Nokia 434 System Module 03

PAMS Technical Documentation
NHN–5NT Transceiver
Chapter 3
System Module JF5
Originat 05/98
Copyright 1998 Nokia Mobile Phones. All rights reserved.
PAMS
System Module JF5
Amendment Number
Technical Documentation
AMENDMENT RECORD SHEET
Date Inserted By Comments
Page 3 – 2
Originat 05/98
PAMS
Technical Documentation
CONTENTS
Transceiver NHN–5N – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Technical Summary – 6. . . . . . . . . . . . . . . . . . . . . . .
Modes of Operation – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Ratings – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signals – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UIF Connector – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Connector – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRLU Control Block – 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Description – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main Components – 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWRU – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Specifications – 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Description – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram of MUUMI ASIC – 22. . . . . . . . . . . . . . . . . . . . . .
Main components – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUDIO – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main features – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical specifications – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block description, Audio Processor – 28. . . . . . . . . . . . . . . . . .
Main components – 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module JF5
RF Section – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Summary – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Submodules – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specification and Functional Description – 31. . . . . . . . . . . . . . . . .
Characteristics of the Module – 32. . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connections – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Antenna – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional description , RF section – 38. . . . . . . . . . . . . . . . . . . . . .
Block Diagram – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Key components – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX Synthesizer – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Originat 05/98
Page 3 – 3
PAMS
System Module JF5
RF Characteristics – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX Synthesizer – 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RX loop filter – 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX Synthesizer – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX Loop Filter – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regulators – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC function – 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts List of JF5 system module – 45. . . . . . . . . . . . . . . . . . . . . . . .
Technical Documentation
Page 3 – 4
Originat 05/98
PAMS
Technical Documentation
Transceiver NHN–5N

Introduction

Functional Description
The NHN–5N transceiver electronics consists of the UI module PCB and
the RF/system PCB. The UI module is connected to the system module
with a connector. The system and RF submodules are interconnected
with PCB wiring. The phone can be connected to accessories with a bot-
tom system connector, which includes charging and accessory control.
Block Diagram
The NHN–5N consist of 2 PCB’s: JF5 system module and GN4 user inter-
face module.
System Module JF5
The JF5 consists of 2 submodules, BASEBAND and RF. BASEBAND
consist of 3 functional blocks: PWRU, CTRLU and AUDIO; RF also con-
sists of 3 modules: RX, SYNT, TX; while the GN4 is the User Interface
module (UIF–module, kindly refer to section 4.).
RX
PWRU
CTRLU
BASEBAND–submodule
UIF–module
LCDLCD
LCD Driver
AUDIO
SYNT
TX
RF–submodule
BUZZER MIC,EAR
DUP
ANT
Originat 05/98
Page 3 – 5
PAMS
System Module JF5

Baseband

Introduction

The baseband submodule controls the internal operation of the phone. It
controls the user interface, i.e. LCD driver, keyboard and audio interface
functions. The module performs all signalling towards the system and car-
ries out audio–frequency signal processing. In addition, it controls the op-
eration of the transceiver and stores tuning data for the phone.
Baseband Technical Summary
All functional blocks of the baseband are mounted on a single multi layer
printed circuit board. This PCB contains also the RF–parts. The chassis
of the radio unit contains separating walls for baseband and RF. All com-
ponents of the baseband are surface mounted and soldered by reflow.
The connections to accessories are fed through the CAP (Common Ac-
cessory Platform) bottom connector of the radio unit. The connections to
User Interface –module (UIF) are fed through a board to board connector.
There is no physical connector between RF and baseband.
Technical Documentation
Modes of Operation
The module has three operating modes: stand–by, listening and con-
versation mode.
Standby mode:
MCU clock is switched off, only NIPA timer is running to enable battery
save timings.
If a charger is connected, the MCU doesn‘t go to standby mode.
Listening mode:
In the listening mode some blocks of the audio IC (NIPA) are in standby
state.
Conversation mode:
In the conversation mode all ICs are active.
Page 3 – 6
Originat 05/98
PAMS
bits/s
Technical Documentation
Maximum Ratings
Parameter Value
Operating temperature range –25 ... +55 deg. C Storage temperature range –40 ... +85 °C VBAT max. 8.8 V (TX off) VBAT max. 7.5 V (TX on) VC max. 16 V. Battery charging is enabled +5 ... +45 °C
DC Characteristics
Pin / Conn. Line Symbol Minimum Typical /
Nominal
VCS
11.0V 12.0V 16.0V Slow charger
Maximum Unit / Notes
System Module JF5
VBA T 5.3V 6.0V 8.8V VRF 5.3V 6.0V 8.8V VBAT for RF mod-
VA 3.2V 3.3V 3.42V Imax = 40mA VL 3.2V 3.3V 3.42V Imax = 40mA VL3 4.5V 4.75V 5.0V Imax = 180mA VREF 3.2V 3.3V 3.42V Imax = 5mA
Signals
Pin /
Line Symbol Mini-
Conn.
