Philips (Now NXP) TDA6111Q Schematic [ru]

INTEGRATED CIRCUITS
DATA SH EET
TDA6111Q
Preliminary specification Supersedes data of February 1992 File under Integrated Circuits, IC02
Philips Semiconductors
1995 Feb 07
Philips Semiconductors Preliminary specification
Video output amplifier TDA6111Q
FEATURES
High bandwidth and high slew rate
Black-current measurement output for Automatic
Black-current Stabilization (ABS)
Two cathode outputs; one for DC currents, and one for transient currents
GENERAL DESCRIPTION
The TDA6111Q is a video output amplifier with 16 MHz bandwidth. The device is contained in a single in-line 9-pin medium power (DBS9MPF) package, using high-voltage DMOS technology, intended to drive the cathode of a colour CRT.
A feedback output separated from the cathode outputs
Internal protection against positive appearing
Cathode-Ray Tube (CRT) flashover discharges
ESD protection
Simple application with a variety of colour decoders
Differential input with a designed maximum common
mode input capacitance of 3 pF, a maximum differential mode input capacitance of 0.5 pF and a differential input voltage temperature drift of 50 µV/K
Defined switch-off behaviour.
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V V I
DDH
I
DDL
V V T T
DDH DDL
I oc stg amb
, V
fb
high level supply voltage 0 250 V low level supply voltage 0 14 V quiescent high voltage supply current Voc= 0.5V quiescent low voltage supply current Voc= 0.5V
DDH DDH
input voltage 0 V output voltage V
7.0 9.0 11.0 mA
5.0 6.8 8.0 mA
DDL
DDL
V
DDH
storage temperature 55 +150 °C operating ambient temperature 20 +65 °C
V V
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME DESCRIPTION VERSION
TDA6111Q DBS9MPF plastic DIL-bent-SIL medium power package with fin; 9 leads SOT111-1
1995 Feb 07 2
Philips Semiconductors Preliminary specification
Video output amplifier TDA6111Q
BLOCK DIAGRAM
handbook, full pagewidth
inverting
input
non-inverting
input
3 1
MIRROR
DIFFERENTIAL
STAGE
MIRROR
supply voltage
input HIGH
6
7 V
V
bias
C
par
feedback
output
9
MIRROR
FOLLOWERS
TDA6111Q
CURRENT
SOURCE
42
ground
(substrate)
supply voltage
input LOW
MIRROR
MGA058
7
8
5
cathode transient output
cathode DC output
black current measurement output
Fig.1 Block diagram.
1995 Feb 07 3
Philips Semiconductors Preliminary specification
Video output amplifier TDA6111Q
PINNING
SYMBOL PIN DESCRIPTION
V
ip
V
DDL
V
in
GND 4 ground, substrate I
om
V
DDH
V
cn
V
oc
V
fb
1 non-inverting voltage input 2 supply voltage LOW 3 inverting voltage input
5 black current measurement
output 6 supply voltage HIGH 7 cathode transient voltage output 8 cathode DC voltage output 9 feedback voltage output
ndbook, halfpage
V
V
V
DDL
V
GND
I
om
DDH
V V
V
1
ip
2 3
in
4
TDA6111Q
5 6 7
cn
8
oc
9
fb
MGA057
Fig.2 Pin configuration.
1995 Feb 07 4
Philips Semiconductors Preliminary specification
Video output amplifier TDA6111Q
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134). Voltages measured with respect to GND (pin 4); currents as specified in Fig.1; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDH
V
DDL
V
I
V
Idm
V
om
V
oc
V
fb
I
in,Iip
I
ocsmL
I
ocsmH
P
tot
T
stg
T
j
V
es
high level supply voltage 0 250 V low level supply voltage 0 14 V input voltage 0 V
DDL
V differential mode input voltage 6+6V measurement output voltage 0 V cathode output voltage V feedback output voltage V
DDL DDL
V V
DDL DDH DDH
V
V input current 0 1 mA low non-repetitive peak cathode
flashover discharge = 100 µC05A
output current high non-repetitive peak cathode
flashover discharge = 100 nC 0 10 A
output current total power dissipation 0 4 W storage temperature 55 +150 °C junction temperature 20 +150 °C electrostatic handling
human body model (HBM) > 1500 V machine model (MM) > 400 V
HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see
“Handling MOS Devices”
).
