ON Semiconductor MC34071, MC34072, MC34074, MC3407A, MC33071 Technical data

...
MC34071,2,4,A MC33071,2,4,A
High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
The MC33071/72/74, MC34071/72/74 series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic DIP, SOIC and TSSOP surface mount packages.
Wide Bandwidth: 4.5 MHz
High Slew Rate: 13 V/µs
Fast Settling Time: 1.1 µs to 0.1%
Wide Single Supply Operation: 3.0 V to 44 V
Wide Input Common Mode Voltage Range: Includes Ground (V
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
Large Output Voltage Swing: –14.7 V to +14 V (with ±15 V
Supplies)
Large Capacitance Drive Capability: 0 pF to 10,000 pF
Low Total Harmonic Distortion: 0.02%
Excellent Phase Margin: 60°
Excellent Gain Margin: 12 dB
Output Short Circuit Protection
ESD Diodes/Clamps Provide Input Protection for Dual and Quad
EE)
8
P SUFFIX
CASE 626
14
1
P SUFFIX
CASE 646
Output 1
Inputs 1
Inputs 2
Output 2
http://onsemi.com
8
1
1
SO–8 D SUFFIX CASE 751
PIN CONNECTIONS
Offset Null
Inputs
1 2
– +
3 4
V
EE
(Single, Top View)
1
Output 1 V
2
Inputs 1
3 4
V
EE
(Dual, Top View)
14
TSSOP–14
DTB SUFFIX
CASE 948G
+
1
8
NC
7
V
6
Output
5
Offset Null
8
CC
7
Output 2
6
– +
5
14
SO–14
D SUFFIX
CASE 751A
CC
Inputs 2
1
PIN CONNECTIONS
1
2
1
– +
3 4
V
CC
5
2
+ –
6
78
14
Output 4
13
4
Inputs 4
+
12 11
V
EE
3
10
+
Inputs 3
9
Output 3
Semiconductor Components Industries, LLC, 1999
October, 1999 – Rev. 2
(Quad, T op View)
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.
1 Publication Order Number:
MC34071/D
Inputs
MC34071,2,4,A MC33071,2,4,A
Representative Schematic Diagram
(Each Amplifier)
V
CC
Q2
Q3 Q4
R1
Q8
Q9
C1
R2
Q10
Q1
Bias
+
Q5
Q11
Q6
C2
Q7
D2
Q17
R6 R7
D3
Q18
Output
R8
Q19
Base
Current
Cancellation
Offset Null
(MC33071, MC34071 only)
Q13
Q12
D1
R3 R4
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (from VEE to VCC) V Input Differential Voltage Range V Input Voltage Range V Output Short Circuit Duration (Note 2) t Operating Junction Temperature T Storage Temperature Range T
NOTES: 1.Either or both input voltages should not exceed the magnitude of VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1).
S
IDR
IR
SC
J
stg
+44 V Note 1 V Note 1 V
Indefinite sec
+150 °C
–60 to +150 °C
Q14
Q15 Q16
R5
Current
Limit
VEE/Gnd
http://onsemi.com
2
MC34071,2,4,A MC33071,2,4,A
ELECTRICAL CHARACTERISTICS (V
TA = T
Input Offset Voltage (RS = 100 , VCM = 0 V, VO = 0 V)
Average Temperature Coefficient of Input Offset Voltage
Input Bias Current (VCM = 0 V, VO = 0 V)
Input Offset Current (VCM = 0 V, VO = 0V)
Input Common Mode Voltage Range
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ)
Output Voltage Swing (VID = ±1.0 V)
Output Short Circuit Current (VID = 1.0 V, VO = 0 V,
Common Mode Rejection
Power Supply Rejection (RS = 100 Ω)
