Nokia 6150 Service Manual 03sys

PAMS Technical Documentation
NSM–1 Series Transceivers
System Module
Original 10/98
NSM–1
PAMS
System Module

CONTENTS

Transceiver NSM–1 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mode Description 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interconnection Diagram 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Description 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External and Internal Connectors 3–8. . . . . . . . . . . . . . . . . . . . .
System Connector Contacts 3–9. . . . . . . . . . . . . . . . . . . . . . .
RF Connector Contacts 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltages and Power Consumtion 3–10. . . . . . . . . . . .
Power Distribution Diagram 3–11. . . . . . . . . . . . . . . . . . . . . . .
Baseband Module 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Summary 3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bottom Connector External Contacts 3–14. . . . . . . . . . . . . . .
Bottom Connector Signals 3–14. . . . . . . . . . . . . . . . . . . . . . . .
Battery Connector 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIM Card Connector 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Microphone 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infrared Module Connections 3–17. . . . . . . . . . . . . . . . . . . . . .
RTC Backup Battery 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buzzer 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Power Distribution 3–19. . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery charging 3–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Startup Charging 3–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Overvoltage Protection 3–21. . . . . . . . . . . . . . . . . . . .
Battery Removal During Charging 3–22. . . . . . . . . . . . . . . . . .
Different PWM Frequencies ( 1Hz and 32 Hz) 3–23. . . . . . .
Battery Identification 3–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Temperature 3–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Voltage Regulators 3–25. . . . . . . . . . . . . . . . . . . . . . . .
Switched Mode Supply VSIM 3–27. . . . . . . . . . . . . . . . . . . . . .
Power Up 3–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up with a charger 3–28. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up With The Power Switch (PWRONX) 3–28. . . . . . .
Power Up by RTC 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Up by IBI 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acting Dead 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Mode 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sleep Mode 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charging 3–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Off 3–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Documentation
Page 3–2
PAMS
NSM–1
Technical Documentation
Watchdog 3–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio control 3–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Audio Connections 3–32. . . . . . . . . . . . . . . . . . . . . . .
Analog Audio Accessory Detection 3–33. . . . . . . . . . . . . . . . .
Headset Detection 3–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Audio Connections 3–34. . . . . . . . . . . . . . . . . . . . . . . .
4–wire PCM Serial Interface 3–34. . . . . . . . . . . . . . . . . . . . . . .
Alert Signal Generation 3–35. . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Control 3–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAD2 3–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memories 3–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program Memory 3–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SRAM Memory 3–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Memory 3–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Map 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Programming 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COBBA–GJ 3–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infrared Transceiver Module 3–47. . . . . . . . . . . . . . . . . . . . . . .
Real Time Clock 3–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RTC backup battery charging 3–48. . . . . . . . . . . . . . . . . . . . . .
Vibra Alerting Device 3–48. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IBI Accessories 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phone Power–on by IBI 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . .
IBI power–on by phone 3–49. . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Module 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF block 3–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Ratings 3–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Frequency Plan 3–52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3–53. . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regulators 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control Signals 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency synthesizers 3–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3–58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC strategy 3–61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC function 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver blocks 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX interstage filter GSM 3–62. . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX interstage filter DCS1800 3–62. . . . . . . . . . . . . . . . . . . . . . . .