6/system M2BUS
9.8V 10.3V 10.8V Fast charger
ule
mum
Typi-
cal /
Nomi-
Max-
i-
mum
Notes
nal
0V 0.7V Input low level
2.3V 5.25VInput high level
Isink<5m ABaud rate 9600
0V 0.2V 0.35VOutput low level
.
10/sys-
HOOK
tem
Originat 05/98
4.1V 4.5V 5.0V Output high level 0V 0.5V Input low level
2.4V 3.2V Input high level
Hook
Page 3 – 7
detection
detection resistor in
g
F
key ad
PAMS
System Module JF5
Line SymbolPin /
Conn.
2/system VOUT
5/system BOOST0
11/sys­tem
BOOST1
Technical Documentation
Mini­mum
0V 0.2V 0.4V Output low, power
4.1V 4.5V 5.0V Output high, power
Typi-
cal /
Nomi-
nal
0V booster detect /
3.3V booster detect /
0V booster detect /
i-
mum
off
on
power control ”0”
power control ”1”
power control ”0”
NotesMax-
HDA de­vice pow­er on/off
RF booster
/ power select
RF booster
3.3V booster detect / power control ”1”
12/sys­tem
2/battery BSI
3/battery BTEMP 1.0V 47k, B=4050 NTC between
3,4/UIF BACKLIGHT
VCS
9.8V 16V Isink < 730mA
1.95V 400mAh Li–ION
0.45V 550mAh NiMH
1.95V 1500mAh Li–ION
BTEMP and ground in battery pack.
A 47k pull–up resistor in HP. Vibrator control output (AC– controlled)
0mA backlights off
40mA backlights on
/ power select
A 47k pull–up
HP.
Back­light– ing for keymat
17–24/UI
7–9/UIF ROW(0:2)
Page 3 – 8
LD(0:7)
0V 0.7V Output/Input low
2.3V 3.3V Output/Input high 0V 0.7V Input low
2.8V 3.3V Input high
LCD I/O,
p
output Keypad
input
Originat 05/98
PAMS
data/con
ON but
Technical Documentation
Line SymbolPin /
Conn.
25/UIF LCDREG
26/UIF LCDCS
27/UIF LCDRESET
11/UIF XNWR
Mini­mum
0V 0.7V Output low
2.8V 3.3V Output high 0V 0.7V Output low
2.8V 3.3V Output high 0V 0.7V Output low
2.8V 3.3V Output high 0V 0.7V Output low
2.8V 3.3V Output high
Typi-
cal /
Nomi-
nal
i-
mum
System Module JF5
NotesMax-
LCD
-
trol LCD chip
select LCD re-
set
LCD write
28/UIF XNRD
10/UIF LCDCLK
12/UIF XPWRON
0V 0.7V Output low
2.8V 3.3V Output high 0V 0.7V Output low
2.8V 3.3V Output high 0V 0.7V Input low
2.8V 3.3V Input high
LCD read
LCD clock
Power ton
UIF Connector
Signal Name Pin Notes
VL 1 Logic supply voltage 3.3V CALLLED 2 Call LED BACKLIGHT 3,4 Backlights on/off VNEG 6 Negative voltage for LCD module ROW0,1,2 7–9 Lines for keyboard read
-
LCDCLK 10 LCD Driver clock XNWR 11 LCD Driver write selection input XPWRON 12 Power on control from keyboard GND 13,14,15,16 Ground LD(0:7) 17–24 Parallel data for LCD driver LCDREG 25 LCD Driver control/data select
Originat 05/98
Page 3 – 9
PAMS
System Module JF5
LCDCS 26 LCD Driver chip select LCDRESET 27 LCD Driver reset XNRD 28 LCD Driver read selection input
Technical Documentation
NotesPinSignal Name
System Connector
Signal Name Pin Notes
GND 1, 8 Power supply ground. XMIC 3 External audio input from accessories
or handsfree microphone. There is a pull–down resistor in accessory for identification
M2BUS 6 Serial bidirectional data and control be-
tween the handphone and accessories. A 10k pull–up resistor in HP.
BOOST0,1 5,11 RF booster detection lines / RF power-
level control.
HOOK 10 HOOK–indication. The phone has a
47k pull–up resistor. VOUT 2 Hand–free device power on/off. XEAR 9 External audio output to accessories or
handsfree speaker. There is a DC volt-
age control for HF unit mute control. BGND BGND Battery connector BTEMP BTEMP Battery connector, Battery temperature BSI BSI Battery connector VBAT B+ Battery connector VCS 12,CH+,
DC+
Battery charging voltage
Page 3 – 10
Originat 05/98
PAMS
Technical Documentation
Connections
Battery Connector
4
+
34
Charging Connectors
3
12 7 1 6
12
Locking
System Module JF5
1
2
RF–connector
(not used)
System Connector
Originat 05/98
Page 3 – 11
PAMS
System Module JF5
Technical Documentation
CTRLU Control Block
The Control block controls all phones functions and it includes modem and SIS–processor too.