Power Supply Current (Per Amplifier, No Load)
NOTES: 3.T
to T
low
VCC = +15 V, VEE = –15 V, TA = +25°C VCC = +5.0 V, VEE = 0 V, TA = +25°C VCC = +15 V, VEE = –15 V, TA = T
RS = 10 , VCM = 0 V, VO = 0 V,
TA = T
TA = +25°C TA = T
low
TA = +25°C TA = T
low
TA = +25°C TA = T
low
TA = +25°C TA = T
low
VCC = +5.0 V, VEE = 0 V, RL = 2.0 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 10 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 2.0 kΩ,
TA = T
VCC = +5.0 V, VEE = 0 V, RL = 2.0 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 10 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 2.0 kΩ,
TA = T
TA = 25°C)
Source Sink
RS 10 k, VCM = V
VCC/VEE = +16.5 V/–16.5 V to +13.5 V/–13.5 V ,
TA = 25°C
VCC = +5.0 V, VEE = 0 V, VO = +2.5 V, TA = +25°C VCC = +15 V, VEE = –15 V, VO = 0 V, TA = +25°C VCC = +15 V, VEE = –15 V, VO = 0 V,
TA = T
low
)
high
Characteristics Symbol Min Typ Max Min Typ Max Unit
low
to T
low
high
to T
high
to T
high
to T
high
to T
high
to T
low
high
to T
low
high
, TA = 25°C
ICR
to T
low
high
= –40°C for MC33071, 2, 4, /A T =0°C for MC34071, 2, 4, /A = +70°C for MC34071, 2, 4, /A
= +15 V , VEE = –15 V , RL = connected to ground, unless otherwise noted. See Note 3 for
CC
to T
high
A Suffix Non–Suffix
V
IO
VIO/T 10 10 µV/°C
I
IB
I
IO
V
ICR
A
VOL
V
OH
V
OL
I
SC
CMR 80 97 70 97 dB
PSR 80 97 70 97 dB
I
D
= +85°C for MC33071, 2, 4, /A
high
— —
— —
— —
50 25
3.7
13.6
13.4
— — —
10 20
— — —
0.5
0.5 —
100
6.0 —
VEE to (VCC –1.8) VEE to (VCC –2.2)
100
4.0 14 —
0.1
–14.7
30 30
1.6
1.9 —
3.0
3.0
5.0
500 700
50
300
— —
— — —
0.3 –14.3 –13.5
— —
2.0
2.5
2.8
— — —
— —
— —
25 20
3.7
13.6
13.4
— — —
10 20
— — —
1.0
1.5 —
100
6.0 —
VEE to (VCC –1.8) VEE to (VCC –2.2)
100
4.0 14 —
0.1
–14.7
30 30
1.6
1.9 —
5.0
5.0
7.0
500 700
75
300
— —
— — —
0.3 –14.3 –13.5
— —
2.0
2.5
2.8
mV
nA
nA
V
V/mV
V
V
mA
mA
http://onsemi.com
3
MC34071,2,4,A MC33071,2,4,A
AC ELECTRICAL CHARACTERISTICS (V
Characteristics Symbol Min Typ Max Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 500 pF)
AV = +1.0 AV = –1.0
Setting Time (10 V Step, AV = –1.0)
To 0.1% (+1/2 LSB of 9–Bits)
To 0.01% (+1/2 LSB of 12–Bits) Gain Bandwidth Product (f = 100 kHz) GBW 3.5 4.5 3.5 4.5 MHz Power Bandwidth
AV = +1.0, RL = 2.0 kΩ, VO = 20 Vpp, THD = 5.0% Phase margin
RL = 2.0 k
RL = 2.0 kΩ, CL = 300 pF Gain Margin
RL = 2.0 k
RL = 2.0 kΩ, CL = 300 pF Equivalent Input Noise Voltage
RS = 100 , f = 1.0 kHz Equivalent Input Noise Current
f = 1.0 kHz Differential Input Resistance
VCM = 0 V Differential Input Capacitance
VCM = 0 V Total Harmonic Distortion
AV = +10, RL = 2.0 kΩ, 2.0 Vpp VO 20 Vpp, f = 10 kHz Channel Separation (f = 10 kHz) 120 120 dB Open Loop Output Impedance (f = 1.0 MHz) |ZO| 30 30 W
= +15 V, VEE = –15 V, RL = connected to ground. TA = +25°C, unless otherwise noted.)
