Omron VARISPEED F7 DATASHEET

Cat. No. I66E-EN-01
English

The Industrial Workhorse Model: CIMR-F7Z 200V Class 3-phase 0.4 to 110 kW 400V Class 3-phase 0.4 to 300 kW

Deutsch
Español
FrançaisItaliano
Português
Pyccкий
F7Z Quick Start Guide
Table of Contents
Warnings ...................................................................... EN-2
Safety Precautions and Instructions ........................................................................... EN-3
EMC Compatibility ......................................................................................................EN-4
Installation .................................................................... EN-6
Mechanical Installation ............................................................................................... EN-6
Electrical Connection .................................................................................................. EN-8
Wiring Main Circuit Inputs ........................................................................................ EN-12
Keypad Operation ...................................................... EN-14
Digital Operator Display (optional) ............................................................................ EN-14
Power Up and Basic Parameter Setup ..................... EN-15
Start Up Procedure .................................................................................................. EN-15
Before Power Up ...................................................................................................... EN-16
Display after Power Up ............................................................................................. EN-16
Autotuning ................................................................................................................ EN-16
User Parameter .......................................................... EN-18
Troubleshooting ......................................................... EN-21
General Faults and Alarms ....................................................................................... EN-21
Operator Programming Errors .................................................................................. EN-23
Autotuning Faults ..................................................................................................... EN-24
1

Warnings

The Varispeed F7 DC bus capacitor remains charged even after the power has been switched off. To avoid an electric shock hazard, disconnect the frequency inverter from the mains before carrying out maintenance. Then wait for at least 5 minutes after all LEDs have gone out. Do not perform a withstand voltage test on any part of the Varispeed. The frequency inverter contains semiconductors, which are not designed for such high voltages.
Do not remove the digital operator while the mains supply is switched on. The printed cir­cuit board must also not be touched while the inverter is connected to the power.
CAUTION
CAUTION
Cables must not be connected or disconnected, nor signal tests carried out,
while the power is switched on.
Never connect general LC/RC interference suppression filters, capacitors or overvoltage protection devices to the inverter input or output.
To avoid unnecessary overcurrent faults, etc. being displayed, the signaling contacts of any contactor or switch fitted between inverter and motor must be integrated into the inverter control logic (e.g. baseblock).
This is absolutely imperative!
This manual must be read thoroughly before connecting and operating the inverter. All safety precautions and instructions for use must be followed.
The inverter may must be operated with the appropriate line filters, following the installation instructions in this manual and with all covers closed and terminals covered. Only then will adequate protection be provided. Please do not connect or operate any equipment with visible damage or missing parts. The operating company is responsible for any injuries or equipment damage resulting from failure to heed the warnings in this manual.
EN-2

Safety Precautions and Instructions

General
Please read these safety precautions and instructions for use thoroughly before installing and oper­ating this inverter. Also read all of the warning signs on the inverter and ensure they are never dam­aged or removed.
Live and hot inverter components may be accessible during operation. Removal of housing compo­nents, the digital operator or terminal covers runs the risk of serious injuries or damage in the event of incorrect installation or operation. The fact that frequency inverters control rotating mechanical machine components can give rise to other dangers.
The instructions in this manual must be followed. Installation, operation and maintenance may only be carried out by qualified personnel. For the purposes of the safety precautions, qualified personnel are defined as individuals who are familiar with the installation, starting, operation and maintenance of frequency inverters and have the proper qualifications for this work. Safe operation of these units is only possible if they are used properly for their intended purpose.
The DC bus capacitors can remain live for about 5 minutes after the inverter is disconnected from the power. It is therefore necessary to wait for this time before opening its covers. All of the main cir­cuit terminals may still carry dangerous voltages.
Children and other unauthorized persons must not be allowed access to these inverters. Keep these Safety Precautions and Instructions for Use readily accessible and supply them to all
persons with any form of access to the inverters.
Intended Use
Frequency inverters are intended for installation in electrical systems or machinery. Their installation in machinery and systems must conform to the following product standards of the
Low Voltage Directive: EN 50178, 1997-10, Equipping of Power Systems with Electronic Devices EN 60204-1, 1997-12 Machine Safety and Equipping with Electrical Devices
Part 1: General Requirements (IEC 60204-1:1997)/ Please note: Includes Corrigendum of September 1998
EN 61010-1, A2, 1995 Safety Requirements for Information Technology Equipment
(IEC 950, 1991 + A1, 1992 + A2, 1993 + A3, 1995 + A4, 1996, modified)
CE marking is carried out to EN 50178, using the line filters specified in this manual and following the appropriate installation instructions.
Transportation and storage
The instructions for transportation, storage and proper handling must be followed in accordance with the technical data.
Installation
Install and cool the inverters as specified in the documentation. The cooling air must flow in the specified direction. The inverter may therefore only be operated in the specified position (e.g. upright). Maintain the specified clearances. Protect the inverters against impermissible loads. Com­ponents must not be bent nor insulation clearances changed. To avoid damage being caused by static electricity, do not touch any electronic components or contacts.
EN-3
Electrical Connection
Carry out any work on live equipment in compliance with the national safety and accident prevention regulations. Carry out electrical installation in compliance with the relevant regulations. In particular, follow the installation instructions ensuring electromagnetic compatibility (EMC), e.g. shielding, grounding, filter arrangement and laying of cables. This also applies to equipment with the CE mark. It is the responsibility of the manufacturer of the system or machine to ensure conformity with EMC limits.
Your supplier or Omron Yaskawa Motion Control representative must be contacted when using leak­age current circuit breaker in conjunction with frequency inverters.
In certain systems it may be necessary to use additional monitoring and safety devices in compli­ance with the relevant safety and accident prevention regulations. The frequency inverter hardware must not be modified.
Notes
The Varispeed F7 frequency inverters are certified to CE, UL, and cUL

EMC Compatibility

Introduction
This manual was compiled to help system manufacturers using OMRON YASKAWA Motion Control (OYMC) frequency inverters design and install electrical switch gear. It also describes the measures necessary to comply with the EMC Directive. The manual's installation and wiring instructions must therefore be followed.
Our products are tested by authorized bodies using the standards listed below. Product standard: EN 61800-3:1996
EN 61800-3; A11:2000
Measures to Ensure Conformity of OYMC Frequency inverters to the EMC Directive
OYMC frequency inverters do not necessarily have to be installed in a switch cabinet. It is not possible to give detailed instructions for all of the possible types of installation. This manual
therefore has to be limited to general guidelines. All electrical equipment produces radio and line-borne interference at various frequencies. The
cables pass this on to the environment like an aerial. Connecting an item of electrical equipment (e.g. drive) to a supply without a line filter can therefore
allow HF or LF interference to get into the mains. The basic countermeasures are isolation of the wiring of control and power components, proper
grounding and shielding of cables. A large contact area is necessary for low-impedance grounding of HF interference. The use of
grounding straps instead of cables is therefore definitely advisable. Moreover, cable shields must be connected with purpose-made ground clips.
EN-4
Laying Cables
Measures Against Line-Borne Interference: Line filter and frequency inverter must be mounted on the same metal plate. Mount the two compo-
nents as close to each other as possible, with cables kept as short as possible. Use a power cable with well-grounded shield. For motor cables up to 50 meters in length use
shielded cables. Arrange all grounds so as to maximize the area of the end of the lead in contact with the ground terminal (e.g. metal plate).
Shielded Cable:
Use a cable with braided shield.
Ground the maximum possible area of the shield. It is advisable to ground the shield by connect-
ing the cable to the ground plate with metal clips (see following figure).
Ground Clip
Fig 1 Earthing the cable shield with metal clips
The grounding surfaces must be highly conductive bare metal. Remove any coats of varnish and paint.
– Ground the cable shields at both ends. – Ground the motor of the machine.
Ground Plate
EN-5