CTRLU internal signals, input
Signal Name Notes From
VL Logic supply voltage, 3.3V. PWRU VL3 Logic supply voltage, 4.75V. PWRU VREF Reference voltage 3.3V 3%. Max. PWRU XRES Reset line from MUUMI PWRU PWRON Power on signal from MUUMI PWRU VCHARG Charger voltage to A/D converter PWRU VBATSW Battery voltage to A/D converter. VCHARG CLKMCU Clock signal from NIP A. AUDIO NMI No maskable Interrupt reques from NIPA AUDIO XINT Interrupt reques from NIPA. AUDIO HOOK HOOK–indication SYSTEM BTEMP Battery temperature SYSTEM BSI Battery size indication SYSTEM M2BUS Serial interface SYSTEM RFTEMP RF temperature SYNT RSSI Received signal strenght indication RX TXI Transmitter output power level indication TX XPWRON Power buttom from UIF. UIF ROW0 Line for keyboard read. UIF ROW1 Line for keyboard read. UIF ROW2 Line for keyboard read. UIF ACCDET Accessory detection line SYSTEM
Page 3 – 12
Originat 05/98
PAMS
Technical Documentation
System Module JF5
CTRLU internal signals, output
Signal Name Notes To
CSW Charger control PWRU VOUT Headset–adapter powersupply SYSTEM M2BUS Common serial clock (NIPA,sis) SYSTEM AGC Gain control RX RXE RX Circuit power on/off RX SCLK Synchronous data clock for synthesizers SYNT SDAT Synchronous data for synthesizers /
TX duplex filter current control 2 (option) SLE Synthesizer data latch enable SYNT TXE Transmitter control (on/off) TX TXC Transmitter Power Control TX XNCS NIPA chip select signal AUDIO XNWR NIPA/LCD write control signal AUDIO.UIF
SYNT, TX
XNRD NIPA/LCD read control signal AUDIO,UIF NA0–3 NIPA/LCD address bus AUDIO,UIF ND0–7 NIPA/LCD data bus AUDIO,UIF EARENA Ear amplifier enable AUDIO KBINT Keyboard interrupt AUDIO MBUSINT MBUS interrupt AUDIO MBUSOUT MBUS out PWRU LIGHTS Backlights on/off UIF LCDCS LCD Driver chip select UIF LCDRESET LCD Driver reset UIF XEARON External ear amplifier enable SYSTEM XEARDC PHF5 DC mute control SYSTEM
Originat 05/98
Page 3 – 13
PAMS
System Module JF5
Block Description
– CTRLU – PWRU
MCU controls the watchdog timer in the MUUMI ASIC. It sends a positive pulse approximately once every 1 s to the XPWROFF pin of the MUUMI to keep the power on. If the CTRLU fails to deliver this pulse, the MUUMI will remove power from the system. The CTRLU controls also the char­ger on/off switching in the PWRU block. When power off is requested, the CTRLU leaves the MUUMI watchdog without reset. After the watch­dog has elapsed the MUUMI cuts off the supply voltages from the phone. Battery charging is controlled by CSW line.
VBATSW , Battery voltage measurement
Battery voltage can be measured from 5.4 V to 10.3 V nominal with 3.3 V reference voltage. The absolute accuracy is low because of the refer­ence 3 % accuracy and A/D–converter +/– 8 LSB accuracy . This battery voltage measurement offset error must be calibrated with input voltage
6.0 V and 8.2 V. The A/D conversion result can be calculated from the following equation:
Technical Documentation
A/D readout = 1024 * (VBATSW* ( 47/147)) / VREF
VREF=3.3 V
For example:
8.2 V results 814 = 32EH
6.0 V results 595 = 253H
VCHARG , Charger voltage measurement
Charger voltage can be measured up to 18.3 V nominal. The A/D–con­version result can be calculated from equation :
A/D readout = 1024 * (VCSW*(22/122)) / VREF VREF=3.3 V For example:
12.0 V gives 671 = 29FH
6.0 V gives 336 = 150H
BSI , Battery size indication
Battery type can be defined with the BSI resistor value. A NiMH battery has a different BSI resistor compared with a Li–ION battery. Different sizes of the Li–ION batteries cannot be identified.
BTEMP , Battery temperature measurement
Battery temperature measurement is implemented with a 47 kohm NTC with N value of 4050 and 47 kohm pullup resistor. The A/D conversion readout can be calculated from equation:
Page 3 – 14
A/D readout= 1024* ( R
For example:
45 C gives ? 25 C gives ? 5 C gives ? 0 C gives ?
NTC
/( R
NTC
+47k))
Originat 05/98
PAMS
Technical Documentation
Battery voltage is measured over the VBATSW and charging voltage over the VCHARG. Battery temperature is measured over the BTEMP line. Battery size is determined by reading the BSI line. This is pulled to +3,3V by a 47kohm resistor. In the battery pack a ”size” resistor is connected between BSI and GND. Battery charging is controlled by the CSW line. Muumi watchdog is refreshed by controlling XPWROFF line.
