Nokia 5120 System Module 03

PAMS Technical Documentation
NSC–1 Series Transceivers
Chapter 3
System Module US4RSM
Original 10/98
NSC–1
PAMS

AMENDMENT RECORD SHEET

Amendment Number
Date Inserted By Comments
10/98 Original
Technical Documentation
Page 3 – 2
Original 10/98
PAMS
NSC–1
Technical Documentation
CONTENTS
System Module US4RSM 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External and Internal Connectors 3 – 6. . . . . . . . . . . . . . . . . . . . .
System Connector Signals 3 – 7. . . . . . . . . . . . . . . . . . . . . . . .
RF–Connector 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Contacts 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modes of Operation 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Control Channel (ACCH) Mode 3 – 9. . . . . . . . . . . . . . . .
Analog Voice Channel (AVCH) Mode 3 – 10. . . . . . . . . . . . . . . . .
Digital Control Channel (DCCH) 800 MHz Mode 3 – 10. . . . . . . .
Digital Traffic Channel (DTCH) 800 MHz Mode 3 – 10. . . . . . . . .
Out of Range (OOR) Mode 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . .
Locals Mode 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3 – 12. . . . . . . . . . . . . . . . . . . . . . . . . .
External interfaces 3 – 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signals between baseband and User Interface section 3 – 13. .
User Interface module connection 3 – 13. . . . . . . . . . . . . . . . . . . .
Earphone 3 – 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buzzer 3 – 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Module 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charging Control 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–wire charging 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–wire charging 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up when power–button is pushed 3 – 17. . . . . . . . . . . . . .
IBI (Intelligent Battery Interface) 3 – 18. . . . . . . . . . . . . . . . . . . . . .
Mixed trigger to power up 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Off 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power off by pushing Power–key 3 – 18. . . . . . . . . . . . . . . . . . . . .
Power off when battery voltage low 3 – 19. . . . . . . . . . . . . . . . . . .
Power off when fault in the transmitter 3 – 19. . . . . . . . . . . . . . . .
Sleep Mode 3 – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Waking up from the Sleep–mode 3 – 19. . . . . . . . . . . . . . . . . . . . .
Baseband submodules 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRLU 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU main features 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSP main features 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Logic main features 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . .
Page No
Original 10/98
Page 3 – 3
NSC–1
PAMS
Memories 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUDIO–RF 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cobba main features 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speech processing 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alert Signal Generation 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWRU 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CCONT main features 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPS main features 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Module 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Frequency Plan 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution – Typical Currents 3 – 27. . . . . . . . . . . . . . . . .
Functional Description 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAMPS800 RX 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAMPS800 TX 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Synthesizers 3 – 29. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAMPS800 operation 3 – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltages in different modes of operation 3 – 30. . . . . . . .
Software Compensations 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Levels (TXC) vs. Temperature 3 – 31. . . . . . . . . . . . . . .
Power Levels (TXC) vs. Channel 3 – 31. . . . . . . . . . . . . . . . . . .
Power levels vs. Battery Voltage 3 – 31. . . . . . . . . . . . . . . . . . .
TX Power Up/Down Ramps 3 – 31. . . . . . . . . . . . . . . . . . . . . . .
Modulator Output Level 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Mode RSSI 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Block Specifications 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAMPS 800 Mhz Front End 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . .
First IF Filter 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Characteristics 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Levels 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizers 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UHF 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VHF 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Levels 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF–Baseband signals 3 – 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Interface and Timing 3 – 42. . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital control channels 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog control channel 3 – 44. . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts list of US4RSM (EDMS Issue 2.0) Code: 0201343 . 3 – 45
Technical Documentation
Page 3 – 4
Original 10/98
PAMS
NSC–1
Technical Documentation
Schematic Diagrams: US4RSM
Circuit Diagram of System Blocks (Version 4.03 Edit 3) 3/A3–1. . . . .
Circuit Diagram of Power Supply (Version 04.03 Edit 5) 3/A3–2. . . . .
Circuit Diagram of CTRLU Block (Version 04.03 Edit 3) 3/A3–3. . . . . .
Circuit Diagram of Audio (Version 4.03 Edit 6) 3/A3–4. . . . . . . . . . . . .
Circuit Diagram of Transmitter (Version 4.3 Edit 5) 3/A3–5. . . . . . . . . .
Circuit Diagram of Receiver (Version 4.3 Edit 03) 3/A3–6. . . . . . . . . . .
Circuit Diagram of Synthesizer (Version 4.3 Edit 3) 3/A3–7. . . . . . . . .
Circuit Diagram of RF Block (Version 04.03 Edit 2) 3/A3–8. . . . . . . . . .
Circuit Diagram of RF–BB Interface (Version 4.03 Edit 03) 3/A3–9. . .
Layout Diagram 1/2 of US4RSM (Layout version 04) 3/A3–10. . . . . . . .
Layout Diagram 2/2 of US4RSM (Layout version 04) 3/A3–11. . . . . . . .
Original 10/98
Page 3 – 5
NSC–1
PAMS
System Module US4RSM
The purpose of the system module is to control the phone and process audio signals to and from RF. The module also controls the user inter­face.
External and Internal Connectors
B side view
Fixing pads (2 pcs)
Technical Documentation
IBI connector
(6 pads)
8
1
7
14
Engine PCB
A side view
DC Jack
acoustic ports
Charger pads (3 pcs)
Microphone
Bottom
connector (6 pads)
Cable locking holes (3 pcs)
Cavity for microphone
Page 3 – 6
Original 10/98
PAMS
NSC–1
Technical Documentation
System Connector Signals
Pin Name Function Description
1 V_IN Bottom charger contacts Charging voltage. 2 L_GND DC Jack Logic and charging ground. 3 V_IN DC Jack Charging voltage. 4 CHRG_CTRL DC Jack Charger control. 5 CHRG_CTRL Bottom charger contacts Charger control. 6 MICP Microphone Microphone signal, positive node. 7 MICN Microphone Microphone signal, negative node. 8 XMIC Bottom & IBI connectors Analog audio input.
9 SGND Bottom & IBI connectors Audio signal ground. 10 XEAR Bottom & IBI connectors Analog audio output. 11 MBUS Bottom & IBI connectors Bidirectional serial bus. 12 FBUS_RX Bottom & IBI connectors Serial data in. 13 FBUS_TX Bottom & IBI connectors Serial data out. 14 L_GND Bottom charger contacts Logic and charging ground.
RF–Connector
The RF–connector is needed to utilize the external antenna with Car Cradle. The RF–connector is located on the back side of the transceiver on the top section. The connector is plug type connector with special me­chanical switching.
Accessory side of connector Part will be floating in
car holder
Phone side of connector
Original 10/98
Page 3 – 7
NSC–1
PAMS
Technical Documentation
Battery Contacts
Pin Name Function Description
1 BVOLT Battery voltage Battery voltage 2 BSI Battery Size Indicator Input voltage
3 BTEMP Battery temperature indication
Phone power up Battery power up PWM to VIBRA BA TTERY
4 BGND Ground
Input voltage Input voltage Output voltage PWM output signal frequency
Operating Conditions
Environmental condition Ambient temperature Notes
Normal operation conditions +7 oC ... +40 oC Specifications fulfilled and fast
charging possible Extreme operation conditions –20 oC ... +40 oC Specifications fulfilled Reduced performance condi-
tions Intermittent operation condi-
tions
Cessation of operation <–40 oC and >80 oC No storage or operation is al-
Long term storage conditions 0 oC ... +40 oC Battery only up to +30 oC ! Short term storage, max. 24 h –40 oC ... +80 oC Cumulative for life–time of bat-
LCD operation –30 oC ... +70 oC Functions are delayed in low
+40 oC ... +60 oC Operational only for short peri-
ods
–40 oC ... –30 oC and +60 oC ... +80 oC
Operation maybe not possible
but attempt to operate will
not damage the phone
lowed
tery
temperatures
Page 3 – 8
Original 10/98
PAMS
NSC–1
Technical Documentation

