ON Semiconductor AR0330CS, AR0330SR User Manual

AR0330CS
AR0330CS and AR0330SR 1/3-Inch CMOS Digital Image Sensor
The AR0330CS can be operated in its default mode or programmed for frame size, exposure, gain, and other parameters. The default mode output is a 2304 x 1296 image at 30 frames per second (fps). The sensor outputs 10 or 12bit raw data, using either the parallel or serial (MIPI) output ports.
The ON Semiconductor AR0330CS is a 1/3inch CMOS digital image sensor with an activepixel array of 2304 (H) x1536 (V). It can support 3.15 megapixel (2048H x 1536 V) digital still image capture and a 1080p30 +20%EIS (2304H x 1296 V) digital video mode. It incorporates sophisticated on−chip camera functions such as windowing, mirroring, column and row subsampling modes, and snapshot modes.
Table 1. KEY PARAMETERS
Parameter Typical Value
Optical Format 1/3inch (6.0 mm)
Entire Array: 6.09 mm Still Image: 5.63 mm (4:3) HD Image: 5.82 mm (16:9)
Active Pixels 2304(H) x 1536(V): (Entire Array):
5.07 mm (H) x 3.38 mm (V) 2048(H) x 1536(V) (4:3, Still Mode) 2304(H) x 1296(V) (16:9, sHD Mode)
Pixel Size
Color Filter Array RGB Bayer
Shutter Type ERS and GRR
Input Clock Range 6 – 27 MHz
Output Clock Maximum (CLK_OP)
Responsivity 2.0 V/luxsec
Power Consumption
SNR
MAX
Dynamic Range 69.5 dB
Supply Voltage
Operating Temperature (junction) −T
Package Options 6.28 mm x 6.65 mm CSP
I/O/Digital 1.7–1.9 V (1.8 V Nominal) or
Digital 1.7–1.9 V (1.8 V Nominal)
Analog 2.76–2.9 V
J
2.2 mm x 2.2 mm
98 Mp/s (Parallel, MIPI)
1080P30 MIPI Mode: 282 mW
1080P30 Parallel Mode: 252 mW
39 dB
2.4–3.1 V (2.8 V Nominal)
–30°C to + 70° C
11.43 mm x 11.43 mm PLCC
www.onsemi.com
PLCC48
11.43x11.43
CASE 776AM
ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.
Features (continued)
ODCSP64
6.278x6.648
CASE 570BH
2.2 mm Pixel with ON Semiconductor
APix
technology
Superior Lowlight Performance
3.5 Mp Active Array, 2.9 Mp (16:9) Video
3.4 Mp (3:2) and 3.15 Mp (4:3) Still Images
Support for External Mechanical Shutter
Support for External LED or Xenon Flash
Data Interfaces: Twolane Serial MIPI or
Parallel Interface
Onchip phaselocked Loop (PLL)
Oscillator
Integrated Positionbased Color and Lens
Shading Correction
Simple Twowire Serial Interface
Auto Black Level Calibration
12to10 bit Output ALaw Compression
Slave Mode for Precise Framerate Control
and for Synchronizing Two Sensors
Applications
1080P30 Highdefinition Digital Video
Camcorder
Web Cameras and Video Conferencing
Cameras
Security
© Semiconductor Components Industries, LLC, 2012
January, 2019 Rev. 8
1 Publication Order Number:
AR0330CS/D
AR0330CS
ORDERING INFORMATION
Table 2. AVAILABLE PART NUMBERS
Part Number
AR0330CS1C12SPKA0CP 3.5 MP, 1/3inch, 12 Deg CRA, Parallel, MIPI, CSP Tray, Protective Film
AR0330CS1C12SPKA0CR 3.5 MP, 1/3inch, 12 Deg CRA, Parallel, MIPI, CSP Tray, No Protective Film
AR0330CSSC12SPBA0DR 3.5 MP, 1/3inch, 12 Deg CRA, Parallel, PLCC Tray, No Protective Film
AR0330SR1C00SUKA0CP 3.5 MP, 1/3inch, 0 Deg CRA, Parallel, CSP Tray, Protective Film
AR0330SR1C00SUKA0CR 3.5 MP, 1/3inch, 0 Deg CRA, Parallel, CSP Tray, No Protective Film
AR0330CS1C12SPKAH3GEVB 3.5 MP, 1/3 inch, 12 Deg CRA, Parallel, MIPI, CSP Evaluation board
FUNCTIONAL OVERVIEW
The AR0330CS is a progressivescan sensor that generates a stream of pixel data at a constant frame rate. It uses an on−chip, phase−locked loop (PLL) that can generate all internal clocks from a single master input clock running
Ext
Clock
Analog Core
PLL
Timing
and
Control
Registers
Pixel Array
Row Drivers
Column
Amplifiers
ADC
12bit
Product Description Orderable Product Attribute Description
between 6 and 27 MHz. The maximum CLK_OP is 98 Mp/s using MIPI serial interface and 98 Mp/s using the parallel interface.