Installation

Mechanical Installation

Unpacking the Inverter
Check the following items after unpacking the inverter.
Item Method
Has the correct Inverter model been delivered?
Is the Inverter damaged in any way?
Are any screws or other components loose?
If any irregularities in the above items are found, contact the agency from which the Inverter was pur­chased or your Omron Yaskawa Motion Control representative immediately.
Checking the Installation Site
Protection covers are attached to the top and bottom of the NEMA 1 / IP20 Inverters. Be sure to remove the top cover before operating a 200 or 400 V Class Inverter with a capacity of 18.5 kW or less inside a panel.
Observe the following precautions when mounting the Inverter:
Install the Inverter in a clean location which is free from oil mist and dust. It can be installed in a
totally enclosed panel that is completely shielded from floating dust.
When installing or operating the Inverter, always take special care so that metal powder, oil,
water, or other foreign matter does enter the Inverter.
Do not install the Inverter on combustible material, such as wood.
Install the Inverter in a location free from radioactive materials and combustible materials.
Install the Inverter in a location free from harmful gasses and liquids.
Install the Inverter in a location without excessive oscillation.
Install the Inverter in a location free from chlorides.
Install the Inverter in a location without direct sunlight.
Check the model number on the nameplate on the side of the Inverter. Inspect the entire exterior of the Inverter to see if there are any scratches or other damage resulting from shipping.
Use a screwdriver or other tools to check for tightness.
EN-6
Installation Orientation
Install the Inverter vertically so as not to reduce the cooling effect. When installing the Inverter, always provide the following installation space to allow normal heat dissipation.
A
30mm min.
50mm
min.
Horizontal Space
30mm min.
B
Air
120mm min.
Air
Vertical Space
Fig 2 Installation space
1. The same space is required horizontally and vertically for IP00, IP20 and NEMA 1 Inverters.
2. Always remove the top protection cover after installing an Inverter with an output of 18.5 kW or less in a panel.
IMPORTANT
IMPORTANT
Always provide enough space for suspension eye bolts and the main circuit lines when installing an Inverter with an output of 22 kW or more in a panel.
Installation of Inverters and EMC filters
For an EMC rules compliant installation consider the following points:
Use a line filter.
Use shielded motor cables.
Mount the inverter and filter on a
grounded cunductive plate.
Remove any paint or dirt before mount-
ing the parts in order to reach the low­est possible grounding impedance.
A B
200V class inverter, 0.55 to 90 kW 400V class inverter, 0.55 to 132 kW
200V class inverter, 110 kW 400V class inverter, 160 to 220 kW
50 mm 120 mm
120 mm 120 mm
400V class inverter, 300 kW 300 mm 300 mm
PEL1L2
L3
Ground Bonds Remove any paint!
PE
Line
Inverter
Filter
Fig 3 EMC filter installation
Cable Lenght as short as possible
Grounded Metal Plate
Load
GND
Ground Bonds Remove any paint!
L2
V
GND
W
U
L1
L3
Screened Motor cable
M ~3
EN-7

Electrical Connection

Wiring the Inverter
Main Contactor
T
Fuses
PE
L1 L2 L3
Line
Filter
3-phase power
380 to 480 V
50/60 Hz
DC reactor to improve input
power factor (optional)
Short-circuit bar
R/L1 S/L2 T/L3
2
Varispeed F7
Braking resistor unit (optional)
1
B1
B2
U/T1 V/T2
W/T3
M
Multi-function
digital inputs
[Factory setting]
Forward Run / Stop
Reverse Run / Stop
External Fault
Fault reset
Multi-step speed setting 1
Multi-step speed setting 2
Jog frequency selection
Analog input setting
adjustment
0 to 10 V
2 k
4 to 20 mA
MEMOBUS
communication
RS-485/422
S1
S2
S3
S4
S5
S6
S7
SN
SC
SP
24 V
E(G)
Shield terminal
Pulse train input [Default:
RP
Frequency reference input] 0 to 32 kHz
+V
Analog input power supply
2 k
PP
15 V, 20 mA
Analog input 1: Master
A1
frequency reference 0 to 10 V (20 k
Multi-function analog input 2
A2
[Default: Frequency bias 4 to 20 mA (20 k
AC
-V
Analog input power supply
-15 V, 20 mA
Ω)
Ω)]
0 V
Input
Option
Card
R+
P
R-
S+
P
S-
IG
2CN
Terminating
resistance
Option
Shield
terminal
2CN
PG
Card
MA
Fault relay output
MB
250 VAC, 1 A max. 30 VDC, 1 A max.
MC
M1
M2
M3
M4
M5
Relay output 3 [Default:
M6
Frequency agree 1]
E(G)
MP
AC
FM
AM
AC
Relay output 1 [Default: Running]
Relay output 2 [Default: Zero speed]
Pulse train output 0 to 32 kHz (2.20 k [Default: Output frequency]
Adjustment, 20 k
+
FM
Adjustment, 20 k
+
AM
Multi-function digital output 250 VAC, 1 A max. 30 VDC, 1 A max.
Ω)
-
Multi-function analog output 1 (-10 to +10 V, 2 mA / 4 to 20 mA) [Default: Output frequency, 0 to 10 V) 4 to 20 mA (20 k
-
Multi-function analog output 2 (-10 to +10 V, 2 mA / 4 to 20 mA) [Default: Output current, 0 to 10 V) 4 to 20 mA (20 k
Ω)]
Ω)]
EN-8
Shielded wires
Fig 4 Wiring Diagram
Twisted-pair
P
shielded wires
Main Circuit Terminals
Main circuit terminal functions are summarized according to terminal symbols in Ta b l e 1 . Wire the terminals correctly for the desired purposes.
Table 1 Main Circuit Terminal Functions (200 V Class and 400 V Class)
Purpose Terminal Symbol
Main circuit power input
Inverter outputs U/T1, V/T2, W/T3 20P4 to 2110 40P4 to 4300 DC bus terminals Braking Resistor Unit Connec-
tion DC reactor connection
Braking Unit connection Ground 20P4 to 2110 40P4 to 4300
R/L1, S/L2, T/L3 20P4 to 2110 40P4 to 4300 R1/L11, S1/L21, T1/L31 2022 to 2110 4022 to 4300
1,
B1, B2 20P4 to 2018 40P4 to 4018
1, 2 3,
Model: CIMR-F7Z
200 V Class 400 V Class
20P4 to 2110 40P4 to 4300
20P4 to 2018 40P4 to 4018 2022 to 2110 4022 to 4300
Control Circuit Terminals
Fig 5 shows the control terminal arrangement. The functions of the control circuit terminals are
shown in Tabl e 2 . Use the appropriate terminals for the correct purposes.
Fig 5 Control terminal arrangement
Table 2 Control Circuit Terminals with default settings
Ty p e No. Signal Name Function Signal Level
S1 Forward run/stop command
S2 Reverse run/stop command
S3
External fault input
S4
Fault reset
*1
Multi-step speed reference 1
*1
S5
(Master/auxiliary switch) Multi-step speed reference 2
S6
Digital input signals
*1
S7
Jog frequency reference
*1
Forward run when ON; stopped when OFF.
Reverse run when ON; stopped when OFF.
Fault when ON. Reset when ON
Auxiliary frequency ref­erence when ON.
Multi-step speed 2 when ON.
Jog frequency when
*1
ON.
Functions are selected by set­ting H1-01 to H1-05.
24 VDC, 8 mA Photocoupler isolation
SC Digital input common – SN Digital Input Neutral
SP Digital Input Power Supply +24VDC power supply for digital inputs
24 VDC, 250 mA max.
*2
+V 15 V power output 15 V power supply for analog references 15 V (Max. curr.: 20mA)
A1 Frequency reference 0 to +10 V/100%
Auxiliary Frequency Refer-
A2
ence
Auxiliary analog fre­quency reference; 4 to 20 mA (250Ω)
Function is selected by set­ting H3-09.
–10 to +10 V (20 kΩ) 0 to +10 V (20 kΩ)
4 to 20 mA (250 Ω) 0 V to +10 V (20 kΩ) 0 to 20 mA (250 Ω)
-V –15 V power output –15 V power supply for analog references
AC Analog reference common
Analog input signals
Shield wire, optional ground
E(G)
line connection point
––
EN-9
Ty p e No. Signal Name Function Signal Level
M1
During run (NO) Closed during Run
M2 M3
M4
M5 M6 MA
Digital output signals
MB
Zero speed (NO)
Speed agreement detection (NO)
Fault output signal
Closed when output frequency at zero level (b2-01) or below
Within ± 2 Hz of set fre­quency when ON
Closed across MA and MC during faults Open across MB and MC during faults
Function selected by H2-01 to H2-03
Relay contacts Contact capacity: 1 A max. at 250 VAC
1 A max. at 30 VDC
MC
FM Output frequency
AC Analog common
AM Inverter output power
Analog output signals
Analog output fre­quency signal; 0 to 10 V; 10V=FMAX
Analog output power signal; 0 to 10V; 10V=max. appl. motor capacity
Function selected by H4-01
Function selected by H4-04
0 to +10 V max. ±5% 2 mA max.
–10 to +10 V max. ±5% 2 mA max
4 to 20 mA
0 to 32 kHz (3kΩ)
*4
RP Pulse Input
H6-01 (Frequency reference input)
High level voltage 3.5 to
13.2 V
Pulse I/O
MP Pulse Output H6-06 (Output frequency)
R+
MEMOBUS communications input
R-
S+
MEMOBUS communications output
S-
RS-485/422
For 2-wire RS-485, short R+ and S+ as well as R- and S-.
0 to 32 kHz +15 V output (2.2kΩ)
Differential input, PHC isolation
Differential input, PHC isolation
IG Signal common
*1. The default settings are given for terminals S3 to S7. For a 3-wire sequence, the default settings are a 3-wire sequence for S5, multi-
step speed setting 1 for S6 and multi-step speed setting 2 for S7. *2. Do not use this power supply for supplying any external equipment. *3. When driving a reactive load, such as a relay coil with DC power supply, always insert a flywheel diode as shown in Fig 6 *4. Pulse input specifications are given in the following table:
Low level voltage 0.0 to 0.8 V High level voltage 3.5 to 13.2 V H duty 30% to 70% Pulse frequency 0 to 32 kHz
*3
EN-10
IMPORTANT
Flywheel diode
The rating of the flywheel diode must
External power: 30 VDC max.
Coil
1 A max.
be at least as high as the circuit volt­age.
Fig 6 Flywheel Diode Connection
1. In Fig 4 the wiring of the digital inputs S1 to S7 is shown for the connection of contacts or NPN transis­tors (0V common and sinking mode). This is the default setting. For the connection of PNP transistors or for using a 24V external power supply, refer to Ta b l e 3 .
2. A DC reactor is an option only for Inverters of 18.5 kW or less. Remove the short circuit bar when con­necting a DC reactor.
Sinking/Sourcing Mode (NPN/PNP Selection)
Int
(PNP)
Ext
(PNP)
The input terminal logic can be switched over between sinking mode (0-V common, NPN) and sourcing mode (+24V common, PNP) by using the jumper CN5. An external power supply is also supported, providing more freedom in signal input methods.
Table 3 Sinking / Sourcing Mode and Input Signals
Internal Power Source - Sinking Mode (NPN)
ernal Power Source - Sourcing Mode
External Power Source - Sinking Mode (NPN)
External +24 V
ernal Power Source - Sourcing Mode
External +24 V
EN-11