Functional Description

The US4RSM engine consist of a Baseband/RF module with connections to a separate User Interface module. Baseband and RF submodules are interconnected with PCB wiring. The engine can be connected to accessories via bottom system connector and an Intelligent Battery Interface (IBI) connector.
The RF submodule receives and demodulates radio frequency signals from the base station and transmits modulated RF signals to the base station. It consists of functional submodules Receiver, Frequency Synthesizer and Transmitter . The RF submodule can further be devided into lower band and upper band functions.
The Baseband module containes audio, control, signal processing and power supply functions. It consists of functional submodules CTRLU (Control Unit; MCU, DSP, logic and memories), PWRU (Power Supply; regulators and charging) and AUDIO_RF (audio coding, RF–BB interface).
The US4RSM engine consist of a Baseband/RF module with connections to a separate User Interface module. Baseband and RF submodules are interconnected with PCB wiring. The engine can be connected to accessories via bottom system connector and an Intelligent Battery Interface (IBI) connector.
Modes of Operation
US4RSM operates in five cellular modes and a local mode for service:
Analog Control Channel (ACCH) 800 MHz Mode,Analog Voice Channel (AVCH) 800 MHz Mode,Digital Control Channel (DCCH) 800 MHz Mode,Digital Traffic Channel (DTCH) 800 MHz Mode,Out of Range (OOR) Mode,Locals mode, used by Production and After Sales.
Analog Control Channel (ACCH) Mode
On analog control channel the phone receives continuous signalling messages on Forward Control Channel (FOCC) from the base station, being most of the time in IDLE mode. Only the receiver part is on. The phone scans the preferred dedicated control channels to find and lock to the strongest channel for reading information from this control channel.
DSP is not used on ACCH (it stays in sleep mode), except during channel scanning for loading the synthesizers.
As a separate sleep clock is used, also the VCTCXO can be turned off periodically with the RF parts. Only the sleep clock and necessary timers in MCU are operational.
Original 10/98
Page 3 – 9
NSC–1
PAMS
When registration is demanded the phone sends (TX on) it’s information on Reverse Control Channel (RECC) to the base station. The phone’s location is updated in the switching office.
If a call is initiated, either by the user or the base station, the phone moves to the allocated analog voice channel or digital traffic channel depending on the orders by the base station.
Analog Voice Channel (AVCH) Mode
The phone receives and transmits analog audio signal. All circuitry is powered on (except the receiver parts used only in digital modes). DSP does the audio processing and in Hands Free mode also performs echo–cancellation and HF algorithms. The COBBA IC makes A/D conversion for the MIC signal, and D/A conversion for the EAR signal.
With audio signal also the Supervisory Audio Tone (SAT) is being received from the base station. The SA T frequency can be 5970 Hz, 6000Hz or 6030 Hz, defined by the base station. The DSP phase lock loop locks to the SA T, detects if the frequency is the expected one and examines the signal quality . DSP reports SAT quality figures regularily to the MCU. The received SAT signal is transmitted back (transponded) to the base station.
Technical Documentation
The base station can send signalling messages on Forward Voice Channel (FVC) to the phone, by replacing the audio with a burst of Wide Band Data (WBD). These are typically hand–off or power level messages. The RX modem in System Logic receives the signalling message burst and gives an interrupt to the MCU for reading the data. MCU gives a message to DSP to mute the audio path during the burst. MCU can acknowledge the messages on Reverse V oice Channel (RVC), where DSP sends the WBD to transmitter RF .
Digital Control Channel (DCCH) 800 MHz Mode
On digital control channel (DCCH) DSP receives the paging information from the Paging channels and sends the messages to MCU for processing.
Each Hyperframe (HFC) comprises two Superframes (SF), the Primary (p) and the Secondary (s) paging frame. The assigned Page Frame Class (PFC) defines the frames which must be received, and thus defines when the receiver must be on.
The phone is in sleep mode between the received time slots. The sleep clock timer is set and MCU, DSP and RF parts (including VCTCXO) are powered down. Only sleep clock and the respective timers are running.
From DCCH phone may be ordered to analog control channel or to analog or digital traffic channel.
Digital Traffic Channel (DTCH) 800 MHz Mode
Digital Voice Channel (S–DTCH)
Page 3 – 10
Original 10/98
PAMS
NSC–1
Technical Documentation
On digital voice channel DSP processes the speech signal in 20 ms time slots. DSP performs the speech and channel functions in time shared fashion and is in sleep mode whenever possible. RX and TX parts are powered on and off according to the slot timing. MCU is waken up mainly by DSP, when there is signalling information for the Cellular Software.
Digital Data Channel (D–DTCH)
In Digital Data Channel Mode audio processing is not needed and audio circuitry can be shut down. Otherwise the mode is similar to Digital Voice Channel Mode.
Out of Range (OOR) Mode
If the phone can’t find signal from the base station on any control channel (analog or digital) it can go into OOR mode for power saving. All RF circuits are powered down and the baseband circuits in a low power mode, VCTCXO stopped and only the sleep clock running. After a programmable timer in MCU has elapsed the phone turns the receiver on and tries to receive signalling data from base station. If it succeeds, the phone goes to standby mode on analog or digital control channel. If the connection can not be established the phone returns to OOR mode until the timer elapses again.
Locals Mode
Locals mode is used for testing purposes by Product Development, Production and After Sales. The Cellular Software is stopped (no signalling to base station), and the phone is controlled by MBUS/FBUS messages by the controlling PC.
Original 10/98
Page 3 – 11
NSC–1
PAMS
Power Distribution Diagram
UT4U Engine
Charger
Charge control
PENTA
CCONT
VR8 VR9
VR10
VR11
VR12
VR1 VR2 VR3 VR4 VR5 VR6 VR7
VREF
VSIM
Technical Documentation
PA 1900 MHz
PA 800 MHz
RF
1900 MHz
800 MHz
Battery
VBB V5V
UI Module
Baseband
COBBA analog
Flash ROM
Page 3 – 12
Original 10/98
PAMS
NSC–1
Technical Documentation

External interfaces

4
Battery
Pack
3
Charger
IBI
Connector Name Notes
Antenna
US4RSM
ENGINE
6
Accessories
Bottom connectorconnector
Mic
User
28
22
Interface
Module
Display Keyboard
Backlights
Speaker
Buzzer
Bottom connector + IBI connector Includes control, data, charging and audio sig-
nals
UI–connector includes keyboard, backlight, display,buzzer, call
led, and earpiece signals Battery connector VBAT , GND, BTYPE, BTEMP RF–interface Connection
Signals between baseband and User Interface section
The User interface section is implemented on separate UI board, which connects to the engine board with a board to board spring connector.
User Interface module connection
The User interface section comprises the keyboard with keyboard lights, display module with display lights, an earphone and a buzzer.
Earphone
The internal earphone is connected to the UI board by means of mount­ing springs for automatic assembly. The low impedance, dynamic type earphone is connected to a differential output in the COBBA audio codec. The voltage level at each output is given as reference to ground. Ear­phone levels are given to 32 ohm load.
Buzzer
Alerting tones and/or melodies as a signal of an incoming call are gener­ated with a buzzer that is controlled with a PWM signal by the MAD. The buzzer is a SMD device and is placed on the UI board.
Original 10/98
Page 3 – 13
NSC–1
PAMS
Baseband Module Power Distribution
In normal operation the baseband is powered from the phone‘s battery. The battery consists of one Lithium–cell. There is also a possibility to use batteries consisting of three Nickel– cells. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either so called fast charger, which can deliver supply cur­rent up to 850 mA or a standard charger that can deliver around 300 mA.
CHAPS
VCHAR
BATTERY
Technical Documentation
VCXO
COBBA LCD–DRVR
MAD
VBAT
CCONT
PWM
V2V VR1_SW
VR1 VR6 VBB
FLASH
SIO
VSIM V5V Vref
RF
VR1–VR7
Battery voltage VBAT is connected to CCONT which regulates all the sup­ply voltages VBB, VR1–VR7, V2V, VR1_SW, VSIM and V5V. VR7 is di­vided into VR7 and VR7_bias. VR7_bias is for RF, because PA is heating and this reduces the heat. CCONT enables automatically VR1, VBB, V2V_core, VR6 and Vref in power–up.
VBB is used as baseband power supply for all digital parts, and it is constantly on whenever the phone is powered up. There is also another Baseband voltage, V2V, which is reserved for later version of MAD circuit. V2V will be used as a lower core voltage for MAD internal parts, by sup­plying it to specific MAD core voltage pins. Until that time, VBB will be used for all MAD pins. VSIM can be used as programming voltage for the Flash memory, if re–flashing is needed after initial flash programming in production. V5V is used for RF parts only.
VR1 is used for the VCXO supply. VR1_SW is derived from VR1 inside CCONT, and is actually the same voltage, but can be separately switched
Page 3 – 14
Original 10/98
PAMS
NSC–1
Technical Documentation
on and off. This VR1_SW is used as bias voltage for microphone, during talk modes. Voltage VR6 is used in COBBA for analog parts and also in RF parts. RFCEN signal to CCONT controls both the VR1 and VR6 regulators; they can be switched off in sleep modes, during standby.
CCONT regulators are controlled either through SIO from MAD or timing sensitive regulators are controlled directly to their control pins. These two control methods form a logical OR–function, i.e. the regulator is enabled when either of the controls is active. Most of the regulators can be individ­ually controlled.
CHAPS connects the charger voltage (VCHAR) to battery. MCU of MAD controls the charging through CCONT. MAD sets the parameters to PWM–generator in CCONT and PWM–output controls the charging volt­age in charger.
When battery voltage is under 3.0V, CHAPS controls independently the charging current to battery.
Charging Control
System
Connector
To
charger
Charging is controlled by MCU SW, which writes control data to CCONT via serial bus. CCONT output pin PWMOUT (Pulse Width Modulation) can be used to control both the charger and the CHAPS circuit inside phone.
2–wire charging
Vin
PWMOUT Charging Control
CHAPS
BATTERY
MAD
CCONT
serial control
With 2–wire charging the charger provides constant output current, and the charging is controlled by PWMOUT signal from CCONT to CHAPS. PWMOUT signal frequency is selected to be 1 Hz, and the charging switch in CHAPS is pulsed on and off at this frequency. The final charged energy to battery is controlled by adjusting the PWMOUT signal pulse width.
Original 10/98
Page 3 – 15
NSC–1
PAMS
Both the PWMOUT frequency selection and pulse width control are made MCU which writes these values to CCONT.
3–wire charging
With 3–wire charging the charger provides adjustable output current, and the charging is controlled by PWMOUT signal from CCONT to Charger, with the bottom connector signal. PWMOUT signal frequency is selected to be 32 Hz, and the charger output voltage is controlled by adjusting the PWMOUT signal pulse width. The charger switch in CHAPS is constantly on in this case.
Watchdog
Technical Documentation
VCXO
BATTERY
MAD COBBA
CCONT
32 kHz
VR1 VR6 VBB SLCLK
MCU
LOGIC
SIO
Both MAD and CCONT include a watchdog, and both use the 32 kHz sleep clock. The watchdog in MAD is the primary one, and this is called SW–watchdog. MCU has to update it regularly. If it is not updated, logic inside MAD gives reset to MAD. After the reset, MCU can read an inter­nal status bit to see the reason for reset, whether it was from MAD or CCONT. The SW–watchdog delay can be set between 0 and 63 seconds at 250 millisecond steps; and after power–up the default value is the max. time.
MAD must reset CCONT watchdog regularly. CCONT watchdog time can be set through SIO between 0 and 63 seconds at 1 second steps. After power–up the default value is 32 seconds. If watchdog elapses, CCONT will cut off all supply voltages.
After total cut–off the phone can be re–started through any normal pow­er–up procedure.
Page 3 – 16
Original 10/98
PAMS
NSC–1
Technical Documentation
Power up
When the battery is connected to phone, nothing will happen until the power–up procedure is initiated, for instance by pressing the power–but­ton (or by connecting charger voltage). After that the 32kHz crystal oscil­lator of CCONT is started (can take up to 1 sec), as well as the regulators are powered up.
If power down is done, and the battery remains connected, the 32 kHz crystal oscillator keeps still running in the CCONT. When power–up is ini­tiated again, the complete power–up sequence is like in the figure below. This time the power–up sequence is faster, because the oscillator is al­ready running.
Power up when power–button is pushed
PWRONX
VR1, VBB, VR6 RFCEN
RFCSETTLED RFC (VCXO)
COBBACLK PURX
SLCLK
t1
t2
t3
t1 < 1 ms t2 1 – 6 ms, VCXO settled t3 62 ms, PURX delay generated by CCONT
After PWR–key has been pushed, CCONT gives PURX reset to MAD and COBBA, and turns on VR1, VBB and VR6 regulators (if battery voltage has exceeded 3.0 V). VR1 supplies VCXO, VBB supplies MAD and digital parts of COBBA, and VR6 supplies analog parts of COBBA and some RF
Original 10/98
Page 3 – 17
NSC–1
PAMS
parts. After the initial delay t2 VCXO starts to give proper RFC to COBBA that further divides it to COBBACLK for MAD. COBBA will output the COBBACLK only after the PURX reset has been removed. After delay t3 CCONT releases PURX and MAD can take control of the operation of the phone.
After that MCU–SW in MAD detects that the PWR–key is still pushed and shows the user that the phone is powering up by starting the LCD and turning on the lights. MCU–SW must start also RF receiver parts at this point.
CCONT will automatically power–up also VSIM–regulator (used for pos­sible reFlashing), regardless of the control pin SIMPWR state, and the regulator default voltage is 3V. VSIM voltage could be selected to be 5V, by writing the selection via serial bus to CCONT, but that is not needed with the new Flash versions (Jaguar).
V5V–regulator (for RF) default value is off in power–up, and can be con­trolled on via serial bus when needed.
Technical Documentation
IBI (Intelligent Battery Interface)
Phone can be powered up by external device (accessory or similar) by providing a start pulse to the battery signal BTEMP; this is detected by CCONT. After that the power–up procedure is similar to pushing power– button.
Mixed trigger to power up
It is possible that PWR–key is pushed during charger initiated power–up procedure or charger is connected during PWR–key initiated power up procedure. In this kind of circumstances the power–up procedure (in HW point of view) continues as nothing had happened.
When the Baseband HW is working normally and SW is running, SW de­tects that both conditions are fulfilled and then acts accordingly.
Power Off
Power off by pushing Power–key
MAD (MCU SW) detects that PWR–key is pressed long enough time. Af­ter that the lights and LCD are turned off. MCU stops all the activities it was doing (e.g. ends a call), sends power off command to CCONT (i.e. gives a short watchdog time) and goes to idle–task. After the delay CCONT cuts all the supply voltages from the phone. Only the 32 kHz sleep clock remains running.
Note that the phone doesn’t go to power off (from HW point of view) when the charger is connected and PWR–key is pushed. It is shown to user that the phone is in power off, but in fact the phone is just acting being powered off (this state is usually called acting dead).
Page 3 – 18
Original 10/98
PAMS
NSC–1
Technical Documentation
Power off when battery voltage low
During normal discharge the phone indicates the user that the battery will drain after some time. If not recharged, SW detects that battery voltage is too low and shuts the phone off through a normal power down procedure.
Anyway, if the SW fails to power down the phone, CCONT will make a re­set and power down the phone if the battery voltage drops below 2.8 V.
Power off when fault in the transmitter
If the MAD receives fault indication, from the line TXF, that the transmitter is on although it shouldn’t be, the control SW will power down the phone.
Sleep Mode
The phone can enter SLEEP only when both MCU and DSP request it. A substantial amount of current is saved in SLEEP. When going to SLEEP following things will happen
1. Both MCU and DSP enable sleep mode, set the sleep timer and enter sleep mode
2. RFCEN and RFCSETTLED –> 0 –> COBBACLK will stop (gated in COBBA). Also VR1 is disabled –> VCXO supply volt­age is cut off –> RFC stops.
3. LCD display remains the same, no changes
4. Sleep clock (SLCLK) and watchdog in CCONT running
5. Sleep counter in MAD running, uses SLCLK
Waking up from the Sleep–mode
In the typical case phone leaves the SLEEP–mode when the SLEEP– counter in MAD expires. After that MAD enables VR1 VCXO starts run­ning after a pre–programmed delay RFCSETTLED rises => MAD re­ceives COBBACLK clock MAD operation re–starts.
There are also many other cases when the SLEEP mode can be inter­rupted, in these cases MAD enables the VR1 and operation is started similarly
– some MCU or DSP timer expires – DSP regular event interrupt happens – MBUS activity is detected – FBUS activity is detected – Charger is connected, Charger interrupt to MAD – any key on keyboard is pressed, interrupt to MAD – HEADSETINT, from system connector XMIC line (EAD) – HOOKINT, from system connector XEAR line
Original 10/98
Page 3 – 19
NSC–1
PAMS

