
查询NCP1200P60供应商
NCP1200
PWM Current−Mode
Controller for Low−Power
Universal Off−Line Supplies
Housed in SOIC−8 or PDIP−8 package, the NCP1200 represents a
major leap toward ultra−compact Switchmode Power Supplies. Due to
a novel concept, the circuit allows the implementation of a complete
offline battery charger or a standby SMPS with few external
components. Furthermore, an integrated output short−circuit
protection lets the designer build an extremely low−cost AC−DC wall
adapter associated with a simplified feedback scheme.
With an internal structure operating at a fixed 40 kHz, 60 kHz or
100 kHz, the controller drives low gate−charge switching devices like
an IGBT or a MOSFET thus requiring a very small operating power.
Due to current−mode control, the NCP1200 drastically simplifies the
design of reliable and cheap offline converters with extremely low
acoustic generation and inherent pulse−by−pulse control.
When the current setpoint falls below a given value, e.g. the output
power demand diminishes, the IC automatically enters the skip cycle
mode and provides excellent efficiency at light loads. Because this
occurs at low peak current, no acoustic noise takes place.
Finally, the IC is self−supplied from the DC rail, eliminating the
need of an auxiliary winding. This feature ensures operation in
presence of low output voltage or shorts.
Features
• No Auxiliary Winding Operation
• Internal Output Short−Circuit Protection
• Extremely Low No−Load Standby Power
• Current−Mode with Skip−Cycle Capability
• Internal Leading Edge Blanking
• 250 mA Peak Current Source/Sink Capability
• Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz
• Direct Optocoupler Connection
• Built−in Frequency Jittering for Lower EMI
• SPICE Models Available for TRANsient and AC Analysis
• Internal Temperature Shutdown
• Pb−Free Packages are Available
http://onsemi.com
SOIC−8
8
8
1
xxx = Device Code: 40, 60 or 100
y = Device Code:
A = Assembly Location
L = Wafer Lot
Y, YY = Year
W, WW = Work Week
D SUFFIX
CASE 751
1
PDIP−8
P SUFFIX
CASE 626
4 for 40
6 for 60
1 for 100
PIN CONNECTIONS
Adj
18
FB
2
3
CS
GND
4
(Top View)
MARKING
DIAGRAMS
8
200Dy
ALYW
1
8
1200Pxxx
YYWW
1
HV
7
NC
V
6
CC
Drv
5
AWL
T ypical Applications
• AC−DC Adapters
• Offline Battery Chargers
• Auxiliary/Ancillary Power Supplies (USB, Appliances, TVs, etc.)
Semiconductor Components Industries, LLC, 2004
December, 2004 − Rev. 13
1 Publication Order Number:
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 14 of this data sheet.
NCP1200/D

NCP1200
C3
+
10 F
400 V
EMI
Filter
Universal Input
*Please refer to the application information section
PIN FUNCTION DESCRIPTION
Pin No.
ÁÁ
ÁÁ
1
2
3
4
5
6
7
8
Pin Name
Adj
ÁÁ
FB
CS
ÁÁ
GND
Drv
V
CC
NC
HV
Function
Adjust the Skipping Peak Current
БББББББ
Sets the Peak Current Setpoint
Current Sense Input
БББББББ
The IC Ground
Driving Pulses
Supplies the IC
No Connection
Generates the VCC from the Line
*
HV
V
NC
CC
Drv
8
7
6
5
1
Adj
2
FB
3
CS
GND
4
+
C5
10 F
R
sense
Figure 1. T ypical Application
This pin lets you adjust the level at which the cycle skipping process takes
place.
БББББББББББББББББ
By connecting an Optocoupler to this pin, the peak current setpoint is adjusted accordingly to the output power demand.
This pin senses the primary current and routes it to the internal comparator
via an L.E.B.
БББББББББББББББББ
The driver’s output to an external MOSFET.
This pin is connected to an external bulk capacitor of typically 10 F.
This un−connected pin ensures adequate creepage distance.
Connected to the high−voltage rail, this pin injects a constant current into
the V
bulk capacitor.
CC
1N5819
M1
MTD1N60E
Description
D2
+
Rf
470
D8
5 V1
C2
470 F/10 V
6.5 V @ 600 mA
http://onsemi.com
2