Wiring Main Circuit Inputs

Installing Fuses
To protect the inverter, it is recommended to use semiconductor fuses like they are shown in the table below.
Table 4 Input Fuse Selection
Rated Inverter
Inverter Type
20P4 3.2 240 10 12~25 A60Q12-2 600V / 12A 17 20P7 4.1 240 10 12~25 A60Q12-2 600V / 12A 17 21P5 7.0 240 15 23~55 A60Q15-2 600V / 15A 26 22P2 9.6 240 20 34~98 A60Q20-2 600V / 20A 41 23P7 15 240 30 82~220 A60Q30-2 600V / 30A 132 25P5 23 240 40 220~610 A50P50-4 500V / 50A 250 27P5 31 240 60 290~1300 A50P80-4 500V / 80A 640 2011 45 240 80 450~5000 A50P80-4 500V / 80A 640 2015 58 240 100 1200~7200 A50P125-4 500V / 125A 1600 2018 71 240 130 1800~7200 A50P150-4 500V / 150A 2200 2022 85 240 150 870~16200 A50P150-4 500V / 150A 2200 2030 115 240 180 1500~23000 A50P200-4 500V / 200A 4000 2037 145 240 240 2100~19000 A50P250-4 500V/ 250A 6200 2045 180 240 300 2700~55000 A50P300-4 500V / 300A 9000 2055 215 240 350 4000~55000 A50P350-4 500V / 350A 12000 2075 283 240 450 7100~64000 A50P450-4 500V / 450A 20000 2090 346 240 550 11000~64000 A50P600-4 500V / 600A 36000 2110 415 240 600 13000~83000 A50P600-4 500V / 600A 36000
Output
Current (A)
Voltage (V) Current (A)
Fuse Selection Selection Example (Ferraz)
I2t (A2s)
Model Rating
I2t (A2s)
40P4 1.8 480 5 6~55 A60Q10-2 600V / 10A 10 40P7 2.1 480 5 6~55 A60Q10-2 600V / 10A 10 41P5 3.7 480 10 10~55 A60Q12-2 600V / 12A 17 42P2 5.3 480 10 18~55 A60Q15-2 600V / 15A 26 43P7 7.6 480 15 34~72 A60Q20-2 600V / 20A 41 44P0 8.7 480 20 50~570 A60Q30-2 600V / 30A 132 45P5 12.5 480 25 100~570 A60Q30-2 600V / 30A 132 47P5 17 480 30 100~640 A60Q30-2 600V / 30A 132 4011 24 480 50 150~1300 A70P50-4 700V / 50A 300 4015 31 480 60 400~1800 A70P70-4 700V / 70A 590 4018 39 480 70 700~4100 A70P80-4 700V / 80A 770 4022 45 480 80 240~5800 A70P80-4 700V / 80A 770 4030 60 480 100 500~5800 A70P100-4 700V / 100A 1200 4037 75 480 125 750~5800 A70P125-4 700V / 125A 1900 4045 91 480 150 920~13000 A70P150-4 700V / 150A 2700 4055 112 480 150 1500~13000 A70P200-4 700V / 200A 4800 4075 150 480 250 3000~55000 A70P250-4 700V / 250A 7500 4090 180 480 300 3800~55000 A70P300-4 700V / 300A 11000 4110 216 480 350 5400~23000 A70P350-4 700V / 350A 15000 4132 260 480 400 7900~64000 A70P400-4 700V / 400A 19000 4160 304 480 450 4185 370 480 600 4220 506 480 700 4300 675 480 900
14000~250000 20000~250000 34000~400000 52000~920000
A70P450-4 700V / 450A 24000 A70P600-4 700V / 600A 43000 A70P700-4 700V / 700A 59000 A70P900-4 700V / 900A 97000
Consider the following precautions for the main circuit power supply input.
If a moulded case circuit breaker is used for the power supply connection (R/L1, S/L2, and T/L3),
ensure that the circuit breaker is suitable for the Inverter.
If an earth leakage breaker is used, it should be able to detect all kinds of current in order to
ensure a safe earth leakage current detection
EN-12
A magnetic contactor or other switching device can be used at the inverter input. The inverter
should not be powered up more than once per hour.
The input phases (R/S/T) can be connected in any sequence.
If the Inverter is connected to a large-capacity power transformer (600 kW or more) or a phase
advancing capacitor is switched nearby, an excessive peak current could flow through the input power circuit, causing an inverter damage. As a countermeasure install an optional AC Reactor at the inverter input or a DC reactor at the DC reactor connection terminals.
Use a surge absorber or diode for inductive loads near the Inverter. Inductive loads include mag-
netic contactors, electromagnetic relays, solenoid valves, solenoids, and magnetic brakes.
Wiring the Output Side of the Main Circuit
The following precautions should be considered for the output circuit wiring.
Never connect any power source to the inverter output terminals. Otherwise the inverter can be
damaged.
Never short or ground the output terminals. Otherwise the inverter can be damaged.
Do not use phase correction capacitors. Otherwise the inverter and capacitors can be damaged.
Check the control sequence to make sure, that the magnetic contactor (MC) between the Inverter
and motor is not turned ON or OFF during inverter operation. If the MC is turned ON during the Inverter is operation, a large inrush current will be created and the inverter’s overcurrent protec­tion may operate.
Ground Connection
The following precautions should be considered for the ground connection.
Do not share the ground wire with other devices, such as welding machines or power tools.
Always use a ground wire, that complies with technical standards on electrical equipment and
minimize the length of the ground wire. Leakage current is caused by the Inverter. Therefore, if the distance between the ground elec­trode and the ground terminal is too long, potential on the ground terminal of the Inverter will become unstable.
When more than one Inverter is used, do not to loop the ground wire.
OK
Fig 7 Ground Wiring
NO
Control Circuit Wiring Precautions
Consider the following precautions for wiring the control circuits.
Separate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, B1, B2, U/T1,
V/T2, W/T3, B1, B2, , 1, 2, and 3, PO, NO) and other high-power lines.
Separate wiring for control circuit terminals MA, MB, MC, M1 to M6 (relay outputs) from wiring to
other control circuit terminals.
If an optional external power supply is used, it should be a UL Listed Class 2 power supply.
Use twisted-pair or shielded twisted-pair cables for control circuits to prevent operating faults.
Ground the cable shields with the maximum contact area of the shield and ground.
Cable shields have to be grounded on both cable ends.
EN-13

Keypad Operation

Digital Operator Display (optional)