Test Pattern
Generator
Digital Core
Row Noise Correction
Black Level Correction
Lens Shading Correction
Digital Gain
Data Pedestal
12bit
12bit
Output DataPath
Compression (optional)
12bit
8, 10, or
12bit
Twowire serial I/F
Figure 1. Block Diagram
User interaction with the sensor is through the two−wire serial bus, which communicates with the array control, analog signal chain, and digital signal chain. The core of the sensor is a 3.5 Mp active− pixel sensor array. The timing and control circuitry sequences through the rows of the array, resetting and then reading each row in turn. In the time interval between resetting a row and reading that row, the pixels in the row integrate incident light. The exposure is
Parallel I/O: PIXCLK, FV, LV, D
OUT [11:0]
Ma x 98 Mp/s
MIPI I/O: CLK P/N,
1. Two lane data paths only 2. 98 Mp/sec
Max CLK_OP 98 Mp/s
controlled by varying the time interval between reset and readout. Once a row has been read, the signal from the column is amplified in a column amplifier and then digitized in an analogtodigital converter (ADC). The output from the ADC is a 12−bit value for each pixel in the array. The ADC output passes through a digital processing signal chain (which provides further data path corrections and applies digital gain).
www.onsemi.com
2
AR0330CS
WORKING MODES
The AR0330CS sensor working modes are specified from the following aspect ratios:
Table 3. AVAILABLE ASPECT RATIOS IN THE AR0330CS SENSOR
Aspect Ratio Sensor Array Usage
3:2 Still Format #1 2256(H) x 1504(V)
4:3 Still Format #2 2048 (H) x 1536 (V)
16:10 Still Format #3 2256 (H) x 1440 (V)
16:9 FHD Format 2304 (H) x 1296 (V)
The AR0330CS supports the following working modes. To operate the sensor at full speed 98Mp/s the sensor must
operate at fullspeed (98 Mp/s) when using the parallel interface.
use 2Lane MIPI or parallel interface. The sensor will
Table 4. AVAILABLE WORKING MODES IN THE AR0330CS SENSOR
Active
Readout
Mode Aspect Ratio
1080p + EIS 16:9 2304 x 1296 2304 x 1296 30 30 100%
3M Still
WVGA + EIS 16:9 2304 x 1296 1152 x 648 60 60 2 x 2 100%
4:3 2048 x 1536 2048 x 1536 30 25 100%
3:2 2256 x 1504 2256 x 1504 30 25 100%
Window
Sensor Output
Resolution
FPS
(2 lane MIPI,
12 bit)
FPS (Parallel
Interface)
Subsampling FOV
www.onsemi.com
3
Digital
I/O
power
1
AR0330CS
Digital
Core
1
power
PLL
power
1
Analog power
1
Analog
1
power
Master clock
(6–27MHz)
From
controller
3, 4
1.5kΩ
3, 4
VDD_IO
1.5kΩ
EXTCLK
TRIGGER
SADDR
SCLK
SDATA
RESET_BAR
TEST
VDD_IO VDD_PLLVDD
0.1 μF10 μF
VDD
VAA VAA_PIX
DATA1_P
V DD_MIPI
VDD_PLL
DATA1_N
DATA2_P
DATA2_N
CLK_P
CLK_N
To controller (MIPI serial interface)
SHUTTER
FLASH
GND AGND
D
Digital
ground
0.1 μF10 μF
10 μF
0.1 μF
Analog ground
VAA
0.1 μF10 μF
10 μF
VAA_PIX
0.1 μF
1. All power supplies must be adequately decoupled. ON Semiconductor recommends having 10 mF and 0.1 mF decoupling capacitors for every power supply. If space is a concern, then priority must be given in the following order: V
DD. Actual values and results may vary depending on layout and design considerations.
and V
AA, VAA_PIX, VDD_PLL, VDD_MIPI, VDD_IO,
2. To allow for space constraints, ON Semiconductor recommends having 0.1 mF decoupling capacitor inside the module as close to the pads as possible. In addition, place a 10 mF capacitor for each supply offmodule but close to each supply.