GSM UHF–mixer in CRFU3 3–62. . . . . . . . . . . . . . . . . . . . . . . . .
DCS1800 UHF–mixer in CRFU3 3–63. . . . . . . . . . . . . . . . . . . . .
Transmitter Blocks 3–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX interstage filter GSM 3–63. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module
Page 3–3
NSM–1
PAMS
System Module
TX interstage filter DCS1800 3–63. . . . . . . . . . . . . . . . . . . . . . . .
Power amplifier MMIC GSM 3–63. . . . . . . . . . . . . . . . . . . . . . . . .
Power amplifier MMIC DCS1800 3–63. . . . . . . . . . . . . . . . . . . . .
Synthesizer blocks 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VHF VCO 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF PLL 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF PLL block in SUMMA 3–64. . . . . . . . . . . . . . . . . . . . . . . . . .
UHF VCO module 3–64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF local signal input in CRFU3 3–65. . . . . . . . . . . . . . . . . . . . .
Connections 3–65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF connector and antenna switch 3–65. . . . . . . . . . . . . . . . . . . .
Timings 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer control timing 3–70. . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter power switching timing diagram 3–72. . . . . . . . . . .
Synthesizer clocking 3–72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts list of UG3 (EDMS Issue 6.3) Code: 0201113 3–73. . . . . . . . . .
Technical Documentation
Parts list of UG3MA (EDMS Issue 1.1) Code: 0201380 3–83. . . . . .
Schematic Diagrams: UG3
Block Diagram of Baseband (Version 2.1 Edit 98) layout version 9.1 UG3/A3–1
Block Diagram of COBBA, CCONT and MAD UG3/A3–2. . . . . . . . . . . . . . .
Circuit Diagram of Power Supply (Version 2.2 Edit 295) layout 10.3 UG3/A3–3. Circuit Diagram of SIM Connector (Version 2.2 Edit 97) layout 10.3 UG3/A3–4 Circuit Diagram of CPU Block (Version 2.2 Edit 200) layout 10.3 UG3/A3–5. . Circuit Diagram of Audio (Version 2.2 Edit 155) layout 10.3 UG3/A3–6. . Circuit Diagram of IR Module (Version 2.2 Edit 126) for layout 10.3 UG3/A3–7
RF Block Diagram UG3/A3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of RF Block (Version 2.2 Edit 382) for layout 10.3 UG3/A3–9. Circuit Diagram of UIF (Version 2.2 Edit 124) for layout 10.3 UG3/A3–10.
Layout Diagram of UG3 – Top (Version 10.3) UG3/A3–11. . . . . . . . . . . . . . .
Layout Diagram of UG3 – Bottom (Version 10.3) UG3/A3–11. . . . . . . . . . . .
Testpoint references UG3/A3–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 3–4
PAMS
NSM–1
Technical Documentation
Schematic Diagrams: UG3MA
Block Diagram of Baseband (Version 2.1 Edit 98) layout 9.1 UG3MA/A3–1.
Block Diagram of COBBA, CCONT and MAD UG3MA/A3–2. . . . . . . . . . . . . . .
Circuit Diagram of Power Supply (V. 2.31 Edit 299) layout 10.4 UG3MA/A3–3 Circuit Diagram of SIM Connector (V. 2.31 Edit 99) layout 10.4 UG3MA/A3–4 Circuit Diagram of CPU Block (V. 2.31 Edit 203) layout 10.4 UG3MA/A3–5. . Circuit Diagram of Audio (Version 2.31 Edit 155) layout 10.4 UG3MA/A3–6. Circuit Diagram of IR Module (V. 2.31 Edit 128) layout 10.4 UG3MA/A3–7. . .
RF Block Diagram UG3MA/A3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of RF Block (V. 2.31 Edit 309) layout 10.4 UG3MA/A3–9. . . .
Circuit Diagram of UIF (Version 2.31 Edit 126) layout 10.4 UG3MA/A3–10. . .
System Module
Layout Diagram of UG3MA – Top (Version 10.4) UG3MA/A3–11. . . . . . . . . . . .
Layout Diagram of UG3MA – Bottom (Version 10.4) UG3MA/A3–11. . . . . . . . .
Testpoint references UG3MA/A3–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page 3–5
NSM–1
PAMS
System Module
Transceiver NSM–1
Introduction
The NSM–1 is a dualband transceiver unit designed for operation in
GSM900, GSM1800 and GSM900/1800 dualband networks. GSM pow-
er class is 4 and PCN power class is 1.
The transceiver has full graphic display, and the user interface is based
on two soft keys.
The transceiver has leakage tolerant earpiece and omnidirectional micro-
phone providing excellent audio quality. Transceiver supports full rate, en-
hanced full rate and half rate speech decoding.
The antenna is a fixed helix. External antenna connection is provided by
rear RF connector
Integrated IR link provides for connection between two NSM–1NY trans-
ceivers or a transceiver and a PC, or a transceiver and a printer.
Technical Documentation
The small SIM ( Subscriber Identity Module ) card is located inside the
phone, beneath the battery pack.