The key names and functions of the Digital Operator are described below
Drive Mode Indicators FWD: Lights up when a forward run command is
REV: Lights up when a reverse run command is
SEQ: Lights up when any other run command
REF: Lights up when any other frequency reference
ALARM: Lights up when an error or alarm has
Data Display Displays monitor data, parameter numbers, and set­tings.
Mode Display (displayed at the upper left of the data display DRIVE: Lights up in Drive Mode.
QUICK: Lights up in Quick Programming Mode. ADV: Lights up in Advanced Programming Mode. VERIFY: Lights up in Verify Mode. A. TUNE: Lights up in Autotuning Mode.
input.
input.
source than the Digital Operator is selected.
source than the Digital Operator is selected.
occurred.
Digital Operator Keys
Key Name Function
LOCAL/REMOTE Key
MENU Key Selects the modes.
ESC Key Returns to the status before the DATA/ENTER Key was pressed.
JOG Key
FWD/REV Key
Shift/RESET Key
Increment Key
Decrement Key
Keys
Execute operations such as setting user parameters, monitoring, jogging, and autotuning.
Switches between operation via the Digital Operator (LOCAL) and the settings in b1-01 and b1-02 (REMOTE). This key can be enabled or disabled by setting parameter o2-01.
Enables jog operation when the Inverter is being operated from the Digital Operator.
Selects the rotation direction of the motor when the Inverter is being operated from the Digital Operator.
Sets the active digit when programming user parameters. Also acts as the Reset key when a fault has occurred.
Selects user parameter numbers and increments parameter set­tings. Used to move to the next item or data. Selects user parameter numbers and decrements parameter set­tings. Used to move to the previous item or data.
EN-14
DATA/ENTER Key Enters menus and parameters and validates parameter settings.
RUN Key
STOP Key
Starts operation when the Inverter is being controlled by the Digital Operator (LOCAL Mode).
Stops Inverter operation (LOCAL and REMOTE Mode). This key can be enabled or disabled when operating from a source different tan the operator by setting parameter o2-02.

Power Up and Basic Parameter Setup

Start Up Procedure

START
Installation
Wiring
Set power supply
voltage jumper *1
Turn ON power
Confirm status
Select control
method.
Settings according
to control mode
Basic settings
(Quick programming mode)
V/f control
YES
PG?
NO
V/f control
Set E1-03. V/f default: 200V/50Hz (400V/50Hz)
Non-rotating autotuning
for line-to-line resistance
Application settings
(Advanced programming mode)
No-load
operation
Loaded
operation
Optimum adjustments
and parameter settings
Check/record
parameter settings
END
NO
YES
Vector Control (A1-02 = 2 or 3) *5
V/f Control with PG (A1-02 = 1
Set E1-03, E2-04 and F1-01. *2 V/f default: 200V/50Hz (400V/50Hz)
Motor
operation possible
during autotuning?
*3
YES
*4
Rotating
autotuning
*6
NO
Non-rotating
autotuning
*6
1.Set for 400 V Class Inverter for 75 kW or more.
2.If there is a reduction gear between the motor and PG, set the reduction ratio in F1-12 and F1-13 in advanced programming mode.
3.Use rotational autotuning to increase autotuning accuracy whenever it is okay for the motor to be operated.
4.If the motor cable changes to 50 m or longer for the actual installation, perform non-rotating autotuning for the line-to-line resistance only on site.
5.The default control mode is Open Loop Vector control (A1-02=2).
6.If the maximum output frequency and the base frequency are different, set the maximum output frequency (E1-04) after autotuning.
Fig 8 Trial Operation Flowchart
EN-15

Before Power Up

The following points should be checked carefully before the power is switched on.
Check if the power supply meets the inverter specification.
Check if the power supply cables are tightly connected to the right terminals (L1, L2, L3).
Check if the motor cables are tightly connected to the right terminals on the inverter side (U, V,
W) as well as on the motor side.
Check if the braking unit / braking resistor is connected correctly.
Check if the Inverter control circuit terminal and the control device are wired correctly.
Set all Inverter control circuit terminals to OFF.
When a PG card is used, check if it is wired correctly.

Display after Power Up

After normal power up without any problems the operator display shows the following messages
Display for normal operation
-DRIVE-
Frequency Ref
U1- 01=50.00Hz
U1-02=50.00Hz U1-03=10.05A
Rdy
The frequency reference monitor is dis­played in the data display section.
When a fault has occurred or an alarm is active a fault or alarm message will appear. In this case, refer to page 21, Troubleshooting.
Display for fault operation
-DRIVE-
UV
DC Bus Undervolt
A fault or alarm message is shown on the display. The example shows a low voltage alarm.

Autotuning

Autotuning sets motor parameters automatically when using Open Loop or Closed Loop Vector con­trol, when the cable length is long or the installation has changed.
Setting the Autotuning Mode
One of the following three autotuning modes can be set.
Rotating autotuning
Non-rotating autotuning
Non-rotating autotuning for line-to-line resistance only
EN-16
Rotating Autotuning (T1-01 = 0)
Rotating autotuning is used for Open Loop and Closed Loop Vector control only. Set T1-01 to 0, input the data from the motor nameplate, and then press the RUN key on the Digital Operator. The Inverter will operate the motor for approximately 1 minute and set the required motor parameters automatically.
Non-rotating Autotuning (T1-01 = 1)
Non-rotating autotuning is used for Open Loop and Closed Loop Vector control only. Set T1-01 to 1, input the data from the motor nameplate, and then press the RUN key on the Digital Operator. The inverter will supply power to the non-rotating motor for approximately 1 minute and some of the
motor parameters will be set automatically. The remaining motor parameters will be set automati­cally during the first time operation.
Non-rotating Autotuning for Line-to-Line Resistance (T1-01 = 2)
Non-rotating autotuning for line-to-line resistance can be used in any control mode. This is the only possible autotuning for V/f control and V/f control with PG.
It can be used to improve the performance when the motor cable is long, the cable length has changed or when the motor and inverter have different capacities.
To perform autotuning in V/f control or V/f control with PG, set T1-02 (Motor rated power) and T1-04 (Motor rated current) and then press the RUN key on the Digital Operator. The Inverter will supply power to the non-rotating motor for approximately 20 seconds and the Motor line-to-line resistance and cable resistance will be automatically measured.
1. Power will be supplied to the motor during autotuning but the motor will not turn. Do not touch the motor until autotuning has been completed.
IMPORTANT
2. Ensure that all motor contactors are closed before the autotuning is started.
3. To cancel autotuning press the STOP key on the Digital Operator.
Other Alarms and Faults During Autotuning
For an overview of possible autotuning alarms or faults and corrective actions refer to page 24, Auto-
tuning Faults.
EN-17

User Parameter

Param-
eter
Num-
ber
Name Description
Initialize Data
Language selection for Digital Opera-
A1-00
tor dis­play(JVOP­160-OY only)
Parameter
A1-01
access level
Control method
A1-02
selection
A1-03 Initialize
0:English
2:German 3:French 4:Italian 5:Spanish 6:Portuguese
0:Monitoring only (Monitoring drive
mode and setting A1-01 and A1-04.)
1:Used to select user parameters (Only
parameters set in A2-01 to A2-32 can be read and set.)
2:Advanced
(Parameters can be read and set in both, quick programming mode (Q) and advanced programming mode (A).
0:V/f control
1:V/f control with PG 2:Open loop vector control 3:Closed loop vector control
0: No initializing 1110: Initializes using the user
parameters
2220: Initializes using a two-wire
sequence. (Initializes to the factory setting.)
3330: Initializes using a three-wire
sequence.
Sequence / Reference Source
Sets the frequency reference input method.
0:Digital Operator
1:Control circuit terminal (analog input) 2:Serial communication (RS422 / 485) 3:Option Card
Sets the run command input method.
0:Digital Operator
1:Control circuit terminal (digital inputs) 2:Serial communication (RS422 / 485) 3:Option Card
Selects the stopping method when the Run signal is removed
0:Deceleration to stop
1:Coast to stop 2:DC injection to stop 3:Coast to stop with timer (New Run
commands are disregarded while coasting.)
0:Reverse enabled
1:Reverse disabled 2:Output Phase Rotation (both rota-
tional directions are enabled)
3:Output Phase Rotation with Reverse
disabled.
b1-01
b1-02
b1-03
b1-04
Reference source selec­tion
RUN com­mand source selection
Stopping method selec­tion
Prohibition of reverse opera­tion
Acceleration / Deceleration Settings
C1-

Acceleration/ Deceleration times
Sets the time to accelerate/decelerate from 0 Hz to the maximum output fre­quency.
S-Curve Settings
C2-

