Philips (Now NXP) TDA6108JF Schematic [ru]

INTEGRATED CIRCUITS
DATA SH EET
TDA6108JF
Triple video output amplifier
Product specification Supersedes data of 1998 Jun 22 File under Integrated Circuits, IC02
1999 Oct 29
Philips Semiconductors Product specification
Triple video output amplifier TDA6108JF

FEATURES

Typical bandwidth of 9.0 MHz for an output signal of
Black-Current Stabilization (BCS) circuit
Thermal protection.
60 V (p-p)
High slew rate of 1850 V/µs
No external components required
Very simple application
Single supply voltage of 200 V
Internal reference voltage of 2.5 V
Fixed gain of 51

GENERAL DESCRIPTION

The TDA6108JF includes three video output amplifiers in oneplasticDIL-bent-SIL9-pinmediumpower(DBS9MPF) package (SOT111-1), using high-voltage DMOS technology, and is intended to drive the three cathodes of a colour CRT directly. To obtain maximum performance, the amplifier should be used with black-current control.

ORDERING INFORMATION

TYPE
NUMBER
NAME DESCRIPTION VERSION
PACKAGE

TDA6108JF DBS9MPF plastic DIL-bent-SIL medium power package with fin; 9 leads SOT111-1

BLOCK DIAGRAM

handbook, full pagewidth
V
DD
6
f
3×
MIRROR 5
CASCODE 1
CASCODE 2
V
1×
9, 8, 7
4
MGL318
oc(3),
V
oc(2),
V
oc(1)
5
I
o(m)
MIRROR 1
TDA6108JF
MIRROR 4
CURRENT
SOURCE
1×
THERMAL
PROTECTION
CIRCUIT
V
,
i(1)
1, 2, 3
V
,
i(2)
V
i(3)
R
i R
a
VIP
REFERENCE
MIRROR 3
DIFFERENTIAL
STAGE
R
3×
MIRROR 2
Fig.1 Block diagram (one amplifier shown).
Philips Semiconductors Product specification
Triple video output amplifier TDA6108JF

PINNING

SYMBOL PIN DESCRIPTION
V
i(1)
V
i(2)
V
i(3)
GND 4 ground (fin) I
om
V
DD
V
oc(3)
V
oc(2)
V
oc(1)
1 inverting input 1 2 inverting input 2 3 inverting input 3
5 black current measurement output 6 supply voltage 7 cathode output 3 8 cathode output 2 9 cathode output 1
handbook, halfpage
V V V
V
i(1)
V
i(2)
V
i(3)
GND
I
om
V
DD oc(3) oc(2) oc(1)
1 2 3 4 5
TDA6108JF
6 7 8 9
MGL319

Fig.2 Pin configuration.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); voltages measured with respect to pin 4 (ground); currents as specified in Fig.1; unless otherwise specified.
SYMBOL PARAMETER MIN. MAX. UNIT
V
DD
V
i
V
om
V
oc
T
stg
T
j
V
es
supply voltage 0 250 V input voltage 0 12 V measurement output voltage 0 6V cathode output voltage 0 V
DD
V storage temperature 55 +150 °C junction temperature 20 +150 °C electrostatic handling
human body model (HBM) 2000 V machine model (MM) 300 V

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see
“Handling MOS Devices”
).

QUALITY SPECIFICATION

Quality specification
“SNW-FQ-611 part D”
is applicable.
Philips Semiconductors Product specification
Triple video output amplifier TDA6108JF

THERMAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th(j-a)
R
th(j-fin)
R
th(h-a)

Note

1. An external heatsink is necessary.
thermal resistance from junction to ambient 56 K/W thermal resistance from junction to fin note 1 11 K/W thermal resistance from heatsink to ambient 10 K/W

Thermal protection

handbook, halfpage
8
P
tot
(W)
6
4
2
0
20 20
(1) Infinite heatsink. (2) No heatsink.
(1)
(2)
60 100 140
T
Fig.3 Power derating curves.
MGL322
amb
180
(°C)
The internal thermal protection circuit gives a decrease of the slew rate at high temperatures: 10% decrease at 130 °C and 30% decrease at 145 °C (typical values on the spot of the thermal protection circuit).
handbook, halfpage
outputs
5 K/W
thermal protection circuit
6 K/W
fin
MGK279

Fig.4 Equivalent thermal resistance network.