Mode Description

There are five different operation modes:
– power off mode
– idle mode
– active mode
– charge mode
– local mode
In the power off mode only the circuits needed for power up are supplied.
In the idle mode circuits are powered down and only sleep clock is run-
ning.
In the active mode all the circuits are supplied with power although some
parts might be in the idle state part of the time.
The charge mode is effective in parallel with all previous modes. The
charge mode itself consists of two different states, i.e. the charge and the
maintenance mode.
Page 3–6
The local mode is used for alignment and testing.
PAMS
NSM–1
Technical Documentation

Interconnection Diagram

10 9
10
Keypad Display
Keypad
System Module
User Interface
Module
1
PWR Key
RTC
battery
UE4
28
2
System/RF
Module
2
Speaker
1
Antenna
MIC
connectors for external signals
2
System
Connector
3 + 3 6
Charger
accessories
UG3
RF SIM
2
SIM card
external antenna
battery
6
Battery
IR
NSM–1
IR Link
4
Page 3–7
NSM–1
PAMS

System Module

System Module

Circuit Description

The transceiver electronics consist of the Radio Module, RF + System
blocks, the UI PCB, the display module and audio components. The key-
pad and the display module are connected to the Radio Module with a
connectors. System blocks and RF blocks are interconnected with PCB
wiring. The Transceiver is connected to accessories via a bottom system
connector with charging and accessory control.
The System blocks provide the MCU, DSP and Logic control functions in
MAD ASIC, external memories, audio processing and RF control hard-
ware in COBBA ASIC. Power supply circuitry CCONT ASIC delivers oper-
ating voltages both for the System and the RF blocks.
The RF block is designed for a handportable phone which operates in the
GSM and DCS1800 systems. The purpose of the RF block is to receive
and demodulate the radio frequency signal from the base station and to
transmit a modulated RF signal to the base station. The SUMMA ASIC is
used for VHF and PLL functions. The CRFU3 ASIC is used at the front
end.
Technical Documentation

External and Internal Connectors

Contact 1
DC–jack
Contact 2
Microphone port
Contacts
3...8 Contact 9
Rubber boot
Microphone
Solderable element,
2 pcs
Cable/Cradle connector, guiding/fixing hole, 3 pcs
Page 3–8
PAMS
NSM–1
Technical Documentation
System Connector Contacts
Con-
tact
1 VIN Charger input volt-
DC– JACK
DC– JACK
Line
Sym-
bol
L_GND Charger ground
VIN Charger input volt-
Parameter Mini-
age Charger input cur-
rent
input
age Charger input cur-
rent
System Module
Typical
mum
7.1 720
7.24 320
0 0 0 V/ Supply ground
7.1 720
7.24 320
/ Nomi-
nal
8.4 800
7.6 370
8.4 800
7.6 370
Maxi-
mum
9.3 850
7.95 420
9.3 850
7.95 420
Unit / Notes
V/ Unloaded ACP–9 Charger mA/ Supply current V/ Unloaded ACP–7 Charger mA/ Supply current
V/ Unloaded ACP–9 Charger mA/ Supply current V/ Unloaded ACP–7 Charger mA/ Supply current
DC– JACK
2 CHRG
Mic ports
3 XMIC Input signal volt-
4 SGND Signal ground 0 0 mVrms 5 XEAR Output signal volt-
6 MBUS I/O low voltage
7 FBUS_RXInput low voltage
CHRG CTRL
CTRL
Output high volt­age
PWM frequency
Output high volt­age
PWM frequency
Acoustic signal N/A N/A N/A Microphone sound ports
age
age
I/O high voltage
Input high voltage02.0
2.0
2.0
0
2.0
2.8 V/ Charger control (PWM)
32
2.8 V/ Charger control (PWM)
32
60 1 Vpp mVrms
80 1 Vpp mVrms
0.8
2.8
0.8
2.8
high Hz /PWM frequency for
charger
high Hz /PWM frequency for
charger
Serial bidirectional control bus. Baud rate 9600 Bit/s
V/ Fbus receive. V/ Serial Data, Baud rate
9.6k–230.4kBit/s
8 FBUS_TXOutput low voltage
Output high volt­age
9 L_GND Charger ground
input
0
2.0
0 0 0 V/ Supply ground
0.8
2.8
V/ Fbus transmit. V/ Serial Data, Baud rate
9.6k–230.4kBit/s
Page 3–9
NSM–1
Im edance
50ohm
tor
PAMS
System Module
Technical Documentation
RF Connector Contacts
Con-
tact
1 EXT_ANT 2 GND
Line
Symbol
Parameter Mini-
mum
p
Typical / Nomi-
nal
Maxi-
mum
Unit / Notes
External antenna connec-
,
0 V DC
Supply Voltages and Power Consumtion
Connector Line Symbol Minimum Typical /
Nominal
Charging VIN 7.1 8.4 9.3 V/ Travel charger,
Charging VIN 7.25 7.6 7.95 V/ Travel charger.
Charging I / VIN 720 800 850 mA/ Travel char-
Charging I / VIN 320 370 420 mA/ Travel char-
Maximum/
Peak
Unit / Notes
ACP–9
ACP–7
ger, ACP–9
ger, ACP–7
Page 3–10
PAMS
NSM–1
Technical Documentation
Power Distribution Diagram
The power supply is based on the ASIC circuit CCONT. The chip consists of regulators and control circuits providing functions like power up, reset and watchdog. External buffering is required to provide more current on some blocks.
The MCU and the CCONT circuits control charging together, detection being carried out by the CCONT and higher level intelligent control by the MCU. The MCU measures battery voltage by means of the CCONT. The CCONT also measures charger voltage, temperature and size of the bat­tery.
Detailed power distribution diagrams are given in Baseband blocks and RF blocks later in the document.
V_IN
PWM
CHARGING CIRCUITRY
PWM
CCONT
TXP
VBAT
System Module
bias
power det
POWER AMPLIFIER
VBAT
BATTERY
VBAT
Note: VTX uses a discrete transistor to increse VR7 output capability
VSIM
SIM
V5V
VBAT
VBB
V
T X
P W R
Y
X
N
P
P
W
W
R
R
S
R
S
C
I
X
M
O
P
P
W
R
T
W
X
R
P
MAD
VBB
UIF
PWRONX MEM
5V
VBB
V5V/VCP
VRX_2 VSYN_2
VRX_1
V_TX
VSYN_1
VSYN_1
VXO
VCOBBA
VREF
VBB
SUMMA
CRFU3
VREF
BAND SEL
RF SYNTHESIZERS
VCXO
COBBA
Page 3–11
NSM–1
PAMS
System Module