S-curve char­acteristic time at acceleration
Sets the S-curve characteristic at accel­eration start and end.
Param-
eter
Num-
ber
Name Description
Motor Slip Compensation (not available in V/f with PG)
Used to improve speed accuracy
• Increase if output frequency is too low
• Decrease if output frequency is too high.
Sets the slip compensation delay time
• Increase if output frequency is not stable
• Decrease setting when slip compen­sation responsiveness is low.
C3-01
C3-02
Slip compensa­tion gain
Slip compensa­tion delay time (only available in V/f and OLV)
Speed Control (ASR) (only available in V/f with PG and CLV)
C5-01
C5-02
C5-03
C5-04
C5-06
C5-07
C5-08
ASR propor­tional gain 1
ASR integral time 1
ASR propor­tional gain 2
ASR integral time 2
ASR delay time (only CLV)
ASR switching frequency (only CLV)
ASR integral limit (only CLV)
Sets the proportional gain of the speed loop (ASR)
Sets the integral time of the speed loop (ASR)
P,I
0 E1-04
Sets the ASR filter time constant.
Sets the frequency for switching between ASR gain 1, 2 and ASR integral time 1, 2
Sets the limit for the integral part of the ASR controller.
P=C5-01 I=C5-02
P=C5-03 I=C5-04
Motor speed (Hz)
Carrier Frequency
C6-01
C6-02
Heavy/Normal duty selection
Carrier fre­quency selec­tion
0:Heavy Duty
1:Normal Duty 1 2:Normal Duty 2
Selects the carrier frequency (factory setting depends on Inverter capacity)
0: Low noise, low carrier
1: 2.0 kHz 2: 5.0 kHz 3: 8.0 kHz 4: 10.0 kHz 5: 12.5 kHz 6: 15.0 kHz F: Programmable pattern
Speed Settings
Multi speed
d1-01
to
references 1 to
d1-16
d1-17
16 Jog frequency
reference
Sets the multi-step speed references.
Torque Control (only available in CLV)
d5-01
d5-06
Torque control selection
Speed/torque control switch over timer
0:Speed control
1:Torque control Sets the delay from inputting a “speed/
torque control change” signal (by digital input) until the control is acutally changed
V/f Pattern Settings
E1-01
Input voltage setting
This setting is used as a reference value for protection functions.
EN-18
Param-
eter
Num-
ber
E1-04
E1-05
E1-06
E1-13
Name Description
Max. output frequency (FMAX)
Max. output voltage (VMAX)
Base fre­quency (FA)
Base Voltage (VBASE)
Motor Data Settings
Motor rated
E2-01
current Motor rated
E2-02
slip Motor no-load
E2-03
current Number of
E2-04
motor poles Motor
E2-09
mechanical losses
Motor rated
E2-11
output power
PG Option Setup
F1-01 PG constant
F1-05 PG rotation
Digital I/O Settings
Terminal S3 to
H1-01
S7 function
to
H1-05
selection Terminal M1-
H2-01
M2 and M3-
and
M4 function
H2-02
selection
Analog I/O Settings
Analog input
H3-08
A2 signal level selection
Analog input
H3-09
A2 function selection.
Output Voltage (V)
Frequency (Hz)
To set V/f characteristics in a straight line, set the same values for E1-07 and E1-09. In this case, the setting for E1-08 will be disregarded. Always ensure that the four frequen­cies are set in the following order: E1-04 (FMAX) E1-06 (FA) > E1-07 (FB) E1-09 (FMIN)
Sets the motor data.
Sets the number of PG pulses per revolution
0:Phase A leads with forward run
command
1:Phase B leads with forward run
command
Refer to page 20, Digital Input Func-
tion Selections (H1-01 to H1-05) for a
list of selections
Refer to page 20, Digital Output Func-
tion Selections for a list of selections
Selects the signal level input at multi­function analog input A2.
0:0 to +10 V (11 bit).
1:-10 to +10 V 2:4 to 20 mA (9-bit input). Ensure to switch S1-2 to “V” before
using a voltage input.
Selects the multi-function analog input function for terminal A2.
Param-
eter
Num-
ber
H3-13
H4-01
H4-04
Name Description
Terminal A1/ A2 switching
Terminal FM monitor selec­tion
Terminal AM monitor selec­tion
Pulse Train I/O
Pulse train
H6-01
input function selection
Pulse train
H6-02
input scaling
Pulse train
H6-06
monitor selec­tion
Pulse monitor
H6-07
scaling
Stall Prevention
Stall preven­tion selection during accel
L3-01
(not available in CLV)
Stall preven-
L3-04
tion selection during decel
Fault Restart
Number of
L5-01
auto restart attempts
Auto restart
L5-02
operation selection
Selects on which terminal the main frequency reference can be input.
0:Use analog input 1 on terminal
A1 for main frequency reference.
1:Use analog input 2 on terminal A2
for main frequency reference.
Sets the number of the monitor item to be output (U1-) at terminal FM/AM.
Selects the pulse train input function
0:Frequency reference
1:PID feedback value 2:PID target value
Sets the number of pulses in Hz that is equivalent to 100% of the input item selected in H6-01.
Selects the pulse train monitor output item (U1-)
Sets the number of pulses output in Hz when the monitor item is 100%.
0:Disabled (Acceleration as set.
With a heavy load, the motor may stall.)
1:Enabled (Acceleration stopped
when L3-02 level is exceeded. Acceleration starts again when the current has fallen below the stall prevention level).
2:Intelligent acceleration mode (Using
the L3-02 level as a basis, accelera­tion is automatically adjusted. Set acceleration time is disregarded.)
0:Disabled (Deceleration as set. If
deceleration time is too short, a DC bus overvoltage may result.)
1:Enabled (Deceleration is stopped
when the DC bus voltage exceeds the stall prevention level. Decelera­tion restarts when the voltage falls below the stall prevention level again.)
2:Intelligent deceleration mode
(Deceleration rate is automatically adjusted so that the Inverter can decelerate in the shortest possible time. The set deceleration time is disregarded.)
3:Enabled with braking resistor
Sets the number of auto restart attempts. Automatically restarts after a fault and conducts a speed search from the run frequency.
Sets whether a fault relay is activated during fault restart.
0:No output (Fault relay is not acti-
vated.)
1:Output (Fault relay is activated.)
EN-19
Param-
o
eter
Num-
ber
Name Description
Torque Limit (only OLV and CLV)
L7-01
L7-02
L7-03
L7-04
Forward drive torque limit
Reverse drive torque limit
Forward regenerative torque limit
Reverse regenerativ torque limit
Sets the torque limit vlaue as a per­centage of the motor rated torque. Four individual regions can be set.
Reverse
Output torque
Regen.
Monitor Data
U1-01 Frequency reference in Hz / rpm U1-02 Output frequency in Hz / rpm U1-03 Output current in A U1-06 Output voltage in VAC U1-07 DC bus voltage in VDC U1-08 Output power in kW U1-09 Torque reference
Shows input ON/OFF status.
U1-10 =
Input terminal
U1-10
status
Shows output ON/OFF status.
U1-11 =
Output termi-
U1-11
nal status
Inverter operating status.
U1-12 =
Operation
U1-12
status
U1-13 Cumulative operation time in hrs. U1-21 ASR input U1-22 ASR output U1-34 OPE fault parameter U1-40 Cooling fan operating time in hrs.
Positive torque
No. motor rotations
Regen.
Negative torque
Forward
1: FWD command (S1) is ON 1: REV command (S2) is ON 1: Multi input 1 (S3) is ON 1: Multi input 2 (S4) is ON 1: Multi input 3 (S5) is ON 1: Multi input 4 (S6) is ON 1: Multi input 5 (S7) is O N
1: Multi-function contact output 1 (M1-M2) is ON 1: Multi-function contact output 2 (M3-M4) is ON 1: Multi-function contact output 3 (M5-M6) is ON Not used (Always 0). 1: Error output (MA/MB-MC) is ON
Run
1: Zero speed
1: Reverse
1: Reset signal input
1: Speed agree
1: Inverter ready
1: Minor fault
1: Major fault
Param-
eter
Num-
ber
Name Description
Fault Trace Data
U2-01 Current fault U2-02 Last fault U2-03 Reference frequency at fault U2-04 Output frequency at fault U2-05 Output current at fault U2-07 Output voltage reference at fault U2-08 DC bus voltage at fault U2-09 Output power at fault U2-11 Input terminal status at fault U2-12 Output terminal status at fault U2-13 Operation status at fault U2-14 Cumulative operation time at fault
Fault History Data
U3-01
to
Last fault to fourth last fault
U3-04 U3-05
to
Cumulative operation time at fault 1 to 4
U3-08 U3-09
to
Fifth last to tenth last fault
U3-14 U3-15
to
Accumulated time of fifth to tenth fault
U3-20 * The following faults are not recorded in the error log:
CPF00, 01, 02, 03, UV1, and UV2.
Digital Input Function Selections (H1-01 to H1-05)
3 Multi-step speed reference 1 4 Multi-step speed reference 2 5 Mulit-step speed reference 3
Jog frequency command (higher priority than multi-
6
step speed reference)
7 Accel/decel time selection 1
F Not used (Set when a terminal is not used) 14 Fault reset (Reset when turned ON) 19 PI control disable
External fault; Input mode: NO contact/NC contact,
20 to
2F
Detection mode: Normal/during operation 71 Speed/torque control change (ON: Torque control) 77 Speed control (ASR) gain switching (ON: C5-03)
Digital Output Function Selections (H2-01 and H2-02
During run 1 (ON: run command is ON or voltage is
0
being output)
Inverter operation ready; READY: After initialization or
6
no faults
F Not used. (Set when the terminal is not used.) 10 Minor fault (Alarm) (ON: Alarm displayed) 1A During reverse run (ON: During reverse run)
Motor overload (OL1, including OH3) pre-alarm (ON:
1F
90% or more of the detection level) During torque limit (current limit) (ON: During torque
30
limit) Activated if the ASR is operating for torque limit. The
32
ASR output becomes the torque reference, the motor is rotating at the speed limit.
EN-20