NCP1200
Adj
FB
Current
Sense
Ground
1
HV Current
8
HV
Source
75.5 k
1.4 V
2
Skip Cycle
Comparator
+
−
Internal
V
CC
UVLO
High and Low
Internal Regulator
7
NC
29 k
Q Flip−Flop
Set
3
250 ns
L.E.B.
40, 60 or
100 kHz
Clock
4
+
V
ref
−
5.2 V
60 k8 k
20 k
+
−
1 V
DCmax = 80%
Reset
Q
6
V
CC
5
Drv
±110 mA
Overload?
Fault Duration
Figure 2. Internal Circuit Architecture
MAXIMUM RATINGS
Rating
Power Supply Voltage
Thermal Resistance Junction−to−Air, PDIP−8 version
Thermal Resistance Junction−to−Air, SOIC version
БББББББББББББББББББ
Maximum Junction Temperature
Typical Temperature Shutdown
Storage Temperature Range
ESD Capability, HBM Model (All Pins except VCC and HV)
ESD Capability, Machine Model
Maximum Voltage on Pin 8 (HV), pin 6 (VCC) Grounded
Maximum Voltage on Pin 8 (HV), Pin 6 (VCC) Decoupled to Ground with 10 F
Minimum Operating Voltage on Pin 8 (HV)
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously . If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
Symbol
V
CC
R
JA
R
JA
ÁÁÁ
T
Jmax
−
T
stg
−
−
−
−
−
Value
16
100
178
ÁÁÁÁ
150
140
−60 to +150
2.0
200
450
500
30
Units
V
°C/W
ÁÁ
°C
°C
kV
V
V
V
V
http://onsemi.com
3

NCP1200
ELECTRICAL CHARACTERISTICS (For typical values T
V
= 11 V unless otherwise noted)
CC
Rating
= +25°C, for min/max values TJ = −25°C to +125°C, Max TJ = 150°C,
J
Pin Symbol Min Typ Max Unit
DYNAMIC SELF−SUPPLY (All Frequency Versions, Otherwise Noted)
VCC Increasing Level at Which the Current Source Turns−off 6 V
VCC Decreasing Level at Which the Current Source Turns−on 6 V
VCC Decreasing Level at Which the Latchoff Phase Ends 6 V
Internal IC Consumption, No Output Load on Pin 5 6 I
CCOFF
CCON
CClatch
CC1
10.3 11.4 12.5 V
8.8 9.8 11 V
− 6.3 − V
− 710 880
Note 1
Internal IC Consumption, 1 nF Output Load on Pin 5, FSW = 40 kHz 6 I
CC2
− 1.2 1.4
Note 2
Internal IC Consumption, 1 nF Output Load on Pin 5, FSW = 60 kHz 6 I
CC2
− 1.4 1.6
Note 2
Internal IC Consumption, 1 nF Output Load on Pin 5, FSW = 100 kHz 6 I
CC2
− 1.9 2.2
Note 2
Internal IC Consumption, Latchoff Phase 6 I
CC3
− 350 − A
INTERNAL CURRENT SOURCE
High−voltage Current Source, VCC = 10 V 8 I
High−voltage Current Source, VCC = 0 V 8 I
C1
C2
2.8 4.0 − mA
− 4.9 − mA
DRIVE OUTPUT
Output Voltage Rise−time @ CL = 1 nF, 10−90% of Output Signal
Output Voltage Fall−time @ CL = 1 nF, 10−90% of Output Signal 5 T
Source Resistance (drive = 0, Vgate = V
− 1 V) 5 R
CCHMAX
Sink Resistance (drive = 11 V, Vgate = 1 V) 5 R
5 T
OH
OL
r
f
− 67 − ns
− 28 − ns
27 40 61
5 12 25
CURRENT COMPARATOR (Pin 5 Un−loaded)
Input Bias Current @ 1 V Input Level on Pin 3 3 I
Maximum internal Current Setpoint 3 I
Default Internal Current Setpoint for Skip Cycle Operation 3 I
Propagation Delay from Current Detection to Gate OFF State 3 T
Leading Edge Blanking Duration 3 T
IB
Limit
Lskip
DEL
LEB
− 0.02 − A
0.8 0.9 1.0 V
− 350 − mV
− 100 160 ns
− 230 − ns
INTERNAL OSCILLATOR (VCC = 11 V, Pin 5 Loaded by 1 k)
Oscillation Frequency, 40 kHz Version − f
Oscillation Frequency, 60 kHz Version − f
Oscillation Frequency, 100 kHz Version − f
Built−in Frequency Jittering, FSW = 40 kHz − f
Built−in Frequency Jittering, FSW = 60 kHz − f
Built−in Frequency Jittering, FSW = 100 kHz − f
OSC
OSC
OSC
jitter
jitter
jitter
36 42 48 kHz
52 61 70 kHz
86 103 116 kHz
− 300 − Hz/V
− 450 − Hz/V
− 620 − Hz/V
Maximum Duty Cycle − Dmax 74 80 87 %
FEEDBACK SECTION (VCC = 11 V, Pin 5 Loaded by 1 k)
Internal Pullup Resistor 2 Rup − 8.0 − k
Pin 3 to Current Setpoint Division Ratio − Iratio − 4.0 − −
SKIP CYCLE GENERATION
Default skip mode level 1 Vskip 1.1 1.4 1.6 V
Pin 1 internal output impedance 1 Zout − 25 − k
1. Max value @ TJ = −25°C.
2. Max value @ T
= 25°C, please see characterization curves.
J
A
mA
mA
mA
http://onsemi.com
4