Baseband submodules

CTRLU
CTRLU comprises MAD ASIC (MCU, DSP, System Logic) and Memories. The environment consists of three memory circuits (FLASH,SRAM,EE-
PROM), 22–bit address bus and 8/16–bit data bus. Besides there are ROM1SELX, ROM2SELX, RAMSELX and EEPROMSELX signals for chip select.
MCU main features
System control Cellular Software (CS)
Cellular Software takes care of communication with switching office, as well call build–up, maintenance and termination.
Technical Documentation
Communication control
M2BUS is used to communicate to external devices. This in­terface is also used for factory testing, service and mainte­nance purposes.
User Interface (UI)
PWR–key, keyboard, LCD, flip/door switch, backlight, mic, ear and alert (buzzer, vibra, led) control. Serial interface from MAD to LCD (common for CCONT).
Authentication
Authentication is used to prevent fraud usage of cellular phones.
RF monitoring
RF temperature monitoring by VCXOTEMP, ADC in CCONT. Received signal strength monitoring by RSSI, ADC in CCONT. False transmission detection by TXF signal, digital IO–pin.
Power up/down and Watchdog control
When power key is pressed, initial reset (PURX) has happened and default regulators have powered up in CCONT, MCU and DSP take care of the rest of power up procedures (LCD, COB­BA, RF). MCU must regularly reset Watchdog counter in CCONT, otherwise the power will be switched off.
Accessory monitoring
Page 3 – 20
Accessory detection by EAD (XMIC/HEADSETINT), AD–con­verter in CCONT. Connection (FBUS) for data transfer.
Original 10/98
PAMS
NSC–1
Technical Documentation
Battery and charging monitoring
MCU reads the battery type (BTYPE), temperature (BTEMP) and voltage (VBAT) values by AD–converter in CCONT, and phone’s operation is allowed only if the values are reasonable. Charging current is controlled by writing suitable values to PWM control in CCONT. MCU reads also charger voltage (VCHAR) and charging current values (ICHAR).
Production/after sales tests and tuning
Flash and EEPROM loading, baseband tests, RF tuning
Control of CCONT via serial bus
MCU writes controls (regulators on/off, Watchdog reset, charge PWM control) and reads AD–conversion values. For AD–conversions MCU gives the clock for CCONT (bus clock), because the only clock in CCONT is sleep clock, which has too low frequency.
DSP main features
DSP (Digital Signal Processor) is in charge of the channel and speech coding according to the IS–136 specification. The block consists of a DSP and internal ROM and RAM memory. The input clock is 9.72 MHz, and DSP has it’s own internal PLL–multiplier. Main interfaces are to MCU, and via System Logic to COBBA and RF.
System Logic main features
– MCU related clocking, timing and interrupts (CTIM) – DSP related clocking, timing and interrupts (CTID) – DSP general IO–port –reset and interrupts to MCU and DSP – interface between MCU and DSP (API)
– MCU interface to System Logic (MCUif) – MCU controlled PWMs, general IO–port and USART for MBUS (PUP) – Receive Modem (Rxmodem) – Interface to Keyboard, CCONT and LCD Drivers (UIF) – Interface to MCU memories, address lines and chip select decoding (BUSC)
– DSP interface to System Logic (DSPif) – serial accessory interface (AccIf, DSP–UART) – Modulation, transmit filter and serial interface to COBBA (MFI) – Serial interface for RF synthesizer control (SCU)
Memories
The speed requirement of FLASH and SRAM is assumed to be 120 ns.
Original 10/98
Page 3 – 21
NSC–1
PAMS
FLASH – size 8 Mbit (512k * 16 bit), optional 4 Mbit and 16 Mbit, all made layout compatible by having additional higher address lines ready in the layout. Flash memory contains the main program code for the MCU, and EE­PROM default values.
SRAM – size 128k/256 * 8 bit, all in STSOP32 package
EEPROM – size 16k * 8 bit, optional 8k * 8 bit
– serial or optional parallel interface can be used (MAD1 supports both), but serial interface is used.
AUDIO–RF
Audio interface and baseband–RF interface converters are integrated into COBBA circuit.
Technical Documentation
COBBA main features
The codec includes microphone and earpiece amplifier and all the neces­sary switches for routing. There are 2 different possibilities for routing; internal and external devices. There are also all the AD– and DA– con­verters for the RF interface.
New solution, DEMO block, is used for FM–demodulation in analog mode.
A slow speed DA–converter provides automatic frequency control (AFC). In addition, there is a DA–converters for transmitter power control (TXC).
COBBA also passes the RFC (19.44 MHz) to MAD as COBBACLK (9.72 MHz).
COBBA is connected to MAD via two serial busses: – RXTXSIO, for interfacing the RF–DACs and DEMO; and also for audio
codec and general control. Signals used: COBBACLK (9.72 MHz, from COBBA), COBBACSX, COBBASD (bi–directional data) and COBBA­DAX (data ready flag for rx–samples).
– Codec SIO, for interfacing the audio ADCs / DACs (PCM–samples).
Signals: PCMDCLK (data clock 1.08 MHz / 1.215 MHz), PCMSCLK (frame sync 8.0 kHz / 8.1 kHz), PCMTxdata and PCMRxdata.
Page 3 – 22
Original 10/98
PAMS
NSC–1
Technical Documentation
Speech processing
The speech coding functions are performed by the DSP in the MAD and the coded speech blocks are transferred to the COBBA for digital to ana­log conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA by the DSP.
There are two separate interfaces between MAD and COBBA: 2 serial buses. The first serial interface is used to transfer all the COBBA control information (both the RFI part and the audio part). The second serial in­terface between MAD and COBBa includes transmit and receive data, clock and frame synchronisation signals. It is used to transfer the PCM samples. The frame synchronisation frequency is 8 kHz ( the sample rate is in digital mode 8.0 kHz and in analog mode 8.1 kHz) which indicates the rate of the PCM samples and the clock frequency is 1 MHz. COBBA is generating both clocks.
Alert Signal Generation
A buzzer is used for giving alerting tones and/or melodies as a signal of an incoming call. The buzzer is controlled with a BuzzerPWM output sig­nal from the MAD. A dynamic type of buzzer must be used since the sup­ply voltage available can not produce the required sound pressure for a piezo type buzzer. The low impedance buzzer is connected to an output transistor that gets drive current from the PWM output. The alert volume can be adjusted either by changing the pulse width causing the level to change or by changing the frequency to utilize the resonance frequency range of the buzzer.
A vibra alerting device is used for giving silent signal to the user of an in­coming call. The device is controlled with a VibraPWM output signal from the MAD. The vibra alert can be adjusted either by changing the pulse width or by changing the pulse frequency. The vibra device is not inside the phone, but in a special vibra battery.
Original 10/98
Page 3 – 23
NSC–1
PAMS
PWRU
PWRU comprises CCONT circuit and CHAPS circuit.
CCONT main features
CCONT generates regulated supply voltages for baseband and RF. There are seven 2.8 V linear regulators for RF, one 2.8 V regulator for baseband, one special switched output (VR1_SW), one programmable 2V output (V2V), one 3/5 V output (VSIM), one 5V output (V5V), and one
1.5 V +/– 1.5% reference voltage for RF and COBBA. Other functions are
– power up/down procedures and reset logic – charging control (PWM), charger detection – watchdog – sleep clock (32 kHz) and control – 8–channel AD–converter.
Technical Documentation
CHAPS main features
CHAPS comprises the hardware for charging the battery and protecting the phone from over–voltage in charger connector.
The main function are – transient, over–voltage and reverse charger voltage protection – limited start–up charge current for a totally empty battery – voltage limit when battery removed – with SW protection protection against too high charging current
Page 3 – 24
Original 10/98
PAMS
NSC–1
Technical Documentation