3. ON Semiconductor recommends a resistor value of 1.5 kW, but a greater value may be used for slower two−wire speed.
4. The pull−up resistor is not required if the controller drives a valid logic level on S
CLK at all times.
5. ON Semiconductor recommends that analog power planes are placed in a manner such that coupling with the digital power planes is minimized.
6. TEST pin must be tied to D
7. ON Semiconductor recommends that GND_MIPI be tied to D
DD_MIPI is tied to VDD_PLL in the CSP package. ON Semiconductor strongly recommends that VDD_MIPI must be connected to a
8. V
DD_PLL in a module design since VDD_PLL and VDD_MIPI are tied together in the die.
V
GND for the MIPI configuration.
GND.
9. The package pins or die pads used for the parallel interface must be left floating.
10.If the SHUTTER or FLASH pins or pads are not used, then they must be left floating.
11.If the TRIGGER or OE_BAR pin or pad is not used, then it should be tied to D
GND.
Figure 2. Typical Configuration: Serial MIPI
www.onsemi.com
4
Master clock
(6–27 MHz)
From
Controller
3, 4
AR0330CS
Digital
Digital
core
I/O
1
power
power
VDD_IO
3, 4
1.5k
1.5k
VDD
EXTCLK
OE_BAR
TRIGGER
SADDR
SCLK SDATA
RESET_BAR
TEST
PLL
GND
D
power
1
V DD_PLL
1
VDD_MIPI
Analog
Analog
1
power
power
VAA_PIX
VAA
DOUT [11:0]
PIXCLK
LINE_VALID
FRAME_VALID
FLASH
SHUTTER
AGND
1
To controller
10 μF
DD_IO VDD_PLLVDD
V
0.1 μF
10 μF
Digital
ground
10 μF
0.1 μF
10 μF
Analog ground
0.1 μF
VAA
VAA_PIX
10 μF0.1 μF
0.1 μF
12.All power supplies must be adequately decoupled. ON Semiconductor recommends having 10 mF and 0.1 mF decoupling capacitors for every power supply. If space is a concern, then priority must be given in the following order: V
AA, VAA_PIX, VDD_PLL, VDD_IO, and VDD.
Actual values and results may vary depending on layout and design considerations.
13.To allow for space constraints, ON Semiconductor recommends having 0.1 mF decoupling capacitor inside the module as close to the pads as possible. In addition, place a 10 mF capacitor for each supply offmodule but close to each supply.
14.ON Semiconductor recommends a resistor value of 1.5 kW, but a greater value may be used for slower two−wire speed.
15.The pull−up resistor is not required if the controller drives a valid logic level on S
CLK at all times.
16.ON Semiconductor recommends that analog power planes are placed in a manner such that coupling with the digital power planes is minimized.
17.TEST pin should be tied to the ground.
18.The data and clock package pins or die pads used for the MIPI interface must be left floating.
19.The V
DD_MIPI package pin and sensor die pad should be connected to a 2.8 V supply as it is tied to the VDD_PLL supply both in the
package routing and also within the sensor die itself.
20.If the SHUTTER or FLASH pins or pads are not used, then they must be left floating.
21.If the TRIGGER or OE_BAR pin or pad is not used, then it should be tied to D
GND.