CC
A Suffix Non–Suffix
SR
t
s
BW 160 160 kHz
f
m
A
m
e
n
i
n
R
in
C
in
THD 0.02 0.02 %
8.0 —
— —
— —
— —
32 32
0.22 0.22
150 150 M
2.5 2.5 pF
10 13
1.1
2.2
60 40
12
4.0
— —
— —
— —
— —
8.0 —
— —
— —
— —
10 13
1.1
2.2
60 40
12
4.0
— —
— —
— —
— —
V/µs
nV/ Hz√
pA/ Hz√
µs
Deg
dB
Figure 1. Power Supply Configurations Figure 2. Offset Null Circuit
V
Single Supply Split Supplies
3.0 V to 44 V VCC+|VEE|44 V
V
CC
1
2
3
4
V
EE
V
CC
V
EE
V
1
2
3
4
V
CC
Offset nulling range is approximately ±80 mV with a 10 k potentiometer (MC33071, MC34071 only).
EE
CC
7
2
3
+
4
V
EE
http://onsemi.com
4
6
5
1
10 k
MC34071,2,4,A MC33071,2,4,A
5
Figure 3. Maximum Power Dissipation versus
T emperature for Package Types
2400
2000
1600
1200
D
P , MAXIMUM POWER DISSIPATION (mW)
SO–14 Pkg
800
400
0
–55 –40 –20 0 20 40 60 80 100 120 140 160
8 & 14 Pin Plastic Pkg
SO–8 Pkg
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Input Common Mode V oltage
Range versus T emperature
V
CC
V
VCC/VEE = +1.5 V/ –1.5 V to +22 V/ –22 V
CC
VCC –0.8
VCC –1.6
VCC –2.4
Figure 4. Input Offset Voltage versus
T emperature for Representative Units
4.0
2.0
0
–2.0
IO
V
–4.0
V , INPUT OFFSET VOLTAGE (mV)
–55 –25 0 25 50 75 100 12
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Normalized Input Bias Current
versus T emperature
1.3
1.2
1.1
1.0
0.9
VCC = +15 V VEE = –15 V VCM = 0
VCC = +15 V VEE = –15 V VCM = 0
VEE +0.01
V
EE
–55 –25 0 25 50 75 100 125
1.4
1.2
1.0
0.8
IB
I , INPUT BIAS CURRENT (NORMALIZED)
0.6
V
EE
TA, AMBIENT TEMPERATURE (°C)
Figure 7. Normalized Input Bias Current versus
Input Common Mode Voltage
VCC = +15 V VEE = –15 V TA = 25°C
–12 –8.0 –4.0 0 4.0 8.0 12
VIC, INPUT COMMON MODE VOLTAGE (V)
0.8
IB
I , INPUT BIAS CURRENT (NORMALIZED)
0.7 –55 –25 0 25 50 75 100 125
ICR
V , INPUT COMMON MODE VOLTAGE RANGE (V)
TA, AMBIENT TEMPERATURE (°C)
Figure 8. Split Supply Output Voltage
Swing versus Supply V oltage
50
)
, OUTPUT VOLTAGE SWING (V V
RL Connected to Ground TA = 25°C
pp
40
30
20
10
O
0
0 5.0 10 15 20 25
RL = 10 k
VCC, |VEE|, SUPPLY VOLTAGE (V)
RL = 2.0 k
http://onsemi.com
5
MC34071,2,4,A MC33071,2,4,A
Figure 9. Single Supply Output Saturation
versus Load Resistance to V
V
VCC –1.0
VCC –2.0
VEE +2.0
VEE +1.0
sat
V , OUTPUT SATURATION VOLTAGE (V)
CC
V
V
EE
0 5.0 10 15 20
VCC/VEE = +5.0 V/ –5.0 V to +22 V/ –22 V TA = 25°C
CC
Source
Sink
V
EE
IL, LOAD CURRENT (±mA)
Figure 11. Single Supply Output Saturation
versus Load Resistance to Ground
0
V
–0.4
–0.8
2.0
1.0
sat
V , OUTPUT SATURATION VOLTAGE (V)
100 1.0 k 10 k 100 k
CC
VCC = +15 V RL to V TA = 25°C
Gnd
RL, LOAD RESISTANCE TO VCC (Ω)
CC
CC
Figure 10. Split Supply Output Saturation
versus Load Current
V
CC
VCC–2.0