RF Module

RF Frequency Plan
Intermediate frequencies of the RX are the same in all operation modes. LO and modulator frequencies in TDMA800 operation modes. See figure 1 for details.
869.01–893.97 MHz
1st IF
116.19 MHz
2nd IF
450 kHz
116.64 MHz
IF2 A–mode
450 kHz
IF2 D–mode
450 kHz
LO 1
LO 3
824.01–848.97 MHz
PLL
985.20–1010.16 MHz
161.19 MHz
322.38 MHz
LO 2
DC Characteristics
Power Distribution Diagram
Power distribution in a 800 MHz DAMPS phone. Current consumptions in the diagrams are only suggestive.
PLL
f
f/2
PLL
VCTCXO
19.44 MHz
2f
f
PLUSSA
f
3f
58.32 MHz
19.44 MHzRFC
Original 10/98
Page 3 – 25
NSC–1
PAMS
RFCEN
SPWR1
TXPWR1
RXPWR
SPWR2
(via serial bus)
TXPWR3
TXP
DAMPS OPERATION
2 mA
3 * Multiplier
VR1
VREF
VR2
V5V
VR6
VR5
VR4
VR3
CCONT
VR7
3 mA
& Buffer
8 mA
30 mA
RX FRONT END
19 mA
1 mA
4 mA
3 mA
15 mA
Enable
3 mA
UHF– VCO
VCTCXO19.44 MHz
COBBA_D
(Analog)
2 mA
Detector
IF1 – amp.
VHF VCO
TQ UHF LO–buffer
TX
mixer
TX PA
MMIC bias
Technical Documentation
2 mA
6 mA
8 mA
5 mA (peak)
2 mA
1 mA
35 mA
26 mA/5.6 mA
1 mA
Freq.
doubler
VHF
presc.
Bias
UHF presc.
& PLL
Phase
det.
Digital supply
Power control
Modulator
Digital m. IF– parts
Analog m.
IF– parts
Limiter
PLUSSA
Control block
MODE
VBATT
Page 3 – 26
VRBB
55 mA
TX
driver
BASEBAND
TX PA
SDATA SCLK SENA1
Original 10/98
PAMS
NSC–1
Technical Documentation
Power Distribution – Typical Currents
800 MHz
Ext.
Standby
[mA]
VR1 3.0 / 0.0 3.0 9.0 3.0 / 0.0 9.0 VR2 16.0 / 0.0 16.0 16.0 16.0 / 0.0 16.0 VR3 0.0 0.0 23.0 0.0 13.0 VR4 11.6 / 0.0 11.6 11.6 32 / 0.0 12.8* VR5 0.0 0.0 37.0 0.0 13.0 ** VR6 2.0 / 0.1 2.0 32.0 *** 2.0 / 0.1 32.0 *** VR7 0.0 0.0 58.0 0.0 19.2 ’ VR8 19.0 / 0.0 19.0 19.0 19.0 / 0.0 7.6 ’’ VR9 0.0 0.0 0.0 0.0 0.0
800 MHz
Analog Control
Channel
[mA]
800 MHz
Analog
Traffic
Channel
[mA]
800 MHz
Digital
Control
Channel
[mA]
800 MHz
Digital Traffic
Channel
[mA]
VR10 0.0 0.0 0.0 0.0 0.0 VR11 0.0 0.0 0.0 0.0 0.0 VR12 0.0 0.0 0.0 0.0 0.0
V5V 5.0 / 0.0 5.0 5.0 5.0 / 0.0 5.0
Total 56.6 / 0.1 56.6 210.6 77.0 / 0.1 127.6
NOTES: * Mean value (ON/OFF=8/20ms), peak current 32.0 mA
** Mean value (ON/OFF=7/20ms), peak current 37.0 mA *** Cobba_D mean current consumption estimated to be 30 mA ’ Mean value (ON/OFF=6.6/20ms), peak current 180.0 mA ’’ Mean value (ON/OFF=8/20ms), peak current 10.0 mA
Original 10/98
Page 3 – 27
NSC–1
PAMS

Functional Description

Receiver
DAMPS800 RX
The receiver is a double conversion receiver. Most of the RX functions are integrated in two ICs, namely receiver front end and PLUSSA. Re­ceiver front end contains a LNA and the 1st mixer. Analog and digital IF– parts are integrated in the PLUSSA.
The received RF signal from the antenna is fed via a duplex filter to the receiver unit. The signal is amplified by a low noise preamplifier. In digi­tal mode the gain of the amplifier is controlled by the AGC2 control line. The nominal gain of 17 – 19 dB is reduced in the strong signal condition about 15 dB (in the digital mode). After the preamplifier the signal is fil­tered by SAW RF filter. The filter rejects spurious signals coming from the antenna and spurious emissions coming from the mixer and IF parts. AGC2 gain step is also used to improve receiver’s performance against spurious responses in real field situations, when received signal level is high enough for reduced gain and there are radio signals causing on channel intermodulation results.
Technical Documentation
The filtered RF–signal is down converted by an active mixer. The fre­quency of the first IF is 116.19 MHz. The first local signal is generated in the UHF synthesizer. The IF signal is fed to a SAW IF–filter. The filter re­jects intermodulating signals and the second IF image signal. The filtered 1st IF is amplified and fed to the receiver section of the integrated RF cir­cuit PLUSSA, which has separate IF paths for analog and digital modes of operation.
In digital mode the IF1 signal is amplified by an AGC amplifier, which has gain control range of 57 dB. The gain is controlled by an analog signal via AGC1–line. The amplified IF signal is down converted to the second IF in the mixer of PLUSSA. The second local signal is the 6th overtone of the
19.44 MHz VCTCXO. LO frequency multiplier is implemented in two stages. First multiplication by 3 is done within the VCTCXO–module and the second multiplication by 2 is done in the PLUSSA.
The second IF frequency is 450 kHz. The second IF is filtered by a ce­ramic filter. The filter rejects signals of the adjacent channels. The fil­tered second IF is fed back to PLUSSA, where it is amplified and fed out to COBBA_D via balanced IF2D lines.
In analog mode the filtered and amplified IF1 signal is fed to a mixer. This mixer has been optimized for low current consumption. After this the mix­er down converted signal is fed through the same IF2 filter as in digital mode and finally it is amplified in the limiter amplifier. The limited IF2 sig­nal is fed via balanced IF2A lines to COBBA_D, which has a FM–detector. The limiter amplifier produces also a RSSI voltage for analog mode field strength indication.
Page 3 – 28
Original 10/98
PAMS
NSC–1
Technical Documentation
Transmitter
DAMPS800 TX
The TX intermediate frequency is modulated in digital mode by an I/Q modulator contained in the transmitter section of PLUSSA IC. The TX I and TXQ signals are generated in the COBBA_D interface circuit and they are fed differentially to the modulator. In analog mode the FM modu­lation is also generated in the I/Q modulator.
Intermediate frequency level at the modulator output is controlled via seri­al bus. Modulator output level control is used to tune out tolerances of the TX chain and expand the range of the VGA. The output level of the modu­lator is typically –18dBm on the highest power level (PL2). For lower pow­er levels modulator output is reduced by 4 dB for each power level. In analog mode PLUSSA modulator has fixed output level. All power levels are defined by adjusting driver amplifier’s gain.
The output signal from PLUSSA modulator is filtered to reduce harmonics and RX–band noise. The final TX signal is achieved by mixing the UHF VCO signal and the modulated TX intermediate signal in an active mixer. After the mixing TX signal is amplified by a driver stage. Driver amplifier has a gain control stage, which is used for power level adjustment and generating ramps. From driver stage the signal is fed trough TX filter to PA MMIC.
The PA amplifies the signal TX 27–30 dB. Amplified TX signal is filtered in duplex filter. Then signal is fed to the antenna switch, where the signal is coupled either to antenna or to external antenna connector. The typical maximum output level is 600 mW.
The power control loop controls the gain of the driver amplifier. The pow­er detector consists of a directional coupler and a diode rectifier. The out­put voltage of the detector is compared to TXC voltage in PLUSSA. The power control signal (TXC), comes from the RF interface circuit, COB­BA_D. TXP signal sets driver power down to ensure off–burst level requi­remensts.
False transmission indication is used to protect transmitter against false transmission caused by component failure. Protection circuit is in Plussa. The level for TXF is set by internal resistor values in Plussa.
Frequency Synthesizers
The stable frequency reference for the synthesizers and base band cir­cuits is a voltage controlled temperature compensated crystal oscillator VCTCXO. Frequency of the oscillator is 19.44 MHz. It is controlled by an AFC voltage, which is generated in the base band circuits. In digital mode operation, the receiver is locked to base station frequency by AFC. Next to detector diode, there is a sensor for temperature measurement. Volt­age RFTEMP from this sensor is fed to baseband for A/D conversion.
Original 10/98
Page 3 – 29
NSC–1
PAMS
This information of RF PA–block temperature is used as input for com­pensation algorithms.
The ON/OFF switching of the VCTCXO is controlled by the sleep clock in the baseband via RFCEN. Other parts of the synthesizer section are 1 GHz VCO, 2 GHz VCO, VHF VCO, PLL for 2 GHz VCO and PLL sections of the Plussa IC.
DAMPS800 operation
1GHz UHF synthesizer generates the down conversion injection for the receiver and the up conversion injection for the transmitter. UHF frequen­cy is 985.20 ... 1010.16 MHz, depending on the channel which is used. 1GHz UHF VCO is a module. The PLL circuit is dual PLL, common for both UHF and VHF synthesizers. These PLLs are included in the PLUS­SA IC.
LO signal for the 2nd RX mixer is multiplied from the VCTCXO frequency as described above.
Technical Documentation
VHF synthesizer is running only on digital or analog traffic channel.
322.38 MHz signal (divided by 2 in Plussa) is used as a LO signal in the I/Q modulator of the transmitter chain.
Supply voltages in different modes of operation
800
MHz
Ext.
Stadby
VR1 ON/OFF ON ON ON/OFF ON VR2 ON/OFF ON ON ON/OFF ON VR3 OFF OFF ON OFF ON VR4 ON/OFF ON ON ON/OFF ON/OFF VR5 OFF OFF ON OFF ON/OFF VR6 ON ON/OFF ON ON/OFF ON VR7 OFF OFF ON OFF ON/OFF VR8 ON/OFF ON ON ON/OFF ON/OFF
800
MHz Analog Control
Channel
800
MHz
Analog
Traffic
Channel
800
MHz
Digital
Control
Channel
800
MHz Digital Traffic
Channel
Page 3 – 30
VR9 OFF OFF OFF OFF OFF VR10 OFF OFF OFF ON/OFF* ON/OFF* VR11 OFF OFF OFF OFF OFF VR12 OFF OFF OFF OFF OFF VSIM ON/OFF ON ON ON/OFF ON
NOTE: * ON during interband MAHO
Original 10/98
PAMS
NSC–1
Technical Documentation
Software Compensations
Power Levels (TXC) vs. Temperature
Because of wide temperature range and poor cooling of the RF block, it is neccessary to compensate the effect of temperature on the output power. To monitor this environment change, temperature measurement is done by using NTC resistor. Factor table is used for temperature compensa­tion,. The table contains common values for all power levels and operat­ing modes. Table values are defined without factory measurements. Tem­perature is measured and right compensation value is added to TXC–val­ue. Requirement for compensation update is for every 1 minutes or after every 5 degrees C of temperature change. This means, that during ana­log mode transmission there will be a need for temperature reading and TXC compensation update. Because of poor cooling of RF block and in­sufficient linearity in high temperatures, output power is reduced from lev­el 2 to level 2.5 when temperature inside the phone is above +55 C in analog mode and above +60 C in digital mode.
Power Levels (TXC) vs. Channel
Duplexer frequency response ripple is compensated by software. Power levels are calibrated on four channels in production. Values for channels between these tuned channels are calculated by using linear interpola­tion.
Power levels vs. Battery Voltage
For saving battery capacity and because of insufficient linearity in digital mode, output power is decreased from level 2 to level 2.5, when battery voltage drops below 3.3V. (tbd.). The power reduction is done linearly as a function of battery voltage. Vcc 3.3V ... 3.1V –> PL2 ... PL2.5.
TX Power Up/Down Ramps
Transmitter output power up/down ramps are controlled by SW. A special ramp tables are used for that. Requirement is for nine different ramps in digital mode for both operating bands and one ramp for analog mode. Separate ramps are used in power up and power down ramps.
Modulator Output Level
For optimum linerity and efficiency the output level of the modulator is ad­justed in the production. AGC amplifier is used as 2 dB step attenuator to define power levels. The 0 dB level is the production tuned reference lev­el.
Digital Mode RSSI
Digital mode RSSI vs. input signal is calibrated in production, but RSSI vs. temperature and RSSI vs. channel are compensated by software.
Original 10/98
Page 3 – 31
NSC–1
PAMS