Figure 3. Typical Configuration: Parallel Pixel Data Interface
www.onsemi.com
5
AR0330CS
PIN DESCRIPTIONS
Table 5. PIN DESCRIPTIONS
Name Type Description
RESET_BAR Input Asynchronous reset (active LOW). All settings are restored to factory default
EXTCLK Input Master input clock, range 6 27 MHz
TRIGGER Input Receives slave mode VD signal for frame rate synchronization and trigger to start a GRR frame
SADDR Input Twowire serial address select
SCLK Input Twowire serial clock input
TEST Input Enable manufacturing test modes. Tie to DGND for normal sensor operation
OE_BAR Input Parallel port output enable, active low
SDATA I/O Twowire serial data I/O
PIXCLK Output Pixel clock out. DOUT is valid on rising edge of this clock
DOUT[11:0] Output Parallel pixel data output
FLASH Output Flash output. Synchronization pulse for external light source. Can be left floating if not used
FRAME_VALID Output Asserted when DOUT data is valid
LINE_VALID Output LINE_VALID output asserted when DOUT data is valid
SHUTTER Output Control for external mechanical shutter. Can be left floating if not used
DATA1_P Output MIPI serial data, lane 1, differential P
DATA1_N Output MIPI serial data, lane 1, differential N
DATA2_P Output MIPI serial data, lane 2, differential P
DATA2_N Output MIPI serial data, lane 2, differential N
CLK_P Output Output MIPI serial clock, differential P
CLK_N Output Output MIPI serial clock, differential N
VDD_MIPI Power MIPI power supply
VAAHV_NPIX Power Power supply pin used to program the sensor OTPM (onetime programmable memory). This pin
VDD Power Digital power
VDD_IO Power IO supply power
VDD_PLL Power PLL power supply
DGND Power Digital GND
VAA Power Analog power
VAA_PIX Power Pixel power
AGND Power Analog GND
should be open if OTPM is not used
www.onsemi.com
6
AR0330CS
Table 6. AR0330CS CSP (PARALLEL/MIPI) PACKAGE PINOUT
1 2 3 4 5 6 7 8
A
B
C
D
E
F
G
H
22.NC = Do not connect. For manufacturing test purpose only.
VAA VAAHV_NPIX AGND NC VAA_PIX VAA VDD_IO VDD
VDD SDATA FRAME_VALID DGND AGND DGND TEST SHUTTER
SADDR FLASH LINE_VALID DGND DGND DGND TRIGGER RESET_BAR
SCLK VDD_IO DOUT10 DGND VDD_IO VDD_IO EXTCLK DATA_N
PIXCLK DOUT11 DOUT9 DOUT7 VDD_IO DGND CLK_N DATA_P
DOUT8 DOUT6 DOUT4 VDD_IO CLK_P VDD_PLL
DGND VDD DOUT5 DOUT3 DOUT1 DOUT0 DATA2_N VDD
DGND DGND DOUT2 VDD_IO VDD_MIPI DATA2_P VDD_MIPI
Table 7. AR0330SR CSP (PARALLEL) PACKAGE PINOUT
1 2 3 4 5 6 7 8
A
B
C
D
E
F
VAA VAAHV_NPIX AGND NC VAA_PIX VAA VDD_IO VDD
VDD SDATA FRAME_VALID DGND AGND DGND TEST SHUTTER
SADDR FLASH LINE_VALID DGND DGND DGND TRIGGER RESET_BAR
SCLK VDD_IO DOUT10 DGND VDD_IO VDD_IO EXTCLK
PIXCLK DOUT11 DOUT9 DOUT7 VDD_IO DGND
DOUT8 DOUT6 DOUT4 VDD_IO VDD_PLL
G
DGND VDD DOUT5 DOUT3 DOUT1 DOUT0 VDD
H
23.NC = Do not connect. For manufacturing test purpose only.
DGND DGND DOUT2 VDD_IO VDD_PLL VDD_PLL
www.onsemi.com
7
AR0330CS
GND
V
DD_IO 7
V
DD_IO 8
CLK 9
S
S
ADDR 10
EXTCLK 11
PIXCLK 12
FLASH 13
S
DATA 14
FRAME_VALID 15
LINE_VALID 16
OUT 11 17
D
DOUT10 18
6 DGND
5 DGND
4 VDD
3 VDD
2 D
1 V DD _PLL
48 AGND
47 AGND
46 VAA
45 VAA
44 VAA
43 AGND
42 AGND
41 VAA_PIX
AA_PIX
40 V
39 AGND
38 AGND
37 NC
AA HV_NPIX
36 V
35 NC
34 V
DD
33 TRIGGER
32 OE_BAR
31 TEST
OUT 9 19
D
D
D
D
OUT 4 24
D
D
OUT 5 23
OUT 6 22
OUT 7 21
OUT 8 20
TOP VIEW
Figure 4. PLCC Pinout
Table 8. AR0330CS PLCC PACKAGE THERMAL RESISTANCE
Junction to ambient air thermal resistance (qJA) (°C/W)
Junction to board thermal resistance (qJB) (°C/W)
OUT 3 25
D
D
D
D
NC 29
OUT 0 28
OUT 1 27
OUT 2 26
RESET_BAR 30
Using JEDEC 1S0P Board Using JEDEC 2S2P Board
51.47 36.92
22.16 21.73
www.onsemi.com
8
AR0330CS
SENSOR INITIALIZATION
PowerUp Sequence
The recommended power−up sequence for the AR0330CS is shown in Figure 5. The available power supplies (V must have the separation specified below.
