Philips UZZ9000 Datasheet

0 (0)
Philips UZZ9000 Datasheet

DISCRETE SEMICONDUCTORS

DATA SHEET

UZZ9000

Sensor Conditioning Electronic

Product specification

 

2000 Nov 27

Supersedes data of 2000 May 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Philips Semiconductors

Product specification

 

 

Sensor Conditioning Electronic

UZZ9000

 

 

 

 

FEATURES

One chip fully integrated signal conditioning IC

Accuracy better than 1° together with KMZ41 in 100° angle range

Temperature range from 40 to 150 °C

Adjustable angle range

Adjustable zero point.

GENERAL DESCRIPTION

The UZZ9000 is an integrated circuit that combines two sinusoidal signals (sine and cosine) into one single linear output signal. When used in conjunction with the magnetoresistive sensor KMZ41 it provides a measurement system for angles up to 180°. The UZZ9000 can also be used for other applications in which an angle has to be calculated from a sine and a cosine signal.

A typical application would be any kind of resolver application.

The two input signals are converted into the digital domain with two separate AD-converters. A CORDIC algorithm performs the inverse tangent transformation. Since today’s applications typically require analog output signals

(e.g. potentiometers), the resulting signal is transferred back to the analog domain.

The UZZ9000 enables the user to set both the angle range and the zero point offset. These ranges are set by external voltage dividers.

QUICK REFERENCE DATA

PINNING

SYMBOL

PIN

DESCRIPTION

 

 

 

+VO2

1

sensor 2 positive differential input

+VO1

2

sensor 1 positive differential input

VDD2

3

digital supply voltage

VSS

4

digital ground

GND

5

analog ground

 

 

 

RST

6

reset of the digital part; note 1

 

 

 

TEST1

7

for production test; note 1

 

 

 

TEST2

8

note 2

 

 

 

DATA_CLK

9

trim-mode data-clock; note 1

 

 

 

SMODE

10

serial mode programmer; note 1

 

 

 

TEST3

11

note 2

 

 

 

VOUT

12

output voltage

Var

13

angle-range input set

 

 

 

Voffin

14

offset input set

OFFS2

15

offset trimming input sensor 2

 

 

 

OFFS1

16

offset trimming input sensor 1

 

 

 

VDDA

17

analog supply voltage

GND

18

analog ground

 

 

 

TEST4

19

for production test; note 1

 

 

 

TEST5

20

for production test; note 1

 

 

 

VDD1

21

digital supply voltage

Tout

22

test output

VO2

23

sensor 2 negative differential input

VO1

24

sensor 1 negative differential input

Notes

1.Connected to ground.

2.Pin to be left unconnected.

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

 

 

 

 

 

 

 

VDDA

supply voltage

note 1

4.5

5

5.5

V

VDD1

supply voltage

note 1

4.5

5

5.5

V

VDD2

supply voltage

note 1

4.5

5

5.5

V

ICCtot

total supply current

 

13

15

mA

A

angle range

in 10° steps with KMZ41

30

180

deg

 

 

 

 

 

 

 

A

accuracy

with ideal input signal; range = 100°

±0.45

deg

 

 

 

 

 

 

 

Note

1. VDDA, VDD1 and VDD2 must be connected to the same supply voltage.

2000 Nov 27

2

Philips Semiconductors

 

 

 

 

Product specification

 

 

 

 

 

 

 

 

Sensor Conditioning Electronic

 

 

UZZ9000

 

 

 

 

 

 

 

 

 

LIMITING VALUES

 

 

 

 

 

 

 

In accordance with the Absolute Maximum Rating System (IEC 60134).

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PARAMETER

 

 

CONDITIONS

MIN.

MAX.

UNIT

 

 

 

 

 

 

 

 

 

VDDA

supply voltage

 

 

 

0.3

+6

 

V

VDD1

supply voltage

 

 

 

0.3

+6

 

V

VDD2

supply voltage

 

 

 

0.3

+6

 

V

Vpin

voltage at all pins

 

 

 

0.3

VDD

V

Tstg

storage temperature

 

 

 

55

+150

°C

Tj

operating temperature

 

125 to 150 °C; max 200 hours

40

+150

°C

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

 

PARAMETER

VALUE

 

UNIT

 

 

 

 

 

 

 

Rth j-a

thermal resistance from junction to ambient

80

 

 

K/W

ESD SENSITIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

PARAMETER

 

 

CONDITIONS

VALUE

 

UNIT

 

 

 

 

 

 

 

 

 

ESD

ESD sensitivity

 

 

human body model

2

 

 

kV

 

 

 

 

 

 

 

 

 

 

 

 

 

machine model

±150

 

 

V

 

 

 

 

 

 

 

 

 

2000 Nov 27

3

Philips Semiconductors

Product specification

 

 

Sensor Conditioning Electronic

UZZ9000

 

 

ELECTRICAL CHARACTERISTICS

Tamb = 40 to +150 °C; VDD = 4.5 to 5.5 V; typical characteristics for Tamb = 25 °C and VDD = 5 V unless otherwise specified.

SYMBOL

PARAMETER

CONDITIONS

MIN.

 

TYP.

MAX.