Baseband Module

Block Diagram

TX/RX SIGNALS
COBBA
UI
COBBA SUPPLY
RF SUPPLIES
CCONT
BB SUPPLY
Technical Documentation
PA SUPPLY
32kHz CLK
SLEEP CLOCK
SIM
13MHz CLK
SYSTEM CLOCK
IR
AUDIOLINES
BASEBAND

Technical Summary

The baseband module consists of four asics, CHAPS, CCONT, COBBA– GJ and MAD2, which take care of the baseband functions of NSM–1.
The baseband is running from a 2.8V power rail, which is supplied by a power controlling asic. In the CCONT asic there are 6 individually con­trolled regulator outputs for RF–section and two outputs for the base­band. In addition there is one +5V power supply output (V5V) for flash programming voltage and other purposes where a higher voltage is need­ed. The CCONT contains also a SIM interface, which supports both 3V and 5V SIM–cards. A real time clock function is integrated into the CCONT, which utilizes the same 32kHz clock supply as the sleep clock. A backup power supply is provided for the RTC, which keeps the real time clock running when the main battery is removed. The backup power sup­ply is a rechargable polyacene battery. The backup time with this battery is minimum of ten minutes.
MAD +
MEMORIES
VBAT
BATTERY
CHAPS
SYSCON
Page 3–12
PAMS
NSM–1
Technical Documentation
The interface between the baseband and the RF section is handled by a specific asic. The COBBA asic provides A/D and D/A conversion of the in–phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The COBBA supplies the analog TXC and AFC sig­nals to rf section according to the MAD DSP digital control and converts analog AGC into digital signal for the DSP. Data transmission between the COBBA and the MAD is implemented using a parallel connection for high speed signalling and a serial connection for PCM coded audio signals. Digital speech processing is handled by the MAD asic. The COBBA asic is a dual voltage circuit, the digital parts are running from the baseband supply VBB and the analog parts are running from the analog supply VCOBBA.
The baseband supports three external microphone inputs and two exter­nal earphone outputs. The inputs can be taken from an internal micro­phone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA asic.
System Module
The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. Input and output signal source selec­tion and gain control is performed inside the COBBA asic according to control messages from the MAD. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD and transmitted to the COBBA for decoding. A buzzer and an external vibra alert control signals are generated by the MAD with separate PWM outputs.
EMC shieding is implemented using a metallized plastic B–cover with a conductive rubber seal on the ribs. On the other side the engine is shielded with a frame having a conductive rubber on the inner walls, which makes a contact to a ground ring of the engine board and a ground plane of the UI–board. Heat generated by the circuitry will be con­ducted out via the PCB ground planes.
Page 3–13
NSM–1
C
PAMS
System Module
Technical Documentation
Bottom Connector External Contacts
Contact Line Symbol Function
1 VIN Charger input voltage DC–jack
side contact (DC–plug ring)
DC–jack center pin
DC–jack side contact (DC–plug jacket)
2 CHRG_CTRL Charger control output (from phone) Microphone
acoustic ports 3 XMIC Accessory microphone signal input (to phone) 4 SGND Accessory signal ground
L_GND Charger ground
VIN Charger input voltage
CHRG_CTRL Charger control output (from phone)
Acoustic signal (to phone)
5 XEAR Accessory earphone signal output (from phone) 6 MBUS MBUS, bidirectional serial data i/o 7 FBUS_RX FBUS, unidirectional serial data input (to phone) 8 FBUS_TX FBUS, unidirectional serial data output (from phone) 9 L_GND Charger ground
Bottom Connector Signals
Pin Name Min Typ Max Unit Notes
1,3 VIN
2 L_GND 0 0 V Supply ground
7.25
3.25 320
7.1
3.25 720
7.6
3.6
370
8.4
3.6
800
7.95
16.9
3.95 420
9.3
3.95 850
V V V
mA
V V
mA
Unloaded ACP–7 Charger (5kohms load)
Peak output voltage (5kohms load) Loaded output voltage (10ohms load) Supply current
Unloaded ACP–9 Charger Loaded output voltage (10ohms load) Supply current
4,5 CHRG_
TRL
6 MICP N/A see section Internal microphone 7 MICN N/A see section Internal microphone
Page 3–14
0 0.5 V Charger control PWM low
2.0 2.85 V Charger control PWM high 32 Hz PWM frequency for a fast charger
1 99 % PWM duty cycle
PAMS
Baud rate 9600 Bit/s
Baud rate 9.6k–230.4kBit/s
Baud rate 9.6k–230.4kBit/s
NSM–1
Technical Documentation
8 XMIC
HMIC 0 3.2 29.3 mV Microphone signal