DD
DD_IO, VDD_PLL, VDD_MIPI, VAA, VAA_PIX)
1. Turn on V
2. After 100 μs, turn on V
DD_PLL and VDD_MIPI power supplies
AA and VAA_PIX power
supply
3. After 100 μs, turn on V
4. After 100 μs, turn on V
DD power supply DD_IO power supply
5. After the last power supply is stable, enable EXTCLK
6. Assert RESET_BAR for at least 1ms
V
DD
_MIPI (2.8)
V
AA
(2.8)
AA
t
0
t
1
7. Wait 150,000 EXTCLKs (for internal initialization into software standby
8. Write R0x3052 = 0xA114 to configure the internal register initialization process
9. Write R0x304A = 0x0070 to start the internal register initialization process
10. Wait 150,000 EXTCLK periods
11. Configure PLL, output, and image settings to desired values
12. Wait 1 ms for the PLL to lock
13. Set streaming mode (R0x301A[2] = 1)
V
(1.8)
DD
V
_IO (1.8/2.8)
DD
EXTCLK
RESET_BAR
24.A software reset (R0x301A[0] = 1) is not necessary after the procedure described above since a Hard Reset will automatically triggers a software reset. Independently executing a software reset, should be followed by steps seven through thirteen above
25.The sensor must be receiving the external input clock (EXTCLK) before the reset pin is toggled. The sensor will begin an internal initialization sequence when the reset pin toggle from LOW to HIGH. This initialization sequence will run using the external input clock. Power on default state is software standby state, need to apply twowire serial commands to start streaming. Above power up sequence is a general power up sequence. For different interface configurations, MIPI, and Parallel, some power rails are not needed. Those not needed power rails should be ignored in the general power up sequence..
t
2
t
3
t
X
t
4
t
5
Software
Standby PLL Clock
t
6
Figure 5. Power Up
Table 9. POWER−UP SEQUENCE
Definition Symbol Min Ty p Max Unit
VDD_PLL, VDD_MIPI to VAA/VAA_PIX (Note 28)
VAA/VAA_PIX to VDD t1 0 100
VDD to VDD_IO t2 0 100
External clock settling time tx 30 (Note 26) ms
Hard Reset t3 1 (Note 27) ms
Internal Initialization t4 150000 EXTCLKs
Internal Initialization t5 150000 EXTCLKs
PLL Lock Time t6 1 ms
t0 0 100
ms
ms
ms
Streaming
www.onsemi.com
9
AR0330CS
26.External clock settling time is component−dependent, usually taking about 10 – 100 ms.
27.Hard reset time is the minimum time required after power rails are settled. In a circuit where Hard reset is held down by RC circuit, then the RC time must include the all power rail settle time and Xtal settle time.
28.It is critical that V others. If the case happens that V current draw on this supply.
DD_MIPI is tied to VDD_PLL in the CSP package and must be powered to 2.8 V.
29.V
PowerDown Sequence
The recommended power−down sequence for the AR0330CS is shown in Figure 6. The available power supplies (V must have the separation specified below.
1. Disable streaming if output is active by setting standby R0x301a[2] = 0
VDD_HiSPi_TX (0.4)
V
_IO (1.8/2.8)
DD
DD
DD_PLL is not powered up after the other power supplies. It must be powered before or at least at the same time as the
DD_PLL is powered after other supplies then sensor may have functionality issues and will experience high
2. The soft standby state is reached after the current row or frame, depending on configuration, has
DD_IO, VDD_PLL, VDD_MIPI., VAA, VAA_PIX)
ended
3. Turn off V
4. Turn off V
DD_IO
DD
5. Turn off VAA/VAA_PIX
V
_HiSPi (1.8)
DD
6. Turn off V
t
0
t
1
t
2
DD_PLL, VDD_MIPI
VAA_PIX, VAA (2.8)
t
3
V
DD
_MIPI (2.8)
DD
EXTCLK
t
4
Power Down until Next
Power Up Cycle
Figure 6. Power Down
Table 10. POWERDOWN SEQUENCE
Definition Symbol Minimum Typical Maximum Unit
VDD_IO t0 0
VDD_IO to VDD t1 0
VDD to VAA/VAA_PIX t2 0
VAA/VAA_PIX to VDD_PLL t3 0
PwrDn until Next PwrUp Time t4 100 ms
30.t4 is required between power down and next power up time; all decoupling caps from regulators must be completely discharged.