Troubleshooting

General Faults and Alarms

Faults and Alarms indicate unsusal inverter / application conditions. An alarm does not necessarily switch off the inverter but a message is displayed on the keypad (i.e.
a flashing alarm code) and an alarm output can be generated at the multi-function outputs (H2-01 and H2-02) if programmed. An alarm automatically disappears if the alarm condition is not present anymore.
A fault switches the inverter output off immediately, a message is displayed on the keypad and the fault output is switched. The fault must be reset manually after the cause and the RUN signal have been removed.
The following table shows a list of faults and alarms with their corrective actions.
Display
BUS
Option Com Err
CF
Out of Control
CPF00
COM-
ERR(OP&INV)
CPF01
COM-
ERR(OP&INV)
CPF02
BB Circuit Err
CPF03
EEPROM Error
CPF04
INternal A/D Err
DEV
Speed Deviation
EF
External Fault
EF0
Opt External Flt
EFx
Ext Fault Sx
Ext Run Active
Cannot Reset
GF
Ground Fault
Alarm Fault

Meaning Corrective Actions
Option Card Communication Alarm After initial communication was established, the connection was lost.
Control Fault A torque limit was reached continuously for 3 seconds or longer during a deceleration stop in Open Loop Vector control
Digital Operator Communication Fault 1/2
• Communication fault between Operator and Inverter
• CPU External RAM Fault
CPF02 Fault Baseblock circuit error
CPF03 EEPROM error
CPF04 CPU Internal A/D Converter Fault
F1-04 = 0, 1 or 2 and A1-02 = 1 or 3 The speed deviation has been greater than the setting in F1-10 for a time longer than the setting F1-11.
F1-04 = 3 and A1-02 = 1 or 3 The speed deviation has been greater than the setting in F1-10 for a time longer than the setting F1-11.
Forward/Reverse Run Commands Input Together Both the forward and the reverse run commands are input simultaneously for 500ms or more. This alarm stops the motor.
External fault input from Communications Option Card
External fault at terminal Sx (x stands for termi­nals S3 to S7)
Detected after a fault when a RESET command is input while the RUN command is still active
Ground Fault The ground current at the Inverter output exceeded 50% of the Inverter rated output cur­rent and L8-09=1 (Enabled).
Check the connections and all user-side soft­ware configurations.
Check the motor parameters
• Disconnect the Digital Operator and then connect it again.
• Cycle the Inverter power supply.
• Replace the Inverter.
• Perform an initialization to factory defaults.
• Cycle the Inverter power supply.
• Replace the Inverter.
• Reduce the load.
• Lengthen the acceleration and deceleration time
• Check the mechanical system
• Check the settings of F1-10 and F1-11
• Check the sequence and if the brake is opened when the inverter starts to increase the speed.
Check external sequence logic, so that only one input is activated at a time.
• Check for an external fault condition.
• Verify the parameters.
• Verify communication signals
Eliminate the cause of the external fault con­dition.
Remove the RUN signal first and reset the error.
• Remove the motor and run the Inverter without the motor.
• Check the motor for a phase to ground short.
• Check the output current with a clampmeter to verify the DCCT reading.
• Check the control sequence for wrong motor contactor signals.
EN-21
Display
OC
Over Current
OH
Heatsnk Overtemp
OH1
Heatsink Max Temp
OL1
Motor Overload
OL2
Inv Overload
OS
Overspeed Det.
OV
DC Bus Overvolt
PF
Input Phase Loss
PGO
PG Open
Alarm Fault
(only in
stop
condi-
tio)
Meaning Corrective Actions
Over Current The Inverter’s output current exceeded the over­current detection level.
Heatsink Overheat L8-03 = 0,1 or 2 and the temperature of the Inverter's cooling fin exceeded the L8-02 value.
Inverter's Cooling Fan Stopped L8-03 = 3 or 4 and the temperature of the
Inverter's cooling fin exceeded the L8-02 value. Heatsink Overheat
The temperature of the Inverter’s heatsink exceeded 105 °C.
Inverter’s Cooling Fan Stopped
Motor Overload Detected when L1-01 is set to 1,2 or 3 and the Inverter’s I²t value exceeded the motor overload curve. The overload curve is adjustable using parame­ter E2-01 (Motor Rated Current), L1-01 (Motor Pro­tection Selection) and L2-02 (Motor Protection Time Constant)
Inverter Overload The Inverter output current exceeded the Invert­ers’s overload capability
F1-03 = 0, 1 or 2 and A1-02 = 1 or 3 The motor speed feedback (U1-05) exceeded the setting in F1-08 for a time longer than the setting of F1-09
F1-03 = 3 and A1-02 = 1 or 3 The motor speed feedback (U1-05) exceeded the setting in F1-08 for a time longer than the setting of F1-09
The DC bus voltage has exceeded the overvolt­age detection level. Default detection levels are: 200 V class: 410 VDC 400 V class: 820 VDC
Input Phase Loss Too big DC bus voltage ripple. Only detected when L8-05=1 (enabled)
PG Disconnection Detected when F1-02 = 0, 1 or 2 and A1-02 = 1 or 3. Detected when no PG (encoder) pulses have been received for a time longer than the setting in F1-14.
PG Disconnection Detected when F1-02 = 3 and A1-02 = 1 or 3. PG (encoder) pulses have not been received for a time longer than the setting in F1-14.
• Remove the motor and run the Inverter without the motor.
• Check the motor for a phase-to-phase short.
• Verify the accel/decel times (C1-).
• Check the Inverter for a phase-to-phase short at the output.
• Check for dirt build-up on the fans or heat­sink.
• Reduce the ambient temperature around the drive.
• Replace the cooling fan(s).
• Check for dirt build-up on the fans or heat­sink.
• Reduce the ambient temperature around the drive.
• Replace the cooling fan(s).
• Recheck the cycle time and the size of the load as well as the accel/decel times (C1-).
• Check the V/f characteristics (E1-).
• Check the setting of Motor Rated Current Setting (E2-01).
• Recheck the cycle time and the size of the load as well as the accel/decel times (C1-).
• Check the V/f Characteristics (E1-).
• Check if the inverter rated current matches the motor rated current.
• Adjust the ASR settings in the C5 parame­ter groupt
• Check the reference circuit and reference gain.
• Check the settings in F1-08 and F1-09
• Increase the deceleration time (C1-02/04) or connect a braking option.
• Check the power supply and decrease the voltage to meet the inverter’s specifica­tions.
• Check the braking chopper / resistor.
• Tighten the input terminal screws
• Check the power supply voltage
• Fix the broken/disconnected wiring.
• Supply power to the PG properly.
• Check the sequence and if the brake is opened when the inverter starts to increase the speed.
EN-22
Display
PUF
DC Bus Fuse Open
RR
DynBrk Transistr
UV1
DC Bus Undervolt
UV2
CTL PS Undervolt
Alarm Fault
(only in
stop
condi-
tio)
Meaning Corrective Actions
DC Bus Fuse Open The fuse in the main circuit is blown. Warning: PG (encoder) pulses have not been received for a time longer than the setting in F1-14.
Dynamic Braking Transistor The built-in dynamic braking transistor failed
The DC bus voltage is below the Undervoltage Detection Level (L2-05). The default settings are: 200V class: 190 VDC 400 V class: 380 VDC
Main Circuit MC Operation Failure No MC response during Inverter operation.
Control Power Supply Undervoltage Undervoltage of the control circuit while the Inverter was running.
• Check the motor and the motor cables for short circuits or insulation failures (phase­to-phase).
• Replace the inverter after correcting the fault.
• Cycle power to the inverter.
• Replace the inverter.
• Check the input voltage.
• Check the wiring of the input terminals.
• Check the input voltage and the wiring of the input terminals.
• Extend the settings in C1-01/03
Replace the Inverter.
• Remove all connection to the control termi­nals and cycle the power to the Inverter.
• Replace the Inverter.