9 SGND
10 XEAR
2.0 2.2 k Input AC impedance
1.47 1.55 V Mute (output DC level)
2.5 2.85 V Unmute (output DC level)
100 600 µA Bias current
System Module
NotesUnitMaxTypMinNamePin
1 Vpp Maximum signal level
58 490 mV Maximum signal level
Connected to COBBA MIC3P input 47 Output AC impedance (ref. GND) 10 µF Series output capacitance
380 Resistance to phone ground
47 Output AC impedance (ref. GND) 10 µF Series output capacitance
16 300 Load AC impedance to SGND (Head-
4.7 10 k Load AC impedance to SGND (Acces-
1.0 Vpp Maximum output level (no load) 22 626 mV Output signal level 10 k Load DC resistance to SGND (Acces-
16 1500 Load DC resistance to SGND (Head-
2.8 V DC voltage (47k pull–up to VBB)
HEAR 28 626 mV Earphone signal (HF– HFCM)
11 MBUS 0 logic low
2.0 logic high 2.85
12 FBUS_RX 0 logic low
2.0 logic high 2.85
13 FBUS_TX 0 logic low
2.0 logic high 2.85
set)
sory)
sory)
set)
Connected to COBBA HF output
0.8 V Serial bidirectional control bus. Phone has a 4k7 pullup resistor
0.8 V Fbus receive. Serial Data Phone has a 220k pulldown resistor
0.5 V Fbus transmit. Serial Data Phone has a 47k pullup resistor
14 GND 0 0.3 V Supply ground
Page 3–15
NSM–1
5.0
Maximum voltage in call state with charger
PAMS
System Module
Technical Documentation
Battery Connector
Pin Name Min Typ Max Unit Notes
1 BVOLT 3.0 3.6 4.5
5.3
2 BSI
3 BTEMP
0 2.85 V Battery size indication
2.2 18 kohm Battery indication resistor (Ni battery) 20 22 24 kohm Battery indication resistor (service battery) 27 51 kohm Battery indication resistor (4.1V Lithium
68 91 kohm Battery indication resistor (4.2V Lithium bat-
0 1.4 V Battery temperature indication
V Battery voltage
Maximum voltage in idle state with charger
Phone has 100kohm pull up resistor.
SIM Card removal detection
(Treshold is 2.4V@VBB=2.8V)
battery)
tery)
Phone has a 100k (+–5%) pullup resistor,
Battery package has a NTC pulldown resis-
tor:
47k+–5%@+25C , B=4050+–3%
2.1
5 10
1.9 90 100
0 1 kohm Local mode initialization (in production)
20 22 25 kHz PWM control to VIBRA BATTERY
4 BGND 0 0 V Battery ground
3
20
2.85 200
V
ms
V
ms
Phone power up by battery (input)
Power up pulse width
Battery power up by phone (output)
Power up pulse width
Page 3–16
PAMS
NSM–1
Technical Documentation
System Module
SIM Card Connector
Pin Name Parameter Min Typ Max Unit Notes
4 GND GND 0 0 V Ground
3, 5 VSIM 5V SIM Card
3V SIM Card
6 DATA 5V Vin/Vout
3V Vin/Vout
2 SIMRST 5V SIM Card
3V SIM Card
1 SIMCLK Frequency
Trise/Tfall
4.8
2.8
4.0 0
2.8 0
4.0
2.8
5.0
3.0 ”1”
”0” ”1” ”0”
”1” ”1”
3.25
5.2
3.2
VSIM
0.5
VSIM
0.5
VSIM VSIM
25
V Supply voltage
V SIM data
Trise/Tfall max 1us
V SIM reset
MHz
ns
SIM clock
Internal Microphone
Pin Name Min Typ Max Unit Notes
6 MICP 0.55 4.1 mV Connected to COBBA MIC2N input. The
maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maxi­mum value – 16 dB.
7 MICN 0.55 4.1 mV Connected to COBBA MIC2P input. The
maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maxi­mum value – 16 dB.
Infrared Module Connections
An infrared transceiver module is designed to substitute an electrical cable between the phone and a PC. The infrared transceiver module is a stand alone component capable to perform infrared transmitting and re­ceiving functions by transforming signals transmitted in infrared light from and to electrical data pulses running in two wire asyncronous databus. In DCT3 the module is placed inside the phone at the top of the phone.
Signal Parameter Min Typ Max Unit Notes
IRON IR–module on/off 2.0 2.85 V Iout@2mA FBUS_RX
FBUS_TX
IR receive pulse 0 0.8 V IR receive no pulse 2.0 2.85 V IR transmit pulse 2.0 2.85 V Iout@2mA IR transmit no pulse 0 0.5 V
Page 3–17
NSM–1
PAMS
System Module
Technical Documentation
RTC Backup Battery
The RTC block in CCONT needs a power backup to keep the clock run­ning when the phone battery is disconnected. The backup power is sup­plied from a rechargable polyacene battery that can keep the clock run­ning minimum of 10 minutes. The backup battery is charged from the main battery through CHAPS.
Signal Parameter Min Typ Max Unit Notes
VBACK
VBACK
Backup battery charg­ing from CHAPS
Backup battery charg­ing from CHAPS
Backup battery supply to CCONT
Backup battery supply to CCONT
3.02 3.15 3.28 V
100 200 500 uA Vout@VBAT–0.2V
2 3.28 V Battery capacity
65uAh
80 uA
Buzzer
Signal Maximum
BuzzPWM /
BUZZER
Input
output cur-
rent
2mA 2.5V 0.2V 0...50 (128 lin-
high level
Input
low level
Level (PWM)
range, %
ear steps)
Frequency
range, Hz
440...4700
Page 3–18
PAMS
NSM–1
Technical Documentation