ms
ms
ms
ms
www.onsemi.com
10
STANDBY MODE
AR0330CS
Soft Standby
1. Disable streaming by setting standby R0x301a[2] = 0
2. Delay 10 ms
3. Stop EXTCLK; pull EXTCLK pin LOW
Hard Standby
1. Disable streaming by setting standby R0x301a[2] = 0
2. Delay 10 ms
3. Pull RESET_BAR to LOW
ELECTRICAL CHARACTERISTICS
Table 11. DC Electrical Definitions and Characteristics (MIPI Mode)
f
EXTCLK = 24 MHz; VDD = 1.8 V; VDD_IO = 1.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V;
DD_PLL = 2.8 V; Output load = 68.5 pF; T
V
Definition
Core digital voltage VDD 1.7 1.8 1.9 V
I/O digital voltage VDD_IO
Analog voltage VAA 2.76 2.8 2.9 V
Pixel supply voltage VAA_PIX 2.76 2.8 2.9 V
PLL supply voltage VDD_PLL 2.7 2.8 2.9 V
MIPI supply voltage VDD_MIPI 2.7 2.8 2.9 V
Digital operating current 114 mA
I/O digital operating current 0 mA
Analog operating current 41 mA
Pixel supply current 9.9 mA
PLL supply current 15 mA
MIPI digital operating current 35 mA
= 60°C; Data Rate = 588 Mbps; DLL set to 0; 2304 x 1296 at 30 fps
J
Symbol Min Typ Max Unit
1.7 1.8 1.9 V
2.4 2.8 3.1 V
Table 12. DC Electrical Definitions and Characteristics (Parallel Mode)
f
= 24 MHz; VDD = 1.8 V; VDD_IO = 1.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V;
EXTCLK
DD_PLL = 2.8 V; Output load = 68.5 pF; TJ = 60°C; 2304 x 1296 at 30 fps
V
Definition
Core digital voltage VDD 1.7 1.8 1.9 V
I/O digital voltage VDD_IO
Analog voltage VAA 2.76 2.8 2.9 V
Pixel supply voltage VAA_PIX 2.76 2.8 2.9 V
PLL supply voltage VDD_PLL 2.7 2.8 2.9 V
Digital operating current I(VDD) 66.5 75 mA
I/O digital operating current I(VDD_IO) 24 35 mA
Analog operating current I(VAA) 36 44 mA
Pixel supply current I(VAA_PIX) 10.5 18 mA
PLL supply current I(VDD_PLL) 6 11 mA
Symbol Min Typ Max Unit
1.7 1.8 1.9 V
2.4 2.8 3.1 V
www.onsemi.com
11
AR0330CS
Table 13. STANDBY POWER
f
= 24 MHz; VDD = 1.8 V; VDD_IO = 1.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V;
EXTCLK
DD_PLL = 2.8 V; Output load = 68.5 pF; TJ = 60°C
V
Power Typical Max Unit
Hard Standby (CLK OFF)
Soft Standby (CLK OFF)
Soft Standby (CLK ON)
Table 14. ABSOLUTE MAXIMUM RATINGS
Symbol Definition Min Max Unit
VDD_MAX Core digital voltage –0.3 2.4 V
VDD_IO_MAX I/O digital voltage –0.3 4 V
VAA_MAX Analog voltage –0.3 4 V
VAA_PIX Pixel supply voltage –0.3 4 V
VDD_PLL PLL supply voltage –0.3 4 V
VDD_MIPI MIPI supply voltage –0.3 4 V
t
ST
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
31.Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Digital 19.8 35.8
Analog 5.8 7.0
Digital 23.5 39.7
Analog 5.4 5.9
Digital 15700 16900
Analog 5.5 5.7
mA
mA
mA
mA
mA
mA
Storage temperature –40 85 °C
SCLK
DATA
SCLK
SDATA
t
t
SRTH
t
SCLK
Write Address
Bit 7
SDH
t
SDS
Write Address
Bit 0
Write Start ACK
t
SHAR
Read Address
Bit 7
Read Address
Bit 0
Read Start
Figure 7. TwoWire Serial Bus Timing Parameter
t
SHAW
ACK
tr_clk tf_clk
90%
10%
t
AHSW t
Register Address
Bit 7
t
AHSR
Register Value
Bit 7
t
SDHR
t
SDSR
Register Value