Operator Programming Errors

An Operator Programming Error (OPE) occurs when two or more parameter related to each other are set inappropriately or an individual parameter setting is incorrect. The Inverter does not operate until the parameter setting is corrected; however, no other alarm or fault output will occur. If an OPE occurs, change the related parameter by checking the cause shown in the table below. When an OPE error is displayed, press the ENTER key to see U1-34 (OPE Detected). This monitor displays the parameter that is causing the OPE error.
Display Meaning Corrective Actions
OPE01
kVA Selection
OPE02
Limit
OPE03
Terminal
OPE05
Sequence Select
OPE06
PG Opt Missing
Inverter kVA Setting Error Enter the correct kVA setting in o2-04.
Parameter setting is out of its range Verify the parameter settings.
One of the following errors has been made in the multi­function input (H1-01 to H1-05) settings:
• Duplicate functions were selected.
• UP/DOWN Command(10 and 11) were not selected simultaneously.
• The up/down commands (10 and 11) and Accel/ Decel Ramp Hold (A) were selected at the same time.
• More than one of the Speed Search inputs (61, 62,
64) were set simultaneously.
• External Baseblock NO (8) and External Baseblock NC (9) were selected at the same time.
• The up/down commands (10 and 11) were selected while PID Control was enabled.
• The Emergency Stop Command NO (15) and NC(17) are set simultaneously.
• PID is enabled and UP and/or DOWN (10 / 11) com­mand are set.
• HSB (68) and KEB (65/66) command are set simulta­neously.
RUN/Reference Command Selection Error The Reference Source Selection b1-01 and/or the RUN Source Selection parameter b1-02 are set to 3 (option board) but no option board is installed.
Control Method Selection Error One of the control methods needing a PG feedback was selected (A1-02 = 1 or 3), but a PG option board is not installed.
Verify the parameter settings in H1-
• Verify that the board is installed. Remove the power supply and re-install the option board again
• Recheck the setting of b1-01 and b1-02
Verify the control method selection in parameter A1-02 and/or the installation of the PG option board.
EN-23
Display Meaning Corrective Actions
Function Selection Error
OPE08
Constant Selection
OPE010
V/f Ptrn Setting
A setting has been made that is applicable with the cur­rent control method. Example: A function used only with open loop vector control was selected for V/f control.
V/f Parameter Setting Error
Verify the control method and the function.
Check parameters (E1-). A frequency/voltage value may be set higher than the maximum frequency/voltage.

Autotuning Faults

Autotuning faults are shown below. When the following faults are detected, the fault is displayed on the digital operator and the motor coasts to stop. No fault or alarm outputs will be operated.
Display Meaning Corrective Actions
• Check the input data.
Er-01
Fault
Er-02
Minor Fault
Er-03
STOP key
Er-04
Resistance
Er-05
No-Load Current
Er-08
Rated slip
Er-09
Accelerate
Er-11
Motor Speed
Er-12
I-det. Circuit
Er-13
Leakage Induc-
tance Fault
End-1
V/f Over Setting
End-2
Saturation
End-3
Rated FLA Alm
Motor data fault
Alarm
STOP key input -
Line-to-Line Resistance Fault Autotuning result is outside the parameter setting range.
No-Load Current Fault Autotuning result is outside the parameter setting range.
Rated Slip Fault Autotuning result is outside the parameter setting range.
Acceleration Fault (Rotating autotuning only) The motor did not accelerate in the specified time (C1-10+10sec.)
Motor Speed Fault (Rotating autotuning only) The torque reference exceeded 100% during accel­eration. Deteceted only when A1-02 = 2 or 3 (Vector control modes).
Current Detection Fault
• The current exceeded the motor rated current.
• Any of U/T1, V/T2 and W/T3 has open-phase. Leakage Inductance Fault
Autotuning result is outside the parameter setting range.
Rated Current Setting Alarm Displayed after auto-tuning is complete During auto-tuning, the measured value of motor rated current (E2-01) was higher than the set value.
Motor Core Saturation Alarm (only for rotating autotuning)
Rated Current Setting Alarm During autotuning the measured value of motor rated current (E2-01) was greater than the set value.
• Check the Inverter and motor capacity.
• Check the motor rated current and no-load current set­ting.
• Check the input data.
• Check wiring and the machine.
• Check the load.
• Check the input data.
• Check the motor wiring.
• If the motor is connected to the machine, disconnect it.
• If the setting of T1-03 is higher than the Inverter input power supply voltage (E1-01), change the input data.
• Increase C1-01(Acceleration time)
• Increase L7-01 and L7-02 (Torque limits)
• If the motor is connected to the machine, disconnect it.
• If the motor is connected to the machine, disconnect it.
• Increase C1-01
• Check the input data (particularly the number of PG pulses and the number of motor poles)
Check wiring of the Inverter and the mounting.
Check motor wiring.
Check the motor rated current value.
• Check the input data
• Check the motor wiring.
• If the motor is connected to the machine, disconnect it.
Check the motor rated current value
EN-24
F7Z Kurzanleitung
Inhaltsverzeichnis
Warnhinweise ............................................................... DE-2
Sicherheitshinweise und Anleitungen ......................................................................... DE-3
Elektromagnetische Verträglichkeit ............................................................................ DE-4
Installation .................................................................... DE-6
Mechanische Installation ............................................................................................ DE-6
Elektrischer Anschluss ............................................................................................... DE-8
Verdrahtung der Spannungsversorgung .................................................................. DE-12
Bedienung über die Tastatur .................................... DE-14
Digitale Bedienkonsole (optional) ............................................................................. DE-14
Einschalten und Grundparameter-Einstellungen ... DE-15
Inbetriebnahme ........................................................................................................ DE-15
Vor dem Einschalten ................................................................................................. DE-16
Anzeige nach dem Einschalten ................................................................................ DE-16
Autotuning ................................................................................................................ DE-16
Anwenderparameter .................................................. DE-18
Fehlerbehebung .........................................................DE-21
Allgemeine Fehler und Alarme .................................................................................DE-21
Fehler bei der Programmierung durch den Anwender ............................................. DE-23
Autotuning-Fehler ..................................................................................................... DE-24
1

Warnhinweise

Solange die Versorgungsspannung eingeschaltet ist, dürfen weder Kabel an- oder
abgeklemmt werden, noch dürfen Signalprüfungen durchgeführt werden.
Der Zwischenkreis des Varispeed F7 bleibt auch dann geladen, wenn die Spannungsversorgung unterbrochen wurde. Trennen Sie den Frequenzumrichter vor Ausführung von Wartungsarbeiten von der Spannungsversorgung, um einen elektrischen Schlag zu vermeiden. Warten Sie anschließend mindestens 5 Minuten, bis alle LEDs erloschen sind. Führen Sie an keinem Teil des Varispeed Spannungsfestigkeitstests durch. Der Frequenzumrichter enthält Halbleiter, die für derart hohe Spannungen nicht ausgelegt sind.
Die digitale Bedienkonsole darf nicht bei eingeschalteter Spannungsversorgung abgebaut werden. Berühren Sie keine Platinen, wenn der Frequenzumrichter an die Spannungsversorgung angeschlossen ist.
ACHTUNG
ACHTUNG
Schließen Sie niemals LC/RC-Entstörfilter, Kondensatoren oder Überspannungsschutzgeräte an den Ein- oder Ausgang des Frequenzumrichters an, die nicht speziell für den Frequenzumrichter vorgesehen sind.
Um unnötige Überstromfehler usw. zu vermeiden, müssen die Signalkontakte aller Schütze oder Schalter, die zwischen Frequenzumrichter und Motor geschaltet sind, in die Steuerungslogik (z. B. Endstufensperre) eingebunden sein.
Das ist zwingend erforderlich!
Dieses Handbuch muss vor Anschluss und Inbetriebnahme des Frequenzumrichters sorgfältig durchgelesen werden. Alle Sicherheitshinweise und Anleitungen müssen beachtet werden.
Der Frequenzumrichter muss gemäß Installationsanleitungen in diesem Handbuch mit geeigneten Netzfiltern betrieben werden. Zudem müssen alle Abdeckungen geschlossen und alle Klemmen abgedeckt sein. Nur dann ist ein angemessener Schutz gesichert. Geräte mit sichtbaren Beschädigungen oder fehlenden Teilen dürfen nicht angeschlossen oder in Betrieb genommen werden. Der Betreiber der Geräte ist für alle Verletzungen oder Geräteschäden verantwortlich, die aus Nichtbeachtung der Warnhinweise in diesem Handbuch entstehen.
DE-2