VCC–4.0
0.2
0.1
sat
V , OUTPUT SATURATION VOLTAGE (V)
0
100 1.0 k 10 k 100 k
RL, LOAD RESISTANCE TO GROUND (Ω)
Gnd
V
CC
Figure 12. Output Short Circuit Current
versus T emperature
60
50
40
30
20
SC
10
I , OUTPUT CURRENT (mA)
0
–55 –25 0 25 50 75 100 125
Source
TA, AMBIENT TEMPERATURE (°C)
Sink
VCC = +15 V VEE = –15 V RL 0.1 Vin = 1.0 V
VCC = +15 V RL = Gnd TA = 25°C
Figure 13. Output Impedance
versus Frequency
50
VCC = +15 V VEE = –15 V
40
VCM = 0 VO = 0 IO = ±0.5 mA
30
TA = 25°C
20
AV = 1000
10
O
Z , OUTPUT IMPEDANCE ( )
0
1.0 k 10 k 100 1.0 M 10 M
AV = 100 AV = 10 AV = 1.0
f, FREQUENCY (Hz)
28
)
24
pp
20 16 12
8.0
4.0
, OUTPUT VOLTAGE SWING (V
O
V
0
http://onsemi.com
6
Figure 14. Output Voltage Swing
versus Frequency
VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 k THD 1.0% TA = 25°C
3.0 k 10 k 30 k 100 k 300 k 1.0 M 3.0 M f, FREQUENCY (Hz)
MC34071,2,4,A MC33071,2,4,A
5
A,
O
E
LOO
OL
AGE
GAI
(
B)
,
O
AL
AR
O
IC
IS
OR
IO
(
)
A,
O
E
LOO
OL
AGE
GAI
(
B)
Figure 15. T otal Harmonic Distortion
versus Frequency
0.4
% N
T
0.3
T D
N
0.2
M H
0.1
T T
THD
0
10 100 1.0 k 10 k 100 k
AV = 1000
AV = 100
AV = 10
f, FREQUENCY (Hz)
VCC = +15 V VEE = –15 V VO = 2.0 V RL = 2.0 k TA = 25°C
AV = 1.0
Figure 17. Open Loop Voltage Gain
versus T emperature
116
d N
T P V
N P
VCC = +15 V
112
VEE = –15 V VO= –10 V to +10 V RL = 10 k
108
f 10Hz
104
100
VOL
96
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
Figure 16. T otal Harmonic Distortion
versus Output Voltage Swing
4.0 VCC = +15 V
VEE = –15 V
3.0
AV = 1000
pp
2.0
AV = 100
1.0
THD, TOTAL HARMONIC DISTORTION (%)
0
AV = 10 AV = 1.0
0 4.0 8.0 12 16 20
VO, OUTPUT VOLTAGE SWING (Vpp)
RL = 2.0 k TA = 25°C
Figure 18. Open Loop Voltage Gain and
Phase versus Frequency
100
0
80
Phase
60
40
VCC = +15 V VEE = –15 V
20
VO = 0 V RL = 2.0 k
VOL
TA = 25°C
A , OPEN LOOP VOLTAGE GAIN (dB)
0
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M 100 M
Gain
f, FREQUENCY (Hz)
Phase Margin
= 60°
45
90
135
, EXCESS PHASE (DEGREES)
φ
180
Figure 19. Open Loop Voltage Gain and
Phase versus Frequency
20
d N
10
0
T
–10
P V
1. Phase RL = 2.0 k
2. Phase RL = 2.0 k, CL = 300 pF
N
–20
3. Gain RL = 2.0 k
P
4. Gain RL = 2.0 k, CL = 300 pF VCC = +15 V
–30
VEE = 15 V
VOL
VO = 0 V TA = 25°C
–40
1.0 2.0 3.0 5.0 7.0 10 20 30
1
Phase Margin = 60°
f, FREQUENCY (MHz)
Gain Margin = 12 dB
2
100
120
140
160
3
180
4
, EXCESS PHASE (DEGREES)
φ
GBW, GAIN BANDWIDTH PRODUCT (NORMALIED)
http://onsemi.com
7
Figure 20. Normalized Gain Bandwidth
Product versus T emperature
1.15
1.1
1.05
1.0
0.95
0.9
0.85 –55 –25 0 25 50 75 100 12
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V VEE = –15 V RL = 2.0 k
Loading...
+ 14 hidden pages