– CTRLU – AUDIO
Interface between the MCU and the NIPA circuit is a bidirectional 8–bit data bus with 4 address lines. Address, data and control lines are used in the MCU as I/O–port pins. The data lines direction is controlled with the MCU data direction register. The interface includes address outputs NA0–3, data inputs (read) / outputs (write) ND0–7, chip select control out­put XCS , read control output XRD, write control output XWR and inter­rupt input XINT. When the MCU is in sleep state, the control signals XRD and XCS must be in ’0’ state and the address output NA0–3 and NWR in ’1’ state and data lines ND0–7 must be in ‘0‘ state.
– CTRLU – UIF
System Module JF5
The keyboard is connected directly to the controller. ND0–6 are the out­put lines and ROW0–2 are the input lines. Keyboard scanning is done by driving one ND line to 0 V at the time. If any key is pressed, then the cor­responding ROW line goes to 0V and the phone knows which key is pressed.
Data to the LCD Driver is written and read by ND(0:7) lines. XNRD/ XNWT are the read / write selection lines and NA0 is the instruction / data register selection line. LCDCS line enables the LCD driver.
ND(0:7) lines are in 0 V state when phone is in sleep mode so that any key pressing can be indicated.
Keyboard and LCD lights are controlled by LIGHTS signal.
– CTRLU – RX
RX circuit power is switched on/off by RXE signal. The received signal strength is measured over the RSSI and the inter-
mediate frequency is measured over the IF.
– CTRLU – SYNT
RF temperature is measured over the RFTEMP. Frequency is controlled by the AFC signal. The synthesizer is controlled via the synchronous se­rial bus SDAT/SCLK. The data is latched to the synthesizer by the posi­tive edge of SLE line. The TX synthesizer power on/off (TXS/port P3) line is controlled via PLL circuit.
Originat 05/98
Page 3 – 15
PAMS
System Module JF5
– CTRLU – TX
The transmitter output power level is measured over the TXI. TXE line activates the power module. The power is controlled via TXC line which is a PWM–controlled output port.
Technical Documentation
Main Components
– MCU
The phone MCU H8/3092 is a CMOS MCU. All the memory needed (128 kB ROM, 4 kB RAM) except the EEPROM, is located in the controller. MCU operating clock (7.3728 MHz) is generated on the NIPA.
MCU Pins are listed in the table:
Pin No Port Signal Description
1 PB0 SISCLK Clock for SIS prosessor 2 PB1 SISDATA Serialdata to SIS prosessor 3 PB2 EDATA Serial data to EEPROM 4 PB3 RXD Serial interface (M2BUS) 5 PB4 SCLK Serial clock for synthesiz 6 PB5 HOOK Handset hook signal 7 PB6 PWRON Power button 8 PB7 SLE RX/TX synthesizer latch 9 P90 TXD Serial interface (M2BUS) 10 P92 RXD M2BUS net free timer input 11 P94 ECLK Clock to EEPROM 12 Vss GND MCU Ground 13–20 P30–P37 ND0–7 Paraller data bus for NIPA,LCD & keys 21 Vcc VL Power supply for processor 22 P10 NA0 Address line for NIPA and LCD regis-
ter 23 P11 NA1 Address line for NIPA 24 P12 NA2 Address line for NIPA 25 P13 NA3 Address line for NIPA 26 P14 XNCS NIPA chip select 27 P15 XNWR Read/write control to NIPA 28 P16 XNRD Read/write control to NIPA 29 P17 LCDCD LCD chip select 30 GND MCU Ground
Page 3 – 16
Originat 05/98
PAMS
Technical Documentation
31 32–35 P21–P24 ROW0–3 Keypad inputs 36 P25 protoseries indicator, pull–down if pro-
37 P26 38 P27 CALLCNT Call continue during battery change 39 P50 XPWROFF Muumi watchdog refresh 40 P51 EARENA EAR amplifier enable 41 P52 42 P53 LCDRESET Reset to LCD 43 P60 44 MD0 45 MD1 46
P20 LIGHTS Backlight control
to
System Module JF5
47 STBY 48 RES XRES Reset from MUUMI 49 NMI NMI Interrupt request from NIPA 50 Vss GND Ground 51 EXTAL EXTAL External system clock from NIPA 52 XTAL 53 Vcc VL 54 P63 TXE Transmitter on/off 55 P64 AGC Gain control 56 P65 RXE RX circuit power on/off 57 RESO 58 AVcc 59 P70 VBATSW Battery voltage 60 P71 VCHARG Charger voltage 61 P72 RSSI Received signal strength 62 P73 TXI Transmitter power monitor 63 P74 BTEMP Battery temperature 64 P75 BSI Battery size indication 65 P76 RFTEMP RF temperature 66 P77 ACCDET Accessory detection 67 Vref Vref Reference voltage for processor 68 AVcc Vref Reference voltage for processor
Originat 05/98
Page 3 – 17
PAMS
System Module JF5
69
P80 XINT Interrupt request from NIPA
Technical Documentation
70 P81 71 P82 72 P83 73 PA0 BOOST1 RF booster control 74 PA1 BOOST0 RF booster control 75 PA2 XEARDC DC to XEAR line control 76 PA3 XEARON XEAR amplifier ON 77 PA4 CSW Charging control 78 PA5 SDAT Serial data for synthesiz 79 PA6 TXC TX syntetisizer enable. Active high. 80 PA7 VOUT Power supply to HDA
– SIS
Motorola SIS 68HC11A8 (subscriber identification) circuit connected to the controller over serial bus IIC.