Baseband Power Distribution

Functional Description
In normal operation the baseband is powered from the phone‘s battery. The battery consists of three Nickel Metal Hydride cells. There is also a possibility to use batteries consisting of one Lithium–Ion cell. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either a standard charger that can deliver around 400 mA or so called performance charger, which can deliver sup­ply current up to 850 mA.
The baseband contains components that control power distribution to whole phone excluding those parts that use continuous battery supply. The battery feeds power directly to three parts of the system: CCONT, power amplifier, and UI (buzzer and display and keyboard lights). Figure below shows a block diagram of the power distribution.
The power management circuit CHAPS provides protection agains over­voltages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone.
System Module
PA SUPPLY
VCOBBA
COBBA
UI
VBAT
VBB
BASEBAND
VBB
MAD
+
MEMORIES
RF SUPPLIES
CCONT
PWRONX
CNTVR
BOTTOM CONNECTOR
PWM
VBB PURX
LIM
CHAPS
VIN
VSIM
VBAT
RTC
BACKUP
SIM
BATTERY
Battery charging
The electrical specifications give the idle voltages produced by the ac­ceptable chargers at the DC connector input. The absolute maximum in-
Page 3–19
NSM–1
PAMS
System Module
MAD
VBAT
MAD
CCONTINT
Technical Documentation
put voltage is 30V due to the transient suppressor that is protecting the charger input. At phone end there is no difference between a plug–in charger or a desktop charger. The DC–jack pins and bottom connector charging pads are connected together inside the phone.
LIM
0R22
PWM_OUT
CCONT
GND
ICHAR
VCHAR
VOUT
CHAPS
RSENSE
PWM
22k
VCH
GND
1n
TRANSCEIVER
1u
100k
10k
30V
2A
VIN
CHRG_CTRL
L_GND
CHARGER
NOT IN ACP–7
Startup Charging
When a charger is connected, the CHAPS is supplying a startup current minimum of 130mA to the phone. The startup current provides initial charging to a phone with an empty battery. Startup circuit charges the battery until the battery voltage level is reaches 3.0V (+/– 0.1V) and the CCONT releases the PURX reset signal and program execution starts. Charging mode is changed from startup charging to PWM charging that is controlled by the MCU software. If the battery voltage reaches 3.55V (3.75V maximum) before the program has taken control over the charg­ing, the startup current is switched off. The startup current is switched on again when the battery voltage is sunken 100mV (nominal).
Parameter Symbol Min Typ Max Unit
VOUT Start– up mode cutoff limit Vstart 3.45 3.55 3.75 V
VOUT Start– up mode hysteresis
NOTE: Cout = 4.7 uF
Start–up regulator output current
VOUT = 0V ... Vstart
Vstarthys 80 100 200 mV
Istart 130 165 200 mA
Page 3–20
PAMS
NSM–1
Technical Documentation
Battery Overvoltage Protection
Output overvoltage protection is used to protect phone from damage. This function is also used to define the protection cutoff voltage for differ­ent battery types (Li or Ni). The power switch is immediately turned OFF if the voltage in VOUT rises above the selected limit VLIM1 or VLIM2.
Parameter Symbol LIM input Min Typ Max Unit
Output voltage cutoff limit
(during transmission or Li–
battery)
Output voltage cutoff limit
(no transmission or Ni–bat-
tery)
VLIM1 LOW 4.4 4.6 4.8 V
VLIM2 HIGH 4.8 5.0 5.2 V
The voltage limit (VLIM1 or VLIM2) is selected by logic LOW or logic HIGH on the CHAPS (N101) LIM– input pin. Default value is lower limit VLIM1.
System Module
VCH
VCH<VOUT
VOUT
VLIM1 or VLIM2
When the switch in output overvoltage situation has once turned OFF, it stays OFF until the the battery voltage falls below VLIM1 (or VLIM2) and PWM = LOW is detected. The switch can be turned on again by setting PWM = HIGH.
t
t
SWITCH
PWM (32Hz)
ON OFF
ON
Page 3–21
NSM–1
PAMS
System Module
Battery Removal During Charging
Output overvoltage protection is also needed in case the main battery is removed when charger connected or charger is connected before the bat­tery is connected to the phone.