Philips Semiconductors Product specification
Triple video output amplifier TDA6108JF

CHARACTERISTICS

Operating range: Tj= 20 to +150 °C; VDD= 180 to 210 V. Test conditions: T V
o(c1)=Vo(c2)=Vo(c3)
=1⁄2VDD; CL= 10 pF (CL consists of parasitic and cathode capacitance); R
(measured in test circuit of Fig.8); unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
q
V
ref(int)
quiescent supply current 8.8 10.3 11.7 mA internal reference voltage
(input stage)
R
i
input resistance 3.2 k G gain of amplifier 47.5 51.0 55.0 G gain difference 2.5 0 +2.5 V
O(c)
nominal output voltage at
Ii=0µA 116 129 142 V
pins 7, 8 and 9 (DC value) V
O(c)(offset)
differential nominal output
Ii=0µA 05V offset voltage between pins 7 and 8, 8 and 9 and 9 and 7 (DC value)
V
o(c)(T)
output voltage temperature drift at pins 7, 8 and 9
V
o(c)(T)(offset)
differential output offset voltage temperature drift between pins 7 and 8, 8 and 9 and 7 and 9
I
o(m)(offset)
I
/I
o(m)
offsetcurrentofmeasurement output (for 3 channels)
linearity of current transfer 100µA<I
o(c)
I
=0µA;
o(c)
1.5 V < Vi< 5.5 V;
3V<V
o(m)
<6V
< 100 µA;
o(c)
1.5 V < Vi< 5.5 V;
I
o(c)(max)
maximum peak output current
3V<V
50V<V
<6V
o(m)
o(c)<VDD
50 V 28 mA
(pins 7, 8 and 9)
V
o(c)(min)
minimum output voltage
Vi= 7.0 V; note 1 −−10 V (pins 7, 8 and 9)
V
o(c)(max)
maximum output voltage
Vi= 1.0 V; note 1 VDD− 15 −−V (pins 7, 8 and 9)
B
S
small signal bandwidth
V
= 60 V (p-p) 9.0 MHz
o(c)
(pins 7, 8 and 9)
B
L
large signal bandwidth
V
= 100 V (p-p) 8.0 MHz
o(c)
(pins 7, 8 and 9)
t
Pco
cathode output propagation time 50% input to 50% output (pins 7, 8 and 9)
V
= 100 V (p-p)
o(c)
square wave; f <1 MHz;
tr=tf=40ns
(pins 1, 2 and 3);
see Figs 6 and 7
=25°C; VDD= 200 V;
amb
= 18 K/W
th(h-a)
2.5 V
−−10 mV/K
0 mV/K
50 +50 µA
0.9 1.0 1.1
32 ns
Philips Semiconductors Product specification
Triple video output amplifier TDA6108JF
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
t
Pco
t
o(r)
t
o(f)
t
st
SR slew rate between
O
v
PSRR power supply rejection ratio f < 50 kHz; note 2 65 dB
α
ct(DC)
difference in cathode output propagationtime50% inputto 50% output (pins 7 and 8, 7 and 9 and 8 and 9)
cathode output rise time 10% output to 90% output (pins 7, 8 and 9)
cathode output fall time 90% output to 10% output (pins 7, 8 and 9)
settling time 50% input to 99% < output < 101% (pins 7, 8 and 9)
50Vto(VDD− 50 V) (pins 7, 8 and 9)
cathode output voltage overshoot (pins 7, 8 and 9)
DC crosstalk between channels
V
= 100 V (p-p)
o(c)
square wave; f < 1 MHz;
tr=tf=40ns
(pins 1, 2 and 3)
V
= 50 to 150 V square
o(c)
wave; f < 1 MHz; tf=40ns
(pins 1, 2 and 3); see Fig.6
V
= 150 to 50 V square
o(c)
wave; f < 1 MHz; tr=40ns
(pins 1, 2 and 3); see Fig.7
V
= 100 V (p-p)
o(c)
square wave; f < 1 MHz;
tr=tf=40ns
(pins 1, 2 and 3);
see Figs 6 and 7
Vi= 4 V (p-p) square wave;
f < 1 MHz; tr=tf=40ns
(pins 1, 2 and 3)
V
= 100 V (p-p)
o(c)
square wave; f < 1 MHz;
tr=tf=40ns
(pins 1, 2 and 3);
see Figs 6 and 7
10 0 +10 ns
35 50 65 ns
35 50 65 ns
−−350 ns
1850 V/µs
10 %
50 dB

Notes

1. See also Fig.5 for the typical DC-to-DC transfer of Vito V
o(c)
.
2. The ratio of the change in supply voltage to the change in input voltage when there is no change in output voltage.
Loading...
+ 11 hidden pages