RF Block Specifications

Receiver
DAMPS 800 Mhz Front End
Parameter Minimum Typical /
Gain, LNA gain enabled
(gain variations vs temp. included)
Gain, LNA gain disabled 4 dB
Gain step 14 17 dB
Gain variation vs temp –30...+85 C,
amplifier enabled, ref. to nominal gain
Noise figure, LNA enabled 2.5 3.0 dB
Technical Documentation
Maximum Unit /
Nominal
19 21 24 dB
1.5 dB
Notes
First IF Amplifier
Parameter Minimum Typical /
Nominal
Operation frequency 116.19 MHz Supply voltage 2.7 2.8 2.9 V Current consumption 1.0 1.5 mA Insertion gain 10 14 dB Noise figure 3 dB IIP3 –20 dBm Input impedance TBD matched to the IF filter Output impedance TBD matched to PLUSSA
Maximum Unit / Notes
Page 3 – 32
Original 10/98
PAMS
NSC–1
Technical Documentation
Transmitter
RF Characteristics
Item DAMPS
TX frequency range 824.01...848.97 MHz Type Upconversion Intermediate frequency 161.19 MHz Nominal power on highest power level 0.6 W ( 27.8 dBm) Power control range 30+38 dB Maximum rms error vector 12.5 %
Power Levels
Power level Analog
mode
Class III Class IV Class IV dBm
Digital mode
800 MHz
Design tar-
get
Unit /
Notes
2
Reduced 2 (*
3 24 +2 ,–4 24 +2 ,–4 +2 ,–2 dBm 4 20 +2 ,–4 20 +2 ,–4 +2 ,–2 dBm 5 16 +2 ,–4 16 +2 ,–4 +2 ,–2 dBm 6 12 +2 ,–4 12 +2 ,–4 +2 ,–2 dBm 7 8 +2 ,–4 8 +2 ,–4 +2 ,–2 dBm 8 4 +2 ,–6 +2 ,–2 dBm 9 0 +2 ,–6 +2 ,–2 dBm
10 –4 +2 ,–6 +2 ,–2 dBm
27 +2 ,–4
26 +2 ,–2
28 +2 ,–4 26 +2 ,–2
+0.5 ,–1 +0.5, –1
dBm
(* Used when battery voltage goes lower than 3.3V and in high temperature.
Synthesizers
UHF
Parameter UHF 800MHz
analog mode
rx/tx injec-
tion
UHF 800MHz
digital mode
rx/tx slot
Unit /
Notes
Frequency range 985.20 ...
1010.16 Reference frequency 30 30 kHz Reference peaks @ 30 kHz
@ 60 kHz
–31 –70
985.20 ...
1010.16
–38 –57
MHz
dBc, max
Original 10/98
Page 3 – 33
NSC–1
PAMS
Parameter
2 x fo level –20 –20 dBc Phase noise, fo 60 kHz
fo 120 kHz Phase error 4 Residual FM
Filters: 300 Hz HP
3 kHz LP Frequency settling time
within 3 kHz
within 30 Hz 20 Start up settling time 30 3 ms, max
UHF 800MHz
analog mode
rx/tx injec-
tion
–115
150 Hz, max
UHF 800MHz
digital mode
rx/tx slot
–101 –121
1.4
2.0
Unit /
Notes
dBc/Hz,
max
, max
rms
ms, max
VHF
Technical Documentation
Parameter VHF, 800MHz
analog mode
tx injection
Frequency range 322.38 322.38 MHz Reference frequency 30 30 kHz Reference peaks @ 30 kHz
@ 60 kHz 2 x fo level –30 –30 dBc Phase noise, fo 60 kHz
fo 120 kHz Phase error 2 2 Frequency settling time
within 3 kHz
within 30 Hz 20 20 Start up settling time 20 20 ms, max
–31 –66
–105 –105 dBc/Hz,
VHF, 800MHz
digital mode
rx/tx slot
–41 –60
Unit /
Notes
dBc, max
max
, max
rms
ms, max
Output Levels
Parameter Minimum Typical /
2G UHF synthesizer to Lo buffer
level
resistive load
parallel capacitance
Nominal
tbd tbd
Maximum Unit /
–10 dBm
Notes
pF
1G UHF synthesizer to TX mixer
level
impedance VHF synthesizer to PLUSSA
level
resistive load
parallel capacitance
Page 3 – 34
100
1k
tbd
tbd
–5 dBm
mV
pF
pp
Original 10/98
PAMS
NSC–1
Technical Documentation
VCTCXO 19.44 MHz to BB
level
resistive load
parallel capacitance VCTCXO 19.44 MHz to PLUSSA
level
resistive load
parallel capacitance VCTCXO 58.32 MHz to PLUSSA
3 * fo level
fo and 2xfo level
harmonic supression
resistive load
parallel capacitance
MinimumParameter
1000
10k
100
50 –25 –25
Nominal
tbd tbd
5k
tbd
MaximumTypical /
10
100 mV
Unit /
Notes
mV
pp
pF
mV
pp
pF
pp
dBc dBc
pF
Original 10/98
Page 3 – 35
NSC–1
egul.,
tors
dual band
regul
tors in dual band
/
VCTCXO
multi lier, Plussa VHF
PLL
2 GHz PLL
/
UHF
td
800 UHF VCO
/
VCO
LO buffer, tdma800 TX
(via serial
TX mixer
/
O
RXPWR1
IF1 am
/
TX wr
modulator, TX wr
gy,
TXP1 &
800 band
/
synthesizer hase det
PAMS