UNIT

 

 

 

 

 

 

 

 

VDDA

supply voltage

 

4.5

5

 

5.5

V

VDD1

supply voltage

 

4.5

5

 

5.5

V

VDD2

supply voltage

 

4.5

5

 

5.5

V

IDD

supply current

without load

10

 

15

mA

(+VO)-(VO)

differential input voltage

referred to VDD

±6.6

 

±28

mV/V

 

common mode range

referred to VDD

490

 

510

mV/V

 

lost magnet threshold

referred to VDD

3

 

mV/V

fext

external clock frequency

for trim interface

0.1

 

1

MHz

fint

internal clock frequency

Tj = 40 to 150 °C

2.3

4

 

5.7

MHz

Cload

output load

 

 

50

pF

 

 

with series resistance

 

200

nF

 

 

>300 Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

Vreset

switching voltage threshold

between falling and

2.8

 

4.5

V

 

for power on/off

rising VDD

 

 

 

 

 

 

hysteresis

 

0.3

 

 

 

 

 

 

 

 

 

 

Vout

output voltage range for

lower bound

5

 

6

% VDD

 

valid ranges

upper bound

94

 

95

% VDD

Vd

diagnostic area

for irregular input

0

 

4

% VDD

 

 

signal

96

 

100

% VDD

A

accuracy

with ideal input signal;

±0.45

 

degree

 

 

range = 100°

 

 

 

 

 

 

 

 

 

 

 

 

 

Res

resolution

range = 100°

0.1

 

degree

 

 

 

 

 

 

 

 

ton

power up time

 

 

20

ms

tr

response time

to 95% of final value

0.7

 

1.2

ms

VLM

sensor voltage

lost magnet threshold

12

15

 

20

mV

FUNCTIONAL DESCRIPTION

The UZZ9000 is a mixed signal IC for angle measurement systems. The UZZ9000 has been designed for the double sensor KMZ41. It combines two analog signals (sine and cosine) into a linear output signal. The analog measurement signals on the IC input are converted to digital data by two ADC’s. Each ADC is a Sigma-Delta modulator employing a 4th order continuous time architecture with an over-sampling ratio of 128 to achieve high resolution. The converter output is a digital bit-stream with an over-sampling frequency of typically 500 kHz. The bit-stream is fed into a decimation filter which

performs both low pass filtering and down-sampling. The IC has two input channels each of which has its own ADC and decimation filter. The two decimation filter outputs are 15-bit digital words at a lower frequency of typically

3.9 kHz which is the typical sampling frequency of the sensor system. The digital representations of the two signals are then used to calculate the current angle by the ALU. This calculation is carried out using the so-called CORDIC algorithm. The angle is represented by a 13-bit resolution. A DAC converts the digital signal back to the analog domain.

2000 Nov 27

4

Philips Semiconductors

Product specification

 

 

Sensor Conditioning Electronic

UZZ9000

 

 

+VO1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC1

 

 

DECIMATION

 

 

ALU

 

DAC

 

 

output

 

 

 

 

 

 

 

 

 

 

VO1

 

 

 

 

 

 

 

FILTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+VO2

 

 

 

ADC2

 

 

DECIMATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VO2

 

 

 

 

 

FILTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

angle range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

offset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

 

UZZ9000

 

OSCILLATOR

 

 

 

DATA-CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MHB694

 

 

 

 

 

 

reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Block diagram.

The following list gives a short description of the relevant block functions:

1.The ADC block contains two Sigma Delta AD converters, sensor offset correction circuitry and the circuitry required for the sensitivity and offset adjustment of the chip output voltage curve.

2.The decimation filter block comprises two digital low pass decimation filters convert the low resolution high speed bit stream output from the ADC’s into a low speed digital word.

3.The ALU block derives an angle value from the two digital inputs using the CORDIC algorithm.

4.The DAC converts the output of the ALU block to an analog signal.

5.The CONTROL block provides the clock and the control signals for the chip.

6.The RESET block supplies a reset signal during power-up and power-down when the power supply is below a certain value.

7.The Oscillator generates the master clock.

Angle range selection

In order to accommodate varying applications, both the mechanical input angular range of the UZZ9000 and the zero point of the output curve are user programmable. This section describes how to select a desired mode.

The output curve is adjusted by changing the angular range as shown in Fig.2. Without any zero point offset, the ramp-up starts at mechanical 0° (α1 = 0°). When using a KMZ41 sensor, the maximum angular range Δα

is 0° to 180°. For the UZZ9000, smaller angular ranges can be set. In this case, α2 becomes smaller than 180° and the output curve is clipped at this position. The location of discontinuity XD (change from lower to upper clipping area) depends on the adjusted range and can be calculated as follows:

X = Δα + 180° –Δα

D --------------------------

2

In order to compensate for tolerances, the zero point of the output curve can be shifted by ±5˚ in steps of 0.5°. The effect of this measure is shown in Fig.3. Now α1 is no longer identical with mechanical 0˚, but with the zero point shift Xoff. Consequently, the location of discontinuity XD can be calculated as follows:

X = x + Δα + 180° –Δα

D off --------------------------

2

2000 Nov 27

5

Loading...
+ 11 hidden pages