QUALITY SPECIFICATION
Quality specification
“SNW-FQ-611 part E”
values”, and can be found in the
“Quality reference handbook”
is applicable, except for ESD Human body model see Chapter “Limiting
(ordering number 9398 510 63011).
THERMAL CHARACTERISTICS
SYMBOL PARAMETER VALUE UNIT
R
th j-c
thermal resistance from junction to case (note 1) 12 K/W
Note
1. External heatsink is required.
1995 Feb 07 5
Philips Semiconductors Preliminary specification
Video output amplifier TDA6111Q
CHARACTERISTICS
Operating range: T Vom=1.4VtoV Test conditions (unless otherwise specified): T (CL consists of parasitic and cathode capacitance); R
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
DDH
I
DDL
I
bias
I
offset
I
om(offset)
I
om
-----------­I
oc
V
offset
V
oc(min)
V
oc(max)
quiescent HIGH voltage supply current Voc= 0.5V quiescent LOW voltage supply current Voc= 0.5V input bias current Voc= 0.5V input offset current Voc= 0.5V offset current of measurement output Ioc=0µA;
linearity of current transfer 10 µA<I
input offset voltage Voc= 0.5V minimum output voltage V maximum output voltage V
GB gain-bandwidth product of open-loop
gain: V
B
S
B
L
t
pd
small signal bandwidth V
large signal bandwidth V
cathode output propagation delay time 50% input to 50% output
t
r
cathode output rise time 10% output to 90% output
t
f
cathode output fall time 90% output to 10% output
t
s
settling time 50% input to (99% < output < 101%)
SR slew rate between 50 V to 150 V V
= 20 to 65 °C; V
amb
.
DDL
fb/Vi, dm
= 180 to 210 V; V
DDH
=25°C; V
amb
= 10.8 to 13.2 V; Vip= 2.6 to 5 V;
DDL
th-heatsink
= 200 V; V
DDH
= 10 K/W; measured in test circuit Fig.3.
DDH DDH DDH DDH
= 12 V; Vip=5V; Vom=6V; CL=10pF
DDL
7.0 9.0 11.0 mA
5.0 6.8 8.0 mA 0 40 µA
6 +6 µA
10 0 +10 µA
1.0V<V
1.4 V < Vom<V
1.0V<V
1.4 V < Vom<V
= 1V −−20 V
13
= 1V V
13
f = 500 kHz; V
= 60 V (p-p);
ocAC
V
= 100 V
ocDC
= 100 V (p-p);
ocAC
V
= 100 V
ocDC
V
= 100 V (p-p);
ocAC
V
= 100 V square
ocDC
< 1.0 V;
1−3
< 3 mA;
oc
< 1.0 V;
1−3
DDH
DDL
0.9 1.0 1.1
DDL
50 +50 mV
12 −−V
DDH
= 100 V 1.6 GHz
ocDC
13 16 MHz
10 13 MHz
17 23 29 ns
wave; f < 1 MHz; tr=tf=22ns; see Figs 4 and 5
Voc= 50 to 150 V square
23 30 36 ns wave; f < 1 MHz; tf= 22 ns; see Fig.4
Voc= 150 to 50 V square
23 30 36 ns wave; f < 1 MHz; tr= 22 ns; see Fig.5
V
= 100 V (p-p);
ocAC
V
= 100 V square
ocDC
−−350 ns
wave; f < 1 MHz; tr=tf=22ns; see Figs 4 and 5
= 2 V (p-p) square
13
3000 V/µs wave; f < 1 MHz; tr=tf=22ns
1995 Feb 07 6
Loading...
+ 11 hidden pages