SIS processor signals:
Pin Description
EXTAL Clock input from NIPA RESET Reset input PD0 IIC bus data PD1 IIC bus clock
– EEPROM
There is two 8k EEPROM in phone. EEPROM is a nonvolatile memory into which is stored the tuning data for the phone. In addition, it contains the short code memory locations to retain user selectable phone num­bers.
EEPROM signals:
Pin Description
SDA IIC bus data SCL IIC bus clock
Page 3 – 18
Originat 05/98
PAMS
Technical Documentation
System Module JF5

PWRU

Introduction
The power block generates the supply voltages for the baseband and in­cludes also the charging electronics.
Technical Specifications
TPWRU internal signals, inputs
Signal Name Notes From
CSW Charger control CTRLU MBUSOUT Serial interface CTRLU XPWRON Power on control from keyboard UIF XPWROFF Power off control from controller (watch dog) CTRLU VBAT Battery voltage input SYSTEM VCS Charging supply voltage from charger SYSTEM
TPWRU internal signals, outputs
Signal Name Signal description To
XRES Master reset CTRLU PWRON Power on signal for microprosessor. CTRLU VL Logic supply voltage, 3.3V CTRLU,AU-
DIO,UIF
VL3 Logic supply voltage, 4.75V CTRLU,
AUDIO
VA Analog supply voltage. Max 40 mA. SYNT,
AUDIO
VREF Reference voltage 3.3V 3%. Max. 5mA. CTRLU, RF,
TX VBATSW Battery voltage to A/D converter. CTRLU VCHARG Charger voltage to A/D converter. CTRLU VRF Battery voltage to RX–unit RX VBAT Battery voltage to TX–unit TX M2BUS Serial interface SYSTEM
Originat 05/98
Page 3 – 19
PAMS
System Module JF5
Block Description
The baseband power supplying circuit includes: – the supply voltages:
– Regulator has been used before MUUMI – switched output of battery (VBATSW) and charger voltage (VCHARG) measurements to the MCU A/D–converter – battery voltage detection and reset logic – charger switch control output used to limit battery voltage VBAT < 8.8V – power on/off switch input (XPWRON), buffered output to MCU (PWRON) – watchdog timer using oscillator in COFF pin , cleared by falling edge input in PWROFFX, elapsing time for watchdog timer is 3 ... 4 seconds – M2BUS open drain output driver is not used.
Technical Documentation
VL 40mA for digital circuits VL3 20mA for RF VA 20mA for analog circuits VREF 5mA reference voltage for A/D–converters and
regulators
The charge switch driving circuit is implemented with discrete compo­nents. This circuit includes transient voltage protection, soft charge switching, low voltage battery charging and battery disconnecting with charger connected protection. This circuit also limits battery voltage when charger is connected to protect MUUMI and TX transistors.
Power circuitry have three different operating modes: POWER OFF , RE­SET and POWER ON. In POWER OFF state MUUMI regulator outputs are disabled and reset control output signal (PURX) is active low. MUUMI internal oscillator at pin COFF is working in all operating modes. MUUMI goes through short RESET state (100ms ) to POWER ON–state , if PWR–button is pressed or charger voltage input is connected to charging input VCS (charging voltage detection in MUUMI input VCHAR is level active). In RESET–state regulator outputs VL,VA and VREF are active and PURX–signal is active low. If battery voltage on MUMMIs pin is lower than 4.1 V (3.9V...4.3V) the circuit cannot go to POWER ON state. MUUMI goes also to RESET state, when battery voltage on MUUM­Is pin is falling below 3.9 V (3.7V...4.1V). This situation is possible, when battery is fully discharged or battery is disconnected.
In POWER ON mode all regulator outputs are active and MUUMI reset signal output PURX is inactive high. MCU XPWROFF–output signal clears at falling edge the watchdog inside MUUMI. If the watchdog is not cleared , MUUMI goes to POWER OFF state. When the charger is con­nected and battery voltage on MUUMIs pin is higher than 4.1V , module stays in POWER ON mode.
The MCU controls battery charging with CSW output (which is PWM–con­trolled output port) and MUUMI limits the maximum battery voltage to 8.8 V with CHRGSW–output.
Page 3 – 20
Originat 05/98
PAMS
Technical Documentation
No current flows from charger (VCHARG) to battery , if MCU output CSW is active low and XRES signal is inactive high. The battery is charged also, when charger is connected and XRES signal is active low. The charging circuit charges the battery during RESET to higher than 5.3 V.