Register Value
Bit 0
Bit 0
90%
10%
STPS
tf_sdattr_sdat
t
STPH
www.onsemi.com
12
AR0330CS
Table 15. TWO−WIRE SERIAL BUS CHARACTERISTICS
f
= 27 MHz; VDD = 1.8 V; VDD_IO = 2.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V; VDD_PLL = 2.8 V; TA = 25°C
EXTCLK
Standard Mode Fast Mode
Parameter
SCLK Clock Frequency f
Symbol
SCL
Hold time (repeated) START condition
After this period, the first clock pulse is generated
LOW period of the SCLK clock t
t
HD;STA
LOW
HIGH period of the SCLK clock tHIGH 4.0 0.6
Setup time for a repeated START condi-
tSU;STA 4.7 0.6
tion
Data hold time tHD;DAT 0
Data setup time tSU;DAT 250 100
Rise time of both SDATA and SCLK signals tr 1000 20 + 0.1Cb
Fall time of both SDATA and SCLK signals tf 300 20 + 0.1Cb
Setup time for STOP condition tSU;STO 4.0 0.6 ?s
Bus free time between a STOP and START
tBUF 4.7 1.3 ?s
condition
Capacitive load for each bus line Cb 400 400 pF
Serial interface input pin capacitance C
SDATA max load capacitance C
IN_SI
LOAD_SD
SDATA pullup resistor RSD 1.5 4.7 1.5 4.7 K?
32.This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor.
33.Twowire control is I
34.All values referred to V
35. A device must internally provide a hold time of at least 300 ns for the S
36.The maximum
37.A Fastmode I
2
Ccompatible.
= 0.9 VDD and V
IHmin
t
HD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCLK signal.
2
Cbus device can be used in a Standardmode I2Cbus system, but the requirement tSU; DAT 250 ns must then be met.
= 0.1VDD levels. Sensor EXCLK = 27 MHz.
ILmax
This will automatically be the case if the device does not stretch the LOW period of the S period of the S Standardmode I
CLK signal, it must output the next data bit to the SDATA line
2
Cbus specification) before the SCLK line is released.
38.Cb = total capacitance of one bus line in pF.
Min Max Min Max
0 100 0 400 KHz
4.0 0.6
4.7 1.3
4
3.45
5
6
0
6
7
7
5
0.9
ns
300 ns
300 ns
3.3 3.3 pF
30 30 pF
DATA signal to bridge the undefined region of the falling edge of SCLK.
t
r max + tSU;DAT = 1000 + 250 = 1250 ns (according to the
CLK signal. If such a device does stretch the LOW
Unit
ms
ms
ms
ms
ms
Table 16. I/O PARAMETERS
f
EXTCLK = 24 MHz; VDD = 1.8V; VAA = 2.8 V; VAA_PIX = 2.8 V; VDD_PLL = 2.8 V; Output load = 68.5 pF; TJ = 60°C; CLK_OP = 98 MPixel/s
Symbol Definition Conditions Min Max Units
VIH Input HIGH voltage
VDD_IO = 1.8 V 1.4
VDD_IO + 0.3
VDD_IO = 2.8 V 2.4
VIL Input LOW voltage
VDD_IO = 1.8 V GND – 0.3 0.4
VDD_IO = 2.8 V GND – 0.3 0.8
IIN Input leakage current No pullup resistor; VIN = VDD OR DGND –20 20
VOH Output HIGH voltage At specified IOH VDD_IO 0.4V V
VOL Output LOW voltage At specified IOL 0.4 V
IOH Output HIGH current At specified VOH –12 mA
IOL Output LOW current At specified VOL 9 mA
IOZ Tristate output leakage current 10
www.onsemi.com
13
V
mA
mA
AR0330CS
t
EXTCLK
t
R
90 %
10 %
t
F
t
RP
90 %
10 %
t
FP
EXTCLK
t
CP
PIXCLK
t
PD
FRAME_VALID trails LINE_VALID by 16 PIXCLKs.