With a charger connected, if VOUT exceeds VLIM1 (or VLIM2), CHAPS turns switch OFF until the charger input has sunken below Vpor (nominal
3.0V, maximum 3.4V). MCU software will stop the charging (turn off PWM) when it detects that battery has been removed. The CHAPS re­mains in protection state as long as PWM stays HIGH after the output overvoltage situation has occured.
VCH (Standard Charger)
VOUT
Vpor
VLIM
4V
Vstart
Droop depends on load
& C in phone
Technical Documentation
Istart off due to VCH<Vpor
Vstarthys
PWM
SWITCH
1.1Battery removed, (standard) charger connected, VOUT rises (follows charger voltage)
2. VOUT exceeds limit VLIM(X), switch is turned immediately OFF
3.3VOUT falls (because no battery) , also VCH<Vpor (standard chargers full–rectified
4. Software sets PWM = LOW –> CHAPS does not enter PWM mode
5. PWM low –> Startup mode, startup current flows until Vstart limit reached
6. VOUT exceeds limit Vstart, Istart is turned off
7. VCH falls below Vpor
”1”
”0”
ON
OFF
2
output). When VCH > Vpor and VOUT < VLIM(X) –> switch turned on again (also PWM is still HIGH) and VOUT again exceeds VLIM(X).
5
4
6
7
t
t
t
Page 3–22
PAMS
NSM–1
Technical Documentation
Different PWM Frequencies ( 1Hz and 32 Hz)
When a travel charger (2– wire charger) is used, the power switch is turned ON and OFF by the PWM input when the PWM rate is 1Hz. When PWM is HIGH, the switch is ON and the output current Iout = charger cur­rent – CHAPS supply current. When PWM is LOW, the switch is OFF and the output current Iout = 0. To prevent the switching transients inducing noise in audio circuitry of the phone soft switching is used.
The performance travel charger (3– wire charger) is controlled with PWM at a frequency of 32Hz. When the PWM rate is 32Hz CHAPS keeps the power switch continuously in the ON state.
SWITCH
ON ONON OFF OFF
System Module
PWM (1Hz)
SWITCH
PWM (32Hz)
ON
Page 3–23
NSM–1
PAMS
System Module
Battery Identification
Different battery types are identified by a pulldown resistor inside the bat­tery pack. The BSI line inside transceiver has a 100k pullup to VBB. The MCU can identify the battery by reading the BSI line DC–voltage level with a CCONT (N100) A/D–converter.
BATTERY
BVOLT
BTEMP
BSI
2.8V
100k
10k
Technical Documentation
TRANSCEIVER
BSI
CCONT
The battery identification line is used also for battery removal detection. The BSI line is connected to a SIMCardDetX line of MAD2 (D200). SIM­CardDetX is a threshold detector with a nominal input switching level
0.85xVcc for a rising edge and 0.55xVcc for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. The BSI contact in the battery pack is made 0.7mm shorter than the supply voltage contacts so that there is a delay between battery removal detection and supply power off,
Vcc
0.850.05 Vcc
0.550.05 Vcc
R
s
BGND
10n
SIMCardDetX
MAD
Page 3–24
GND
SIMCARDDETX
S
IGOUT
PAMS
NSM–1
Technical Documentation
Battery Temperature
The battery temperature is measured with a NTC inside the battery pack. The BTEMP line inside transceiver has a 100k pullup to VREF. The MCU can calculate the battery temperature by reading the BTEMP line DC– voltage level with a CCONT (N100) A/D–converter.
BATTERY
BVOLT
BSI
BTEMP
TRANSCEIVER
VREF
100k
10k
System Module
BTEMP
CCONT
R
T
NTC
Supply Voltage Regulators
The heart of the power distrubution is the CCONT. It includes all the volt­age regulators and feeds the power to the whole system. The baseband digital parts are powered from the VBB regulator which provides 2.8V baseband supply. The baseband regulator is active always when the phone is powered on. The VBB baseband regulator feeds MAD and me­mories, COBBA digital parts and the LCD driver in the UI section. There is a separate regulator for a SIM card. The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. The COBBA analog parts are powered from a dedicated 2.8V supply VCOB­BA. The CCONT supplies also 5V for RF and for flash VPP. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected.
BGND
1k
1k
10n
VibraPWM
MAD
MCUGenIO4
Page 3–25