Connections

RF–Baseband signals
Signal
name
VBAT battery RF
VREF CCONT Plussa
VR1 CCONT
From/
Control
RFCEN
To Parameter Min Typ Max Unit Function
2V8
r
PA
Plussa,
2GHz
Technical Documentation
Voltage 3.1 3.6 5.3 V Voltage during TX 3.0 3.6 5.0 V
.,
Current 1200 mA Voltage 1.478 1.50 1.523 V Current 10 uA Voltage 2.7 2.8 2.85 V
,
Current, tdma 800 3.0 7 9 mA Current, tdma1900 3.0 17 19 mA
Supply voltage for discrete 2V8 regula-
in
phone and PA PLUSSA reference
voltage Supply for VCTCXO &
p
prescaler and bias and
VR2 CCONT
SPWR1
VR3 CCONT
SPWR2
Plussa,
VCO1
VHF–
LO–buff,
bus)
VR4 CCONT
RXPWR1
VR5 CCONT
TXPWR1
VR6 CCONT Plussa
VR7 CCONT
Plussa,
VCTCX
IF1–amp
Plussa,
p
control
disc.PLL
Cobba_D
TX PA
TXP1
Voltage 2.7 2.8 2.85 V Current, tdma800 14 16 20 mA Current, tdma1900 off mA Voltage 2.7 2.8 2.85 V
,
Current, tdma800 20 24 30 mA Current, tdma1900 4 9 12 mA Voltage 2.7 2.8 2.85 V
Current, anal.RX 10 12 15 mA Current, digi.RX 30 32 34 mA Voltage 2.7 2.8 2.85 V
Current, TX–mode 33 37 41 mA Voltage 2.7 2.8 2.85 V
Current (RF block) 2.0 3.0 mA
Voltage 2.7 2.8 2.85 V Current, tdma800 55 60 mA
Supply voltage for
ma
and prescaler
Supply for VHF VCO, mixer and TXF
Supply for Plussa IF– parts, IF1–amp.
Supply for Plussa
p
control Plussa & disc PLL:
digital supply , Cobba_D: analog supply
TX PA and driver sup­ply
VR7_bias CCONT
V5V CCONT
RFTEMP RF CCONT Voltage 0 1.5 V RF temperature sen-
Page 3 – 36
MODE
RFCEN
TX PA
PLUSSA
Voltage 2.7 2.8 2.85 V Current, tdma800 3 mA Voltage 4.8 5.0 5.2 V Current 3.0 5.0 mA
TX PA bias
Plussa and discrete
p
sor (47 k NTC to GND)
Original 10/98
PAMS
C
VCTCXO. When DAC
gain control
GC2,
Polarit
reduced
AGC2
)
CO
1)
ode
mode PA
trol
f
O
detecto
Cobba
detector in Cobba_D
Load resistance
10
k
G
PGA 0 dB
NSC–1
Technical Documentation
Signal
name
AFC Cobba_D VCTCXO
AGC1 Cobba_D PLUSSA
Control
Voltage Min 0.05 1.2 2.25 V Resolution 11 bits Load resistance 10 k
(dynamic) Load resistance
(DC) Voltage Min 0.5 1.40 V
Load resistance 10 k Load capacitance 10 pF Resolution 10 bits Timing inaccuracy 8 us
110 k
FunctionUnitMaxTypMinParameterToFrom/
Automatic frequency control signal for VCTCXO. When DA is switched OFF AFC output is in high–Z mode
Digital mode receiver
.
DSP
AGC2 MAD RX LNA
(CTID
A
,
genpio)
BAND Cobba_D VHF
V
1
MODE MAD Analog/
digital
PA
m bias con-
Logic high ”1” 2.0 V Logic low ”0” 0.7 V Sink/source curr. 20 uA Load capacitance 10 pF Timing inaccuracy 8 us
Logic high ”1” 2.1 V TDMA1900 operation Logic low ”0” 0 0.4 V TDMA800 operation Sink/source curr. 1.0 mA Load capacitance 10 pF Timing inaccuracy 1 ms
Logic high ”1” 2.1 V Digital 800 operation Logic low ”0” 0 0.4 V Analog 800 operation Sink/source curr. 2.0 mA Load capacitance tbd pF Timing inaccuracy ms
LNA gain switch.
y: 0=
1=normal
DSP
DSP, MCU
DSP
IF2AP/
IF2AN
IF2DP/ IF2DN
Original 10/98
PLUSSA Cobba_D
PLUSSA Cobba_D
IF2 frequency 450 kHz Output level, 0.6 Vpp
Load capacitance 5 pF IF2 frequency 450 kHz
Output level 170 1400 mVpp Source imp. 600
Differential IF2–signal
rom limiter to DEM
r in
Differential IF2–signal to RX A/D–converter,
A = 0 dB
P
D
Page 3 – 37
NSC–1
circuits
circuits
(
,
(CTID,
f
age
indicator voltage
MUX
MUX
(SC
SC
)
SCLK
)
PLL
PAMS
Signal
name
RFC VCTCXO Cobba_D
RFCEN
RSSI PLUSSA CCONT
Control
MAD CTID
RFCEN
CCONT,
Cobba_D
)
Technical Documentation
FunctionUnitMaxTypMinParameterToFrom/
Frequency 19.44 MHz Signal amplitude 0.2 1.0 Vpp Load resistance 10 kW Load capacitance 5 pF
Logic high ”1” 2.0 V Supply voltage VR1
Logic low ”0” 0.5 V Supply voltage VR1
Current 100 uA timing inaccuracy 50 us
Voltage 0.1 1.5 V Load resistance 1 MW Load capacitance 50 pF Voltage 0.1 V
High stability clock sig­nal for the locig
ON, RFC enable
OFF, RFC disable
MCU, DSP Analog mode
ield strength
indicator volt
Digital mode
RXPWR1
RXPWR2
1)
RXPWR3
1)
MAD
(CTID,
LNASEL)
MAD
(CTID,
DSP
FTC)
MAD
(CTID,
DSP
FTC)
CCONT
RF block
2V8
regulator
RF block
2V8
regulator
Logic high ”1” 2.0 V Supply voltage VR4
ON
Logic low ”0” 0.5 V Supply voltage VR4
OFF
Current 100 uA timing inaccuracy 30 us
Logic high ”1” 2.0 V Supply voltage VR8
Logic low ”0” 0.5 V Supply voltage VR8
Current 100 uA timing inaccuracy 30 us
Logic high ”1” 2.0 V Supply voltage VR9
Logic low ”0” 0.5 V Supply voltage VR9
Current 100 uA timing inaccuracy 30 us
DSP
ON
OFF
DSP
ON
OFF
DSP
SCLK MAD
Page 3 – 38
LK
U,
PLUSSA,
UHF
PLL
tdma1900
Logic high ”1” 2 V Logic low ”0” 0.8 V Load resistance 50 kW Load capacitance 20 pF Data rate freq. 1.62 MHz
Original 10/98
Synthesizer and control clock
PAMS
(SC
S
)
SDATA
)
PLL
(SC
S
)
enable
SENA1
)
enable
)
(SC
S
)
dma1900
1)
SENA2
)
tdma1900
NSC–1
Technical Documentation
Signal
name
SDATA MAD
SENA1 MAD
SENA2 MAD
1
Control
U,
DATA
U,
ENA1
U,
ENA2
PLUSSA,
UHF
PLL
tdma1900
PLUSSA
UHF
PLL
t
Logic high ”1” 2.0 V Logic low ”0” 0.8 V Load resistance 50 k Load capacitance 20 pF Timing accuracy 20 us
Logic high ”1” 2.0 V Logic low ”0” 0.8 V Load resistance 50 k Load capacitance 20 pF
Logic high ”1” 2.0 V Logic low ”0” 0.8 V Load resistance 50 k
FunctionUnitMaxTypMinParameterToFrom/
Synthesizer and control data
Synthesizer and Plussa control
TDMA1900 UHF synthesizer enable
SPWR1
SPWR2
SPWR3
1) regul.
Cobba_D CCONT
Cobba_D CCONT
Cobba_D RF
2v8
Load capacitance 20 pF Logic high ”1” 2.0 V Supply voltage VR2
ON
Logic low ”0” 0.5 V Supply voltage VR2
OFF
Current 100 uA timing inaccuracy 200 us
Control sent via CCONT serial bus ”1” Supply voltage VR3
Control sent via CCONT serial bus ”0” Supply voltage VR3
Current 100 uA timing inaccuracy 200 us
Logic high ”1” 2.0 V Supply voltage VR10
Logic low ”0” 0.5 V Supply voltage VR10
Current 100 uA timing inaccuracy 200 us
DSP
ON
OFF
DSP
ON
OFF
DSP
TXA MAD
(MFI,
TXA
PLUSSA
)
Original 10/98
Logic high ”1” 2.5 V Power control loop
mode during tx burst
Logic low ”0” 0.2 V Power control loop
mode during ramp
up/down Load resistance 10 k Load capacitance 20 pF Timing inaccuracy 10 us
DSP
Page 3 – 39
NSC–1
level trolled
ussa reg
trolled via Plussa reg
TXPWR1
Pio(6)
)
2)
TXPWR1
(
(,
TX dri
3)
in
mode
PAMS
Signal
name
TXC Cobba_D PLUSSA
TXF PLUSSA MAD
TXIP/
TXIN
Control
Cobba_D PLUSSA
Technical Documentation
Voltage Min value
Max value Load resistance 10 k Load capacitance 10 pF Number of bits 10 Logic high ”1” 2.5 3.0 V Logic low ”0” 0 0.5 V Load capacitance 10 pF Differential voltage
swing Common mode v.
(digital mode) Load resistance
(differential)
0.12
2.27
200 k
0.15
2.30
0.8 V
0.18
2.33
1.18 V
V
FunctionUnitMaxTypMinParameterToFrom/
Makes transmitter power ramps and sets transmitter power
False transmission in­dicator, function con-
via Pl
ister Differential in–phase
pp
TX baseband signal for the RF modulator.
-
TXQP/
TXQN
TXLX1 MAD
Cobba_D PLUSSA
(CTID,RFtdma800
TXLX
TXLX2
1)
MAD
(TXLX2,
DSPGen-
)
tdma1900
RF
Differential voltage swing
Common mode v. (digital mode)
Load resistance (differential)
Logic high ”1” 2.1 V Low power level mode
Logic low ”0” 0 0.6 V High power level mode
Sink/source curr. 8.0 mA Load capacitance 10 pF Timing inaccuracy 8 us Logic high ”1” 2.1 V Low power level mode
Logic low ”0” 0 0.6 V High power level mode
Sink/source curr. 8.0 mA Load capacitance 10 pF Timing inaccuracy 8 us
200 k
0.8 V
1.18 V
Differential quadrature
pp
phase TX baseband signal for the RF mod­ulator.
for power detector
for power detector Timing tied to
DSP
for power detector
for power detector Timing tied to
DSP
TXP1 MAD
Page 3 – 40
MFI,
TXP
)
CCONT,
ver,
TX PA,
in
tdma800
Logic high ”1” 2.0 V Supply voltage VR7
ON
Logic low ”0” 0.5 V Supply voltage VR7
OFF Current 100 uA Load capacitance 10 pF Timing inaccuracy 10 us
DSP
Original 10/98
PAMS
(
1)
(,
,
3)
TX PA,
tdma1900
)
)
(
,
(CTID,
upco
BENA
)
u con
NSC–1
Technical Documentation
Signal
name
TXP2
TXPWR1
Control
MAD
MFI,
TXP
)
MAD
(CTID,
TXPWR1
Penta
reg,
TX driver,
TX PA
in
mode
CCONT
FunctionUnitMaxTypMinParameterToFrom/
Logic high ”1” 2.0 V Supply voltage VR11
ON Logic low ”0” 0.5 V Supply voltage VR11
OFF Current 100 uA Load capacitance 10 pF Timing inaccuracy 10 us Logic high ”1” 2.0 V Supply voltage VR5
Logic low ”0” 0.5 V Supply voltage VR5
DSP
ON, TX power control
enable.
800 tx–mixer enable
OFF, TX power control
disable
800 tx–mixer disable
TXPWR2
1)
TXPWR3 MAD RF
MAD CTID
BENA
(CTID,
)
RF
2v8
regul.
800 MHz
1) Signal in use only in dual band engine
2) Valid from MAD80
3) Multiplexed with band signal at BB
Current 50 uA Timing inaccuracy 8 us Logic high ”1” 2.0 V Supply voltage VR12
Logic low ”0” 0.5 V Supply voltage VR12
Current 50 uA Timing inaccuracy 1 us Logic high ”1” 2.0 V Upconv enabled
Logic low ”0” 0.5 V Upconv disabled
n.
.
Current 50 uA Timing inaccuracy 1 us
DSP
ON
OFF
DSP
DSP
Original 10/98
Page 3 – 41
NSC–1
PAMS