The charging electronics is controlled by the CTRLU. When the charging voltage is applied to the phone while the phone is powered up, the CTRLU detects it and starts controlling the charging.
If the phone is in power–off, the MUUMI will detect the charging voltage . If the battery voltage is high enough the reset will be released and the CTRLU will start controlling the charging. If the battery voltage is too low the phone is in reset and charging control circuitry will pass the charging current to the battery. When the battery voltage on MUUMIs pin has reached 4.1V (3.9...4.3V) the reset will be removed and the CTRLU starts controlling the charging. This all is invisible to the user.
V116 is the charging switch; it is governed by the controller (CSW line) via voltage regulator V114 and V115. In fast charge mode CSW is ”1” and in maintain charge mode there is controller controlled pulses. In charge off state CSW is ”0”. In maintain charge mode pulse ratio depends of charger and temperature.
System Module JF5
There are three different ways to switch the power on: – Power key pressing grounds the XPWRON line. The MUUMI defects
that and switches the power on.
– Charger detection on MUUMI detects that charger is connected and
switches power on.
– MUUMI will switch power on when the battery is connected. If the bat-
tery is changed during the call, the power is kept on. If not the power is switched off.
Originat 05/98
Page 3 – 21
PAMS
System Module JF5
Block Diagram of MUUMI ASIC
VBAT1
1
VBAT2
22
VBAT3
5
M2BUSIN
11
760k
PWM
15
760k
CHARGER
CTRL
LOGIC
BANDGAP REF
Technical Documentation
70k
40k



VBATSW
M2BUSOUT
VREF
17
12
VL
23
VA
2
4
VCHAR
21
PWRONX
13
PWROFFX
14
TEST
3
Main components
– MUUMI asic
VBAT
32k
760k
760k
LOW VBAT & CHARGER DETECT
PWR ON/OFF & RESET LOGIC
Creset
20
16
Coff
VL_ENA VA_ENA
VREF_ENA
VSW_ENA
VCHAR
GND1
24
GND2
19
GND3
7
CHRGSW
PWRONXBUFF
VCHARSW
Cref
6
PURX
8
10
9
18
– Transistor V116 and diode V118
– Regulators N130 and N140
Page 3 – 22
Creates the voltages, comprises power switch, charger, battery detection and watchdog.
The charging current is passed through these components.
Originat 05/98
PAMS
Technical Documentation
N130 decreases battery voltage to 4.75 volts which is suitable for MUUMI asic.
N140 creates the supply voltage VL3 (4.75 volts) to display and logic circuits.
System Module JF5
Originat 05/98
Page 3 – 23
PAMS
System Module JF5

AUDIO

Introduction
The block includes a NIPA audio/signalling prosessor in a 64 TQFP pack­age.
Main features
– Single chip FFSK modem and audio circuit – Full duplex 1200 baud signalling – DMS facility – Low power consumption modes – Programmable output clocks with clock stop for MCU and LCD – 8 bit parallel interface with pull ups – FSK indicator and level detector – Speech volume indicator – Programmable timer – IF counter – 8 bit DAC – FII filter and gain control – Low noise microphone amplifier – Input for a handset microphone or an accessory – Microphone sensitivity compensation +4.8/–4.2 dB range (4 bits) – Compandor – RX and TX filters – Tx hard limiter – Tx AGC – Internal reference compensation +1.00/–0.75 dB range(3 bits) – Summing stage for voice/data, signalling and fii – Transmitter compensation amplifier with +3.75/–3.75 dB range (4 bits) – Receiver compensation amplifier with +3.75/–3.75 dB range (4 bits) – Volume control amplifier with –20/+17.5 range (4 bits) – Earphone amplifier with drive capability for ceramic earpiece – Buffered output for a handset or an accessory – Mute switches – Dual and single tone multifrequency generator – Driver for buzzer amplifier – Hands free functions
Technical Documentation
Page 3 – 24
Originat 05/98
PAMS
Technical Documentation
System Module JF5
Technical specifications
AUDIO internal signals, inputs
Signal Name Notes From