NSM–1
PAMS
System Module
The RTC backup is rechargable polyacene battery, which has a capacity of 50uAh (@3V/2V) The battery is charged from the main battery voltage by the CHAPS when the main battery voltage is over 3.2V. The charging current is 200uA (nominal).
Operating mode Vref RF REG VCOB-
BA
Power off Off Off Off Off Off Pull
Power on On On/Off On On On On/Off Reset On Off
VR1 On
Sleep On Off On On On On/Off
NOTE:
On On Off Pull
Technical Documentation
VBB VSIM SIMIF
down
down
CCONT includes also five additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.
– TxPwr controls VTX regulator (VR5) – RxPwr controls VRX regulator (VR2) – SynthPwr controls VSYN_1 and VSYN_2 regulators (VR4 and VR3) – VCXOPwr controls VXO regulator (VR1) CCONT generates also a 1.5 V reference voltage VREF to COBBA,
SUMMA and CRFU3. The VREF voltage is also used as a reference to some of the CCONT A/D converters.
In additon to the above mentioned signals MAD includes also TXP control signal which goes to SUMMA power control block and to the power ampli­fier. The transmitter power control TXC is led from COBBA to SUMMA.
Page 3–26
PAMS
NSM–1
Technical Documentation
Switched Mode Supply VSIM
There is a switched mode supply for SIM–interface. SIM voltage is se­lected via serial IO. The 5V SMR can be switched on independently of the SIM voltage selection, but can’t be switched off when VSIM voltage value is set to 5V.
NOTE: VSIM and V5V can give together a total of 30mA. In the next figure the principle of the SMR / VSIM–functions is shown.
CCONT External
VBAT
System Module
V5V_4 V5V_3
V5V_2
Power Up
VSIM
The baseband is powered up by:
1. Pressing the power key, that generates a PWRONX interrupt
2. Connecting a charger to the phone. The CCONT recognizes
3. A RTC interrupt. If the real time clock is set to alarm and the
5V reg
V5V
signal from the power key to the CCONT, which starts the pow­er up procedure.
the charger from the VCHAR voltage and starts the power up procedure.
phone is switched off, the RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is con­nected to the PWRONX line to give a power on signal to the CCONT just like the power key.
5/3V
5V
4. A battery interrupt. Intelligent battery packs have a possibility to power up the phone. When the battery gives a short (10ms) voltage pulse through the BTEMP pin, the CCONT wakes up and starts the power on procedure.
Page 3–27
NSM–1
PAMS
System Module
Power up with a charger
When the charger is connected CCONT will switch on the CCONT digital voltage as soon as the battery voltage exeeds 3.0V. The reset for CCONT’s digital parts is released when the operating voltage is stabilized ( 50 us from switching on the voltages). Operating voltage for VCXO is also switched on. The counter in CCONT digital section will keep MAD in reset for 62 ms (PURX) to make sure that the clock provided by VCXO is stable. After this delay MAD reset is relased, and VCXO –control (SLEEPX) is given to MAD. The diagram assumes empty battery, but the situation would be the same with full battery:
When the phone is powered up with an empty battery pack using the standard charger, the charger may not supply enough current for stan­dard powerup procedure and the powerup must be delayed.
Power Up With The Power Switch (PWRONX)
Technical Documentation
When the power on switch is pressed the PWRONX signal will go low. CCONT will switch on the CCONT digital section and VCXO as was the case with the charger driven power up. If PWRONX is low when the 64 ms delay expires, PURX is released and SLEEPX control goes to MAD. If PWRONX is not low when 64 ms expires, PURX will not be released, and CCONT will go to power off ( digital section will send power off signal to analog parts)
SLEEPX
PURX
CCPURX
PWRONX
12 3
1:Power switch pressed ==> Digital voltages on in CCONT (VBB) 2: CCONT digital reset released. VCXO turned on 3: 62 ms delay to see if power switch is still pressed.
Page 3–28
VR1,VR6 VBB (2.8V)
Vchar
Loading...
+ 64 hidden pages