’s – marked DGN, NSA and NSB – blink red, this indicates that the internal message
buffer on the CANR-DF has been filled before the device could transfer all previously received
messages out the other side. Some messages may be lost. Slowing down the scan rate should help
eliminate this.
4
Loading...
+ 18 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.