Sicherheitshinweise und Anleitungen

Allgemein
Lesen Sie diese Sicherheitshinweise und Anleitungen vor Installation und Inbetriebnahme dieses Frequenzumrichters. Lesen Sie auch alle Warnhinweise, die auf dem Frequenzumrichter angebracht sind, und achten Sie darauf, dass diese nicht beschädigt oder entfernt werden.
Während des Betriebs können unter Spannung stehende oder heiße Bauteile zugänglich sein. Durch Entfernen von Verkleidungsteilen, der digitalen Bedienkonsole oder Klemmenabdeckungen besteht im Falle einer fehlerhaften Installation oder Bedienung das Risiko von ernsthaften Verletzungen. Durch die Tatsache, dass Frequenzumrichter drehende mechanische Teile von Maschinen steuern, können weitere Gefahren entstehen.
Den Anleitungen in diesem Handbuch muss Folge geleistet werden. Installation, Bedienung oder Wartung darf nur durch qualifiziertes Personal erfolgen. Aus Sicherheitsgründen sind als qualifizierte Mitarbeiter nur solche anzusehen, die mit der Installation, dem Starten, der Bedienung und der Wartung von Frequenzumrichtern vertraut sind und für diese Arbeiten entsprechende Qualifikationen besitzen. Ein sicherer Betrieb dieser Geräte ist nur möglich, wenn diese auch für den vorgesehenen Zweck eingesetzt werden.
Der Zwischenkreis kann nach Abschalten der Versorgungsspannung des Frequenzumrichters noch ca. 5 Minuten lang unter Spannung stehen. Aus diesem Grund muss diese Zeitspanne vor dem Öffnen von Geräteabdeckungen abgewartet werden. Alle Klemmen des Hauptstromkreises können noch gefährliche Spannungen führen.
Kinder und andere nicht autorisierte Personen dürfen keinen Zugang zu Frequenzumrichtern haben. Bewahren Sie diese Sicherheitshinweise und Anleitungen griffbereit auf, und lassen Sie sie allen
Personen zukommen, die Zugang zu den Frequenzumrichtern haben.
Vorgesehener Verwendungszweck
Frequenzumrichter sind für den Einbau in elektrische Systeme oder Maschinen gedacht. Ihr Einbau in Maschinen oder Systeme muss folgenden Produktstandards der Niederspannungs-
richtlinie entsprechen: EN 50178, 1997-10, Ausrüstung von Starkstromanlagen mit elektronischen Betriebsmitteln EN 60204-1, 1997-12 Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen
Teil 1: Allgemeine Anforderungen (IEC 60204-1: 1997)/ Bitte beachten Sie Folgendes: Enthält Ergänzungen von September 1998
EN 61010-1, A2, 1995 Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und
Laborgeräte (IEC 950, 1991 + A1, 1992 + A2, 1993 + A3, 1995 + A4, 1996, modifiziert)
Die CE-Kennzeichnung erfolgt gemäß EN 50178 bei Verwendung der in diesem Handbuch spezifizierten Netzfilter und dem Befolgen der entsprechenden Installationsanleitungen.
Transport und Lagerung
Die Anleitungen für Transport, Lagerung und richtige Handhabung müssen unter Beachtung der technischen Daten befolgt werden.
Installation
Installieren und kühlen Sie Frequenzumrichter wie in der Dokumentation spezifiziert. Die Kühlluft muss in der angegebenen Richtung strömen. Der Frequenzumrichter darf dementsprechend nur in der spezifizierten Position (z. B. aufrecht) betrieben werden. Halten Sie die angegebenen Freiräume ein. Schützen Sie die Frequenzumrichter vor unzulässigen Lasten. Bauteile dürfen nicht verbogen werden. Isolationsabstände dürfen nicht geändert werden. Berühren Sie keine elektronischen Bauteile oder Kontakte, um Beschädigungen durch statische Elektrizität zu vermeiden.
DE-3
Elektrischer Anschluss
Führen Sie jegliche Arbeiten an unter Spannung stehenden Geräten gemäß der gültigen Sicherheits- und Unfallverhütungsvorschriften durch. Führen Sie die elektrische Installation in Übereinstimmung mit den geltenden Vorschriften durch. Insbesondere müssen Sie die Anweisungen zur Sicherstellung der elektromagnetischen Verträglichkeit (EMV), z. B. Abschirmung, Erdung, Filteranordnung und Verlegung von Kabeln, beachten. Das gilt auch für Geräte, die das CE­Zeichen tragen. Es liegt in der Verantwortung des Herstellers von System oder Maschine, die Konformität mit den EMV-Richtlinien zu gewährleisten.
Wenden Sie sich an Ihren Lieferanten oder die Omron Yaskawa Motion Control-Vertretung, wenn Fehlerstrom-Schutzschalter in Verbindung mit Frequenzumrichtern Verwendung finden.
Für bestimmte Systeme kann es erforderlich sein, gemäß den gültigen Sicherheits- und Unfallverhütungsvorschriften zusätzliche Überwachungs- und Sicherheitseinrichtungen zu verwenden. An der Hardware des Frequenzumrichters dürfen keine Änderungen vorgenommen werden.
Hinweise
Die Frequenzumrichter Varispeed F7 sind gemäß CE, UL und cUL zertifiziert.

Elektromagnetische Verträglichkeit

Einführung
Dieses Handbuch wurde erstellt, um Systemhersteller, die OMRON YASKAWA Motion Control (OYMC)-Frequenzumrichter verwenden, bei der Konstruktion und Installation von elektrischen Schaltgeräten zu unterstützen. Zudem werden die zur Einhaltung der EMV-Richtlinie erforderlichen Maßnahmen beschrieben. Die Anleitungen zur Installation und Verdrahtung in diesem Handbuch müssen deshalb befolgt werden.
Unsere Produkte sind durch autorisierte Stellen unter Anwendung der nachstehend aufgelisteten Normen getestet.
Produktnorm: EN 61800-3:1996
EN 61800-3; A11:2000
Maßnahmen zur Sicherstellung der Konformität von OYMC-Frequenzumrichtern mit
der EMV-Richtlinie
OYMC-Frequenzumrichter müssen nicht unbedingt in einem Schaltschrank eingebaut werden. Detaillierte Anleitungen für alle möglichen Installationsarten können nicht gegeben werden. Dieses
Handbuch muss daher auf allgemeine Leitlinien begrenzt bleiben. Alle elektrischen Geräte produzieren Funkstörungen und leitungsgeführte Störungen mit
unterschiedlichen Frequenzen. Die Kabel leiten diese Störungen wie eine Antenne an die Umgebung weiter.
Der Anschluss eines elektrischen Geräts (z. B. Frequenzumrichter) ohne Netzfilter an ein Stromnetz kann deshalb bewirken, dass HF- oder NF-Störungen in das Stromnetz gelangen.
DE-4
Die grundlegenden Gegenmaßnahmen sind die räumliche Trennung der Kabel von Steuer- und Leistungskomponenten, ordnungsgemäße Erdung sowie die Abschirmung von Kabeln.
Für eine Niedrigimpedanz-Erdung von HF-Störungen ist eine große Kontaktfläche erforderlich. Die Verwendung von Erdungsbändern anstelle von Kabeln wird ausdrücklich empfohlen.
Des weiteren müssen Kabelabschirmungen mit entsprechenden Erdungsschellen verbunden werden.
Verlegen von Kabeln
Maßnahmen gegen leitungsgebundene Störungen: Netzfilter und Frequenzumrichter müssen auf dieselbe Metallplatte montiert werden. Montieren Sie die
beiden Bauteile so nah wie möglich nebeneinander, und halten Sie die Kabel so kurz wie möglich. Verwenden Sie ein Netzkabel mit gut geerdeter Abschirmung. Verwenden Sie ein abgeschirmtes
Motorkabel. Ordnen Sie alle Erdungen so an, dass die Fläche des Kabelendes, die mit der Erdungsklemme in Kontakt ist (z. B. Metallplatte), möglichst groß ist.
Abgeschirmtes Kabel:
Verwenden Sie ein Kabel mit geflochtener Abschirmung.
Erden Sie die größtmögliche Fläche der Abschirmung. Es ist ratsam, die Abschirmung durch
Verbinden des Kabels mit der Erdungsplatte durch Metallschellen (siehe nachfolgende Abbildung) zu erden.
Erdungsschelle
Abb 1 Erdung der Kabelabschirmung mit Metallschellen
Die Erdungsflächen müssen aus hoch leitfähigem, blankem Metall bestehen. Entfernen Sie Lack- und Farbbeschichtungen.
– Erden Sie die Kabelabschirmungen an beiden Enden. – Erden Sie den Motor an der Maschine.
Erdungsplatte
DE-5
Loading...
+ 139 hidden pages