Data Interface and Timing

PLUSSA is programmed via a 3 wire serial bus. Control wires in the RF/ BB interface are named SENA1, SDATA and SCLK.
SDAT: Serial data input
The PLUSSA programming data is applied to that pin. The data is quali­fied by SCLK clock.
SCLK: Serial clock input
Qualifies the data applied to SDAT pin. Rising edge of the SCLK signal shifts the data to the PLUSSA’s internal shift register. The falling edge af­ter the third rising edge qualifies the internal addressing
SLE: Serial latch enable (active low) By forcing SLE line down the serial interface of the PLUSSA is activated. During the active state PLUSSA interface accepts the clocking and the data applied to the SCLK and SDAT pins. While SLE is high the interface is completely inactive, so multiple devices can share the same SCLK and SDAT lines.
Technical Documentation
SLE
SDAT
SCLK
t t
slc
sdc
t
cl hcl
t
ch
t
t
lh
Serial data input timing
Timing ratings.
abbr Definition Min [ns] Max [ns]
tslc SLE to SCLK setup time 40
tsdc SDAT to SCLK setup time 20
tch SCLK high period 50
tcl SCLK low period 50
thcl SCLK to SLE hold time 20
tlh SLE high period 4000
Page 3 – 42
Original 10/98
PAMS
ÇÇ
Ä
Ä
NSC–1
Technical Documentation
Digital control channels
5 ms
5 ms
SPWR1
SPWR2
SPWR3
RX
546 us
NL or MACA
N x 20 ms
RX
TX
min 22 ms
546 us
RXPWR1
RXPWR2
AGC1
AGC2
TXPWR1
TXLX
TXP1
TXA
TXC
AFC
200 us
100 us
2 ms
RFCEN
SDATA, SCLK
Original 10/98
VHF synth init & load
NL or MACA
ch loads 0 ... 24 pcs
UHF synth.
1GHz
ch load
1GHz UHF synth.
TXAGC
TDMA800 digital control channel timing diagram
Page 3 – 43
NSC–1
PAMS
Analog control channel
A4 B4 A5 B5 DS A1 B1 A2..B4 A5 B5DS A1 B1 A2..B4 A5 B5
VRBB
AGC2
RXPWR1
RXPWR2
”1”
1.5 ms
92.6 ms
46.3 ms
Technical Documentation
A1 B1
S
D
AFC
SPWR1
RFCEN
3.0 ms
3.0 ms
6 ms
Extended stand by mode timings
Page 3 – 44
Original 10/98
PAMS
NSC–1
Technical Documentation