VL Logic supply voltage, 3.3V PWRU VA Analog supply voltage, 3.3V PWRU VL3 Logic supply voltage, 4.75V PWRU XRES Reset line from MUUMI PWRU XNRD Read control signal CTRLU XNCS Chip select signal CTRLU XNWR Write control signal CTRLU NA0...A3 4–bit address bus CTRLU ND0...D7 8–bit bidirectional data bus CTRLU EARENA Earphone amplifier enable CTRLU XEARON external earphone amplifier enable CTRLU XEARDC External earphone DC enable CTRLU KBINT Keyboard interrupt CTRLU MBUSINT MBUS interrupt CTRLU DAF Detected audio signal from receiver RX IF (2nd) Intermediate frequency for AFC function RX XMIC External audio input from accessories SYSTEM MICP Microphone (positive node) SYSTEM MICN Microphone (negative node) SYSTEM
AUDIO internal signals, outputs
Signal Name Notes To
XEAR External audio output to accessories SYSTEM ACCDET Accessory detection signal SYSTEM MOD Audio output to synthesizer SYNT AFC VCTCXO control SYNT BUZZER Buzzer signal SYSTEM EARP Earpiece (positive node) UIF EARN Earpiece (negative node) UIF CLKMCU Clock signal for MCU CTRLU XINT Interrupt reques to MCU CTRLU NMI No maskable Interrupt reques to MCU CTRLU
Originat 05/98
Page 3 – 25
PAMS
System Module JF5
Technical Documentation
Pin list of NIPA audio/signalling processor
Pin no Symbol Pin type Notes
1 VDD1 + 3.3 V Supply voltage, digital 2 XRD DIN/pd Read control signal, active state LOW, pull–down > 50
k
3 XCS DIN/pd Chip select signal, active state LOW, pull–down > 50
k 4 A3 DIN/pu 4–bit address bus, MSB, pull–up > 50 k 5 A2 DIN/pu 4–bit address bus, pull–up > 50 k 6 A1 DIN/pu 4–bit address bus, pull–up > 50 k 7 A0 DIN/pu 4–bit address bus, LSB, pull–up > 50 k 8 D7 DIO 8–bit bidirectional data bus MSB 9 D6 DIO 8–bit bidirectional data bus
10 D5 DIO 8–bit bidirectional data bus 11 D4 DIO 8–bit bidirectional data bus 12 D3 DIO 8–bit bidirectional data bus 13 D2 DIO 8–bit bidirectional data bus 14 D1 DIO 8–bit bidirectional data bus 15 D0 DIO 8–bit bidirectional data bus LSB 16 VDD2 + 3.3 V Supply voltage, digital 17 NMI DOUT Non maskable Interrupt request 18 XCLR DIN HW reset input, active state LOW 19 TMODE DIN/pd Test mode selection, pull–down > 50 k 20 TSEL DIN/pd Test select, pull–down > 50 k 21 XINT DOUT Interrupt request to MCU, active state LOW 22 MBUSINT DIN MBUS interrupt request, falling edge active 23 KBINT DIN Keyboard interrupt request, falling edge active 24 IF AIN IF input 25 VSS2 0 V Supply voltage, digital ground 26 VSA2 0 V Supply voltage, analog ground 27 DAF AIN Signal input 28 FILO AOUT Rxfilter output 29 EXPI AIN Expander input 30 EAMPBO AOUT Expander Amplifier B output 31 EWCI AIN Expander Window Comparator input 32 EXPO AOUT Expander output 33 VDA2 + 3.3 V Supply voltage, analog 34 VOLI AIN Volume control ampl. input (Volume)
Page 3 – 26
Originat 05/98
PAMS
Technical Documentation
NotesPin typeSymbolPin no
35 EXTEAR AOUT Buffered output for handset or an accessory 36 EVGND AIN Earphone driver virtual ground 37 EARM AOUT Earphone driver output 38 EARP AOUT Earphone driver output 39 CWCI AIN Compressor window comparator input 40 DACO AOUT DA converter output 41 SIDEAR AOUT Sidetone output 42 REF AIN Internal analog signal ground 1.65 V 43 MIC AIN Microphone amplifier input 44 BIMIC AOUT Microphone bias current output 45 CMIC AIN Microphone current stabilization capacitor 46 EXTMIC AIN Audio input for a handset or an accessory 47 TXBPO AOUT Transmit bandpass filter output
System Module JF5
48 VDA1 + 3.3 V Supply voltage, analog 49 COMI AIN Compressor input 50 COMO AOUT Compressor output 51 EMPI AIN Pre emphasis input 52 FIIOUT AOUT Received FII signal 53 TOUT DOUT Test output, digital 54 ATST AOUT Audio Filter Test output 55 MOD AOUT Transmit path output 56 VSA1 0 V Supply voltage, analog ground 57 VSS1 0 V Supply voltage, digital ground 58 BUZZ DOUT Buzzer output 59 ATOUT AOUT Test pin 60 CLKOUT COUT (7.3728 MHz) 3.6864 MHz crystal oscillator output 61 CLKIN CIN (7.3728 MHz) 3.6864 MHz crystal oscillator input or
input for the external clock
62 CLKLCD DOUT Clock signal for LCD, 230.4 kHz or 57.6 kHz 63 CLKMCU DOUT Clock signal for MCU, 3.6864 MHz or 7.3728 MHz 64 XWR DIN/pu Write control signal, active state LOW, pull–up > 50
