DISCRETE SEMICONDUCTORS
DATA SH EET
BF556A; BF556B; BF556C
N-channel silicon junction
field-effect transistors
Product specification
Supersedes data of April 1995
File under Discrete Semiconductors, SC07
1996 Jul 29
Philips Semiconductors Product specification
N-channel silicon junction
field-effect transistors
FEATURES
• Low leakage level (typ. 500 fA)
• High gain
• Low cut-off voltage.
APPLICATIONS
• Impedance converters in e.g. electret microphones and
infra-red detectors
• VHF amplifiers in oscillators and mixers.
DESCRIPTION
N-channel symmetrical silicon junction field-effect
transistors in a SOT23 package.
PINNING - SOT23
PIN SYMBOL DESCRIPTION
1 s source
2 d drain
3 g gate‘
BF556A; BF556B; BF556C
handbook, halfpage
Marking codes:
BF556A: M84.
BF556B: M85.
BF556C: M86.
The device is supplied in an antistatic package. The
gate-source input must be protected against static
discharge during transport or handling.
21
Top view
3
Fig.1 Simplified outline and symbol.
CAUTION
g
MAM036
d
s
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
V
I
DSS
DS
GSoff
drain-source voltage (DC) −±30 V
gate-source cut-off voltage ID= 200 µA; VDS=15V −0.5 −7.5 V
drain current VGS= 0; VDS=15V
BF556A 3 7 mA
BF556B 6 13 mA
BF556C 11 18 mA
P
tot
y
forward transfer admittance VGS= 0; VDS=15V 4.5 − mS
fs
total power dissipation up to T
=25°C − 250 mW
amb
1996 Jul 29 2
Philips Semiconductors Product specification
N-channel silicon junction
BF556A; BF556B; BF556C
field-effect transistors
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DS
V
GSO
V
GDO
I
G
P
tot
T
stg
T
j
Note
1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain
lead 10 mm
THERMAL CHARACTERISTICS
SYMBOL PARAMETER VALUE UNIT
R
th j-a
drain-source voltage (DC) −±30 V
gate-source voltage open drain −−30 V
gate-drain voltage (DC) open source −−30 V
forward gate current (DC) − 10 mA
total power dissipation up to T
=25°C; note 1 − 250 mW
amb
storage temperature −65 150 °C
operating junction temperature − 150 °C
2
.
thermal resistance from junction to ambient; note 1 500 K/W
Note
1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain
lead 10 mm2.
STATIC CHARACTERISTICS
=25°C; unless otherwise specified.
T
j
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
(BR)GSS
V
GSoff
I
DSS
gate-source breakdown voltage IG= −1 µA; VDS=0 −30 −−V
gate-source cut-off voltage ID= 200 µA; VDS=15V −0.5 −7.5 V
drain current VGS= 0; VDS=15V
BF556A 3 − 7mA
BF556B 6 − 13 mA
BF556C 11 − 18 mA
I
GSS
forward transfer admittance VGS= 0; VDS= 15 V 4.5 −−mS
y
fs
common source output
y
os
gate leakage current VGS= −20 V; VDS=0 −−0.5 −5000 pA
VGS= 0; VDS=15V − 40 −µS
admittance
1996 Jul 29 3
Philips Semiconductors Product specification
N-channel silicon junction
BF556A; BF556B; BF556C
field-effect transistors
DYNAMIC CHARACTERISTICS
T
=25°C; unless otherwise specified.
amb
SYMBOL PARAMETER CONDITIONS TYP. UNIT
C
is
C
rs
g
is
g
fs
g
rs
g
os
V
n
input capacitance VDS= 15 V; VGS= −10 V; f = 1 MHz 1.7 pF
= 15 V; VGS= 0; f = 1 MHz 3 pF
V
DS
reverse transfer capacitance VDS= 15 V; VGS= −10 V; f = 1 MHz 0.8 pF
= 15 V; VGS= 0; f = 1 MHz 0.9 pF
V
DS
common source input conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 15 µS
= 10 V; ID= 1 mA; f = 450 MHz 300 µS
V
DS
common source transfer conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 2 mS
= 10 V; ID= 1 mA; f = 450 MHz 1.8 mS
V
DS
common source reverse conductance VDS= 10 V; ID= 1 mA; f = 100 MHz −6 µS
= 10 V; ID= 1 mA; f = 450 MHz −40 µS
V
DS
common source output conductance VDS= 10 V; ID= 1 mA; f = 100 MHz 30 µS
= 10 V; ID= 1 mA; f = 450 MHz 60 µS
V
DS
equivalent input noise voltage VDS=10V; ID= 1 mA; f = 100 Hz 40 nV/√Hz
V
GSoff
MRC154
(V)
20
handbook, halfpage
I
DSS
(mA)
16
12
8
4
0
01234567
VDS=15V.
Fig.2 Drain current as a function of gate-source
cut-off voltage; typical values.
10
handbook, halfpage
Y
fs
(mS)
8
6
4
2
0
01234567
VDS= 15V; ID=1µA.
MRC156
V
GSoff
(V)
Fig.3 Forward transfer admittance as a function
of gate-source cut-off voltage; typical
values.
1996 Jul 29 4