NCP1200
60
50
40
30
20
LEAKAGE (A)
10
0
−25
9.85
9.80
9.75
9.70
(V)
9.65
CCON
V
9.60
9.55
9.50
9.45
−25 755025 100 1250
11.70
11.60
11.50
(V)
11.40
CCOFF
V
11.30
11.20
0 −25 755025 100 1250
TEMPERATURE (°C)
5025
75
100 125
11.10
Figure 3. HV Pin Leakage Current vs.
Temperature
100 kHz
60 kHz
40 kHz
TEMPERATURE (°C)
900
850
800
(A)
750
CC1
I
700
650
600
−25 755025 100 1250
100 kHz
60 kHz
40 kHz
TEMPERATURE (°C)
Figure 4. VCC OFF vs. Temperature
100 kHz
60 kHz
40 kHz
TEMPERATURE (°C)
2.10
1.90
1.70
(mA)
1.50
CC2
I
1.30
1.10
0.90
−25 755025 100 1250
Figure 5. VCC ON vs. Temperature
100 kHz
60 kHz
40 kHz
TEMPERATURE (°C)
Figure 7. I
vs. Temperature
CC2
110
104
98
92
86
80
(kHz)
74
SW
68
F
62
56
50
44
38
−25 755025 100 1250
http://onsemi.com
5
Figure 6. I
TEMPERATURE (°C)
vs. Temperature
CC1
100 kHz
60 kHz
40 kHz
Figure 8. Switching Frequency vs. T
J

NCP1200
6.50
6.45
6.40
(V)
6.35
CCLATCHOFF
6.30
V
6.25
6.20
−25
60
50
40
30
20
10
460
430
400
370
340
(A)
310
CC3
I
280
250
220
250
TEMPERATURE (°C)
50 75 100
125
190
TEMPERATURE (°C)
Figure 9. VCC Latchoff vs. Temperature Figure 10. I
1.00
Source
Sink
0.96
0.92
0.88
0.84
CURRENT SETPOINT (V)
50 75250 100−25 125
vs. Temperature
CC3
1.34
1.33
1.32
(V)
1.31
skip
V
1.30
1.29
1.28
0
TEMPERATURE (°C)
Figure 11. DRV Source/Sink Resistances
50 75250 100−25 125
TEMPERATURE (°C)
Figure 13. V
vs. Temperature
skip
0.80
TEMPERATURE (°C)
50 75250 100−25 12550 75250 100−25 125
Figure 12. Current Sense Limit vs. Temperature
86.0
84.0
82.0
80.0
78.0
DUTY−MAX (%)
76.0
74.0
TEMPERATURE (°C)
50 75250 100−25 125
Figure 14. Max Duty Cycle vs. T emperature
http://onsemi.com
6