Parts list of US4RSM (EDMS Issue 4.0) Code: 0201343

ITEM CODE DESCRIPTION VALUE TYPE
R150 1620019 Res network 0w06 2x10k j 0404 0404 R152 1620025 Res network 0w06 2x100k j 0404 0404 R153 1422881 Chip resistor 0.22 5 % 1 W 1218 R154 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R156 1430853 Chip resistor 2.2 M 5 % 0.063 W 0402 R159 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R161 1620025 Res network 0w06 2x100k j 0404 0404 R163 1620019 Res network 0w06 2x10k j 0404 0404 R164 1620019 Res network 0w06 2x10k j 0404 0404 R165 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R166 1825005 Chip varistor vwm14v vc30v 0805 0805 R168 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R169 1430690 Chip jumper 0402 R200 1620025 Res network 0w06 2x100k j 0404 0404 R201 1620025 Res network 0w06 2x100k j 0404 0404 R202 1620031 Res network 0w06 2x1k0 j 0404 0404 R203 1620031 Res network 0w06 2x1k0 j 0404 0404 R204 1620031 Res network 0w06 2x1k0 j 0404 0404 R205 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R206 1620101 Res network 0w06 2x470r j 0404 0404 R207 1620027 Res network 0w06 2x47r j 0404 0404 R208 1430744 Chip resistor 470 5 % 0.063 W 0402 R209 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R210 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R211 1620025 Res network 0w06 2x100k j 0404 0404 R212 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R213 1620027 Res network 0w06 2x47r j 0404 0404 R214 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R215 1620031 Res network 0w06 2x1k0 j 0404 0404 R216 1620031 Res network 0w06 2x1k0 j 0404 0404 R218 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R256 1620025 Res network 0w06 2x100k j 0404 0404 R257 1430690 Chip jumper 0402 R258 1430718 Chip resistor 47 5 % 0.063 W 0402 R259 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R260 1620023 Res network 0w06 2x47k j 0404 0404 R261 1430740 Chip resistor 330 5 % 0.063 W 0402 R264 1620027 Res network 0w06 2x47r j 0404 0404 R265 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R266 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R267 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R268 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R270 1430812 Chip resistor 220 k 5 % 0.063 W 0402
Original 10/98
Page 3 – 45
NSC–1
PAMS
R272 1430744 Chip resistor 470 5 % 0.063 W 0402 R273 1430710 Chip resistor 22 5 % 0.063 W 0402 R275 1620031 Res network 0w06 2x1k0 j 0404 0404 R701 1430700 Chip resistor 10 5 % 0.063 W 0402 R726 1430710 Chip resistor 22 5 % 0.063 W 0402 R731 1430820 Chip resistor 470 k 5 % 0.063 W 0402 R741 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R742 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R743 1430730 Chip resistor 150 5 % 0.063 W 0402 R744 1430730 Chip resistor 150 5 % 0.063 W 0402 R745 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R746 1430740 Chip resistor 330 5 % 0.063 W 0402 R747 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R751 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R752 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R756 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R758 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R759 1620023 Res network 0w06 2x47k j 0404 0404 R760 1620023 Res network 0w06 2x47k j 0404 0404 R761 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R762 1430851 Chip resistor 15 k 2 % 0.063 W 0402 R763 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R764 1430744 Chip resistor 470 5 % 0.063 W 0402 R765 1430744 Chip resistor 470 5 % 0.063 W 0402 R768 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R770 1430700 Chip resistor 10 5 % 0.063 W 0402 R771 1430700 Chip resistor 10 5 % 0.063 W 0402 R772 1430700 Chip resistor 10 5 % 0.063 W 0402 R774 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R775 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R776 1430726 Chip resistor 100 5 % 0.063 W 0402 R786 1430726 Chip resistor 100 5 % 0.063 W 0402 R787 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R788 1430744 Chip resistor 470 5 % 0.063 W 0402 R789 1430744 Chip resistor 470 5 % 0.063 W 0402 R791 1430690 Chip jumper 0402 R801 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R802 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R803 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R807 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R808 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R809 1430740 Chip resistor 330 5 % 0.063 W 0402 R810 1430726 Chip resistor 100 5 % 0.063 W 0402 R811 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R812 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R813 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R814 1430700 Chip resistor 10 5 % 0.063 W 0402
Technical Documentation
Page 3 – 46
Original 10/98
PAMS
NSC–1
Technical Documentation
R821 1430710 Chip resistor 22 5 % 0.063 W 0402 R822 1430700 Chip resistor 10 5 % 0.063 W 0402 R823 1430710 Chip resistor 22 5 % 0.063 W 0402 R830 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R831 1430700 Chip resistor 10 5 % 0.063 W 0402 R832 1430734 Chip resistor 220 5 % 0.063 W 0402 R833 1430700 Chip resistor 10 5 % 0.063 W 0402 R840 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R841 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R842 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R843 1430726 Chip resistor 100 5 % 0.063 W 0402 R850 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R851 1430726 Chip resistor 100 5 % 0.063 W 0402 R852 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R853 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R854 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R855 1430726 Chip resistor 100 5 % 0.063 W 0402 R894 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R901 1430700 Chip resistor 10 5 % 0.063 W 0402 R904 1430734 Chip resistor 220 5 % 0.063 W 0402 R906 1430718 Chip resistor 47 5 % 0.063 W 0402 R907 1430690 Chip jumper 0402 R910 1430726 Chip resistor 100 5 % 0.063 W 0402 R911 1430690 Chip jumper 0402 R930 1430726 Chip resistor 100 5 % 0.063 W 0402 R934 1620101 Res network 0w06 2x470r j 0404 0404 R936 1620031 Res network 0w06 2x1k0 j 0404 0404 R937 1620029 Res network 0w06 2x4k7 j 0404 0404 R938 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R939 1620029 Res network 0w06 2x4k7 j 0404 0404 R940 1800659 NTC resistor 47 k 10 % 0.12 W 0805 R941 1430726 Chip resistor 100 5 % 0.063 W 0402 R942 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R943 1430740 Chip resistor 330 5 % 0.063 W 0402 R990 1430718 Chip resistor 47 5 % 0.063 W 0402 C101 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C103 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C104 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C105 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C150 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C151 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C154 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C155 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C157 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C158 2320469 Ceramic cap. Y5 V 0603 C159 2320469 Ceramic cap. Y5 V 0603 C160 2320469 Ceramic cap. Y5 V 0603
Original 10/98
Page 3 – 47
NSC–1
PAMS
C161 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C162 2310781 Ceramic cap. 220 n 10 % 16 V 0805 C163 2320469 Ceramic cap. Y5 V 0603 C164 2320469 Ceramic cap. Y5 V 0603 C166 2320469 Ceramic cap. Y5 V 0603 C167 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C169 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C170 2320469 Ceramic cap. Y5 V 0603 C171 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C172 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C173 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C174 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C175 2312403 Ceramic cap. 2.2 u 10 % 10 V 1206 C176 2312403 Ceramic cap. 2.2 u 10 % 10 V 1206 C177 2610005 Tantalum cap. 10 u 20 % 16 V
3.5x2.8x1.9 C178 2610005 Tantalum cap. 10 u 20 % 16 V
3.5x2.8x1.9 C179 2604127 Tantalum cap. 1.0 u 20 % 35 V
3.5x2.8x1.9 C180 2320469 Ceramic cap. Y5 V 0603 C181 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C185 2610005 Tantalum cap. 10 u 20 % 16 V
3.5x2.8x1.9 C187 2320469 Ceramic cap. Y5 V 0603 C188 2610005 Tantalum cap. 10 u 20 % 16 V
3.5x2.8x1.9 C189 2320469 Ceramic cap. Y5 V 0603 C190 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C200 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C201 2320469 Ceramic cap. Y5 V 0603 C202 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C203 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C204 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C205 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C206 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C207 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C209 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C210 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C212 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C214 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C217 2320469 Ceramic cap. Y5 V 0603 C218 2320469 Ceramic cap. Y5 V 0603 C219 2320469 Ceramic cap. Y5 V 0603 C220 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C221 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C223 2320131 Ceramic cap. 33 n 10 % 16 V 0603
Technical Documentation
Page 3 – 48
Original 10/98
PAMS
NSC–1
Technical Documentation
C225 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C227 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C228 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C250 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C255 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C256 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C258 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C259 2312296 Ceramic cap. Y5 V 1210 C260 2312296 Ceramic cap. Y5 V 1210 C261 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C262 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C263 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C264 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C265 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C266 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C268 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C269 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C270 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C271 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C273 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C275 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C277 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C278 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C279 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C281 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C282 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C283 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C284 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C285 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C286 2320469 Ceramic cap. Y5 V 0603 C703 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C706 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C707 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C708 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C709 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C710 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C739 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C741 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C743 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C744 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C745 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C746 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C747 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C748 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C755 2320728 Ceramic cap. 220 p 10 % 50 V 0402 C756 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C757 2320552 Ceramic cap. 47 p 5 % 50 V 0402
Original 10/98
Page 3 – 49
NSC–1
PAMS
C758 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C759 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C760 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C761 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C762 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C763 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C764 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C765 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C766 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C767 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C768 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C769 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C770 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C773 2320618 Ceramic cap. 4.7 n 5 % 25 V 0402 C778 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C779 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C780 2320586 Ceramic cap. 1.2 n 5 % 50 V 0402 C781 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C782 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C783 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C784 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C785 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C786 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C787 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C788 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C789 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C790 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C792 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C801 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C802 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C803 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C806 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C807 2611668 Tantalum cap. 4.7 u 20 % 10 V
3.2x1.6x1.6 C808 2320540 Ceramic cap. 15 p 5 % 50 V 0402 C809 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C810 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C811 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C816 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C821 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C824 2610005 Tantalum cap. 10 u 20 % 16 V
3.5x2.8x1.9 C825 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C830 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C831 2310248 Ceramic cap. 4.7 n 5 % 50 V 1206 C833 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C834 2320564 Ceramic cap. 150 p 5 % 50 V 0402
Technical Documentation
Page 3 – 50
Original 10/98
PAMS
NSC–1
Technical Documentation
C840 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C841 2320728 Ceramic cap. 220 p 10 % 50 V 0402 C842 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C843 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C844 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C845 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C850 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C853 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C854 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C855 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C856 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C857 2320728 Ceramic cap. 220 p 10 % 50 V 0402 C858 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C900 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C901 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C902 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C903 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C904 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C905 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C906 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C907 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C908 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C910 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C914 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C917 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C920 2320917 Ceramic cap. 25 V 0402 C921 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C923 2320941 Ceramic cap. 10 V 0402 C924 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C925 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C926 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C927 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C928 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C929 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C931 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C933 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C934 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C937 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C939 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C940 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C943 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C965 2320560 Ceramic cap. 100 p 5 % 50 V 0402 L103 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L104 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L105 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L150 3203701 Ferrite bead 33r/100mhz 0805 0805 L701 3641572 Chip coil 22 n 5 % Q=45/250 MHz
Original 10/98
Page 3 – 51
NSC–1
PAMS
0805 L702 3643101 Chip coil 270 n 10 % Q=20/25 MHz 0805 L703 3640051 Chip coil 12 n 5 % Q=45/250 MHz 0805 L705 3608319 Chip coil 270 n 10 % 1206 L741 3641620 Chip coil 180 n 5 % Q=35/100 MHz 0805 L750 3643067 Chip coil 100 u 5 % Q=15/796 kHz 1008 L801 3645043 Chip coil 47 n 2 % Q=40/200 MHz 0805 L840 3641620 Chip coil 180 n 5 % Q=35/100 MHz 0805 L841 3641575 Chip coil 100 n 5 % Q=40/150 MHz 0805 L850 3645045 Chip coil 10 % Q=45/10 MHz 0805 L900 3645157 Chip coil 100 n 10 % Q=12/100 MHz 0603 L901 3645005 Chip coil 15 n 10 % Q=12/100 MHz 0603 L902 3645005 Chip coil 15 n 10 % Q=12/100 MHz 0603 L903 3645005 Chip coil 15 n 10 % Q=12/100 MHz 0603 L904 3645157 Chip coil 100 n 10 % Q=12/100 MHz 0603 L905 3645005 Chip coil 15 n 10 % Q=12/100 MHz 0603 L906 3645157 Chip coil 100 n 10 % Q=12/100 MHz 0603 L907 3203701 Ferrite bead 33r/100mhz 0805 0805 L931 3645157 Chip coil 100 n 10 % Q=12/100 MHz 0603 L940 3645001 Chip coil 4 n 10 % Q=10/100 MHz 0603 B150 4510003 Crystal 32.768 k +–20PPM 8x3.8 G820 4350121 Vco 985.2–1010.2mhz 2.8v 8ma tdma TDMA G850 4510165 VCTCXO 19.44 M +–2.5PPM 2.8V F150 5119019 SM, fuse f 1.5a 32v 0603 Z100 3640069 Filt 47pf 25v 0r01 6a 1206 Z701 4510121 Saw filter 881.5+–12.5 M /3.5DB 4X4 Z741 4511011 Saw filter 116.19+–0.015 M 9.3X5 Z750 4550057 Cer.filt 450+–12.5khz 11.8x7.5 11.8x7.5 Z900 4511031 Saw filter 161.2/196.2 M 5X5 Z901 4510127 Saw filter 836.5+–12.5 M /3.5DB 4X4
Technical Documentation
Page 3 – 52
Original 10/98
PAMS
NSC–1
Technical Documentation
Z910 4512081 Dupl 824–849/869–894mhz 19.1x11.9 19.1x11.9 Z970 4550047 Dipl 824–894/1850–1990mhz 3.4x2.7 3.4x2.7 V150 4210037 Transistor BCW30 pnp 32 V 0.1 A SOT23 V151 4110067 Schottky diode MBR0520L 20 V 0.5 A SOD123 V152 4210052 Transistor DTC114EE npn RB V EM3 V153 4211202 DM MosFet p–ch 50 V 0.13 A SOT23 V200 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V201 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V202 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V250 4210100 Transistor BC848W npn 30 V SOT323 V254 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V741 4210066 Transistor BFR93AW npn 12 V 35 mA SOT323 V800 4219903 Transistor x 2 BFM505 npn 20 V 20V18 mA SOT363 V803 4110018 Cap. diode BB135 30 V SOD323 V840 4210066 Transistor BFR93AW npn 12 V 35 mA SOT323 V850 4210100 Transistor BC848W npn 30 V SOT323 V929 4110008 Schottky diode HSMS2825 8 V SOT143 V930 4110008 Schottky diode HSMS2825 8 V SOT143 V932 4112469 Pindix2 bar64–07 200v 0.1a sot143 SOT143 D200 4340397 IC, SRAM STSOP3 D201 4340261 IC, flash mem. TSO48 D202 4370249 Mad1 rom2 f711857 c12 tqfp144 TQFP144 D203 4340357 IC, EEPROM SO8 N150 4370391 Ccont2h dct3 bb asic tqfp64 TQFP64 N151 4370165 Chaps charger control so16 SO16 N250 4370413 Cobba_d b05 bb asic damps tqfp64 TQFP64 N701 4370063 Sc3918 tdma rec 869–894mhz qsop16 QSOP16 N750 4370273 Plussa txmod+rxif+2pll tqfp64 TQFP64 N900 4340171 IC, upconv 1.9ghz 3v souPC8106T SO6S N902 4340515 Fmm5024ml power amp 800mhz sso6 SSO6 N903 4370311 Rf9103p1 pw amp 824–849 mhz X100 5469061 SM, system conn 6af+3dc+mic+jack X102 5460021 SM, conn 2x14m spring p1.0 pcb/p PCB/PCB X104 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X105 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X991 5429007 SM, coax conn m sw 50r 0.4–2ghz
9854360 PC board US4RS
Original 10/98
Page 3 – 53
NSC–1
PAMS
Technical Documentation
This page intentionally left blank.
Page 3 – 54
Original 10/98
Loading...