Data[11:0]
AME_VALID/
LINE_VALID
*PLL disabled for
t
t
CP
PD
Pxl _ 0 Pxl _ 1 Pxl _ 2 Pxl _ n
t
PFH
t
PLH
FRAME_VALID leads LINE_VALID by 609 PIXCLKs.
Figure 8. I/O Timing Diagram (Parallel Mode)
Table 17. I/O TIMING
f
EXTCLK = 24 MHz; VDD = 1.8 V; VDD_IO = 1.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V; VDD_PLL = 2.8 V;
Output load = 68.5 pF; T
Symbol
fEXTCLK Input clock frequency PLL enabled 6 24 27 MHz
tEXTCLK Input clock period PLL enabled 166 41 20 ns
tR Input clock rise time 0.1 1 V/ns
tF Input clock fall time 0.1 1 V/ns
Clock duty cycle 45 50 55 %
tJITTER Input clock jitter 0.3 ns
Output pin slew Fastest CLOAD = 15 pF 0.7 V/ns
fPIXCLK PIXCLK frequency Default 80 MHz
tPD PIXCLK to data valid Default 3 ns
tPFH PIXCLK to FRAME_VALID HIGH Default 3 ns
tPLH PIXCLK to LINE_VALID HIGH Default 3 ns
tPFL PIXCLK to FRAME_VALID LOW Default 3 ns
tPLL PIXCLK to LINE_VALID LOW Default 3 ns
= 60°C; CLK_OP = 98 MPixel/s
J
Definition Conditions Min Typ Max Units
t
PFL
t
PLL
Table 18. PARALLEL I/O RISE SLEW RATE
f
EXTCLK = 24 MHz; VDD = 1.8 V; VAA = 2.8 V; VAA_PIX = 2.8 V; VDD_PLL = 2.8 V; Output load = 68.5 pF;
= 60°C; CLK_OP = 98 MPixel/s
T
J
Parallel Slew Rate (R0x306E[15:13])
V
DD_IO
0 1 2 3 4 5 6 7
1.70V 0.069 0.115 0.172 0.239 0.325 0.43 0.558 0.836
1.80V 0.078 0.131 0.195 0.276 0.375 0.507 0.667 1.018
1.95V 0.093 0.156 0.233 0.331 0.456 0.62 0.839 1.283
2.50V 0.15 0.252 0.377 0.539 0.759 1.07 1.531 2.666
2.80V 0.181 0.305 0.458 0.659 0.936 1.347 1.917 3.497
3.10V 0.212 0.361 0.543 0.78 1.114 1.618 2.349 4.14
www.onsemi.com
14
Units
V/ns
ELECTRICAL DEFINITIONS
Figure 9 is the diagram defining differential amplitude
V
, V
OD
V
CM
Singleended signal
and rise and fall times. To measure VOD and
CM,
use the DC test circuit shown in Figure 10 and set the
V
o a
V
V
o b
Differential signal
0 V
O D_ A C
V
diff
V
OD
|V
o b
V
O D
=
– V
|
o a
AR0330CS
MIPI PHY to constant Logic 1 and Logic 0. Measure V V
and VCM with voltmeters for both Logic 1 and Logic 0.
ob
R
t
V
diff
V
O D
|V
o a
_ pkpk
– V
,
oa
V
= (V
C M
8 0%
=
|
o b
t
F
2 0%
o a
+ V
o b
) / 2
Figure 9. Single−Ended and Differential Signals
V
o a
V
V
o b
5 0 Ω
5 0 Ω
V
C M
V
Figure 10. DC Test Circuit
VOD(m) +ŤVoa(m) * Vob(m)Ťwhere ȀmȀ is either ″ 1″ for logic 1 or ″ 0″ for logic 0
V
(1) ) VOD(0)
OD
+
V
OD
V
+ VOD(1) ) VOD(0)
diff
DVOD+ŤVOD(1) * VOD(0)
2
Ť
(eq. 1)
(eq. 2)
(eq. 3)
(eq. 4)
V
(1) ) VCM(0)
CM
+
V
CM
2
www.onsemi.com
15
(eq. 5)
Loading...
+ 33 hidden pages