k
Originat 05/98
Page 3 – 27
PAMS
System Module JF5
Block description, Audio Processor
WPOSFIL
WTRFIL
SUM
TRREG
STATUS
BITS
RECREG
DPLL
MOD
BUZZ
BUZZ
ddtmf
SMUX
DFLAG
loop (to MODRXFIL)
MODTRPOST
DRIV
CONTROL BITS
DETED
TXAAF
PREEMP
EMPI
CWCI
COMI COMO
TXBPO
ATST
LIM
AGC
SUM
TXTRI
SINGEN
MODTRFIL
TXLP TXTRI+TXPOSTFIL
AGC
PREEM LIM
COMPR
ATOUT
VOL
RXAAF
MODRXFIL
DATACOMP
aloop (to RXMUX)
SINGEN MODTRFIL
TRSTBY
TFLAG
txbpo
(to SIDEAR)
FSKMOD
TR
RFLAG
RECCTRL
INTERNAL
CLOCKS
CTRL
AFC
XBSSBY
XTALKSBY
XBUZZSBY
XIFSBY
CREG
TIMER
DETFIL
DACO
D/A
8 bit
XDACSBY
XDTMFSBY
INTERFACE
Technical Documentation
FIIOUT
FIIBUF
A0 A1 A2 A3 D0 D1 D2 D3 D4 D5 D6 D7
NMI
XINT
XWR
XRD
XCS
EARP
EAR
HF
FIIPOST
EARM
CONTR
EVGND
DEEMP+RXFIL
SIDEAR
EXTEAR
RXATT ACC
EXP VOL
SIDEAR
txbpo
(from TXBP)
64 pins
VOLI
EXPO
EWCI
EAMPBO
EXPI
FILO
Page 3 – 28
TXMUX+TXAAF TXATT MICTRI TXBP
MICAM
MIC
CMIC
BIMIC
ddtmf (to BUZZDRIV)
DTMFCOMP
dtmf
DTMF GEN
EXTMIC
CLKLCD CLKMCU
XCLR
TMODE
(to RXMUX)
REF GEN
CLKIN
CLOCKDIV
TSEL
OSC
IFAMP
CLKOUT
IFCNTR
FSKDIS
IF
FSKIND
MBUSINT
DATACOMP
MODRXFIL
GND GEN
REF
KBINT
LEVEL
FSKLEV
VDD2
VDD1
Figure 1. NIPA block diagram
FIIFIL(4kHz)+FIITRI
dtmf
loop (from WPOSFIL)
VSS2
VSA1
VDA1
VDA2
RXMUX+AAFIL
VSA2
VSS1
aloop (from TXPOSTFIL)
RXTRI RXAAF
DAF
Originat 05/98
PAMS
Technical Documentation
Transmitting data path
The data to be transmitted will be loaded into the transmitting register TRREG. From the TRREG register the 8 bit data is transformed to serial data which is sent to the FSK modulator (FSKMOD) and sine wave gen­erator (SINGEN) and then to the summing block (SUM).
Receiving data path
The data from anti alias filter is connected through the modems RX filter (MODRXFIL) to the data comparator (DA TACOMP) and then to FSK discrim­inator. Further from FSK discriminator data is connected to detecting filter (DETFIL) and from there to digital phase locked loop (DPLL).
IF
Intermediate frequency counter (IFCTR) is on the modem to measure the frequency of IF signal.
AFC
AFC makes the synthesizer fine tuning. It can be used for channel side­step also. AFC DA–converter output DC level tunes RF oscillator (VCXO). See sec­tion 2.4.2.
System Module JF5
FII path
The FII signal is filtered and amplified with a 4 kHz bandpass filter (FIIF­IL). FIITRI is for FII sensitivity compensation. The filtered FII is then fed to summing block (SUM).
Buzzer driver
Buzzer driver is a ’semi PWM’ signal generator. It detects rising edges of DTMF signal and generates a pulse on every rising edge. The length of the pulse can be set by writing length control word to the register BUZZVOL. The length is N * 2.17 us, where N is a value in BUZZVOL register.
Value 0x0H in the BUZZVOL register disables the buzzer driver, i.e. BUZZ output is always low.
Clock divider
Clock divider generates the internal clock frequencies by dividing the master clock frequency which is created by an internal crystal oscillator and an external 7.3728 MHz or 3.6864 MHz crystal. An external clock signal can also be used. If the crystal is used, the oscillator output CLKOUT must not be loaded. The buffered crystal frequency can be ob­tained at pin CLKMCU directly or divided by two. The 230.4kHz / 57.6kHz clock can be obtained at pin CLKLCD. Frequency is selected with control bit SELLCDC.
Earphone amplifier
NIPA can drive ceramic earphone only. Because of the dynamic ear­phone, it need power amplifier for earphone, for that purpose is used N761 and N762 IC’s.
Originat 05/98
Page 3 – 29
PAMS
System Module JF5
Main components
– NIPA (asic).
– IC’s N761 and N762
Technical Documentation
NIPA is a single chip audio/signalling processor.
Power amplifier for earphone/external earphone.
Page 3 – 30
Originat 05/98
PAMS
Technical Documentation

RF Section

Technical Summary

The RF module is designed for handportable cellular phone which oper­ates in the NMT900 system (specification NMT DOC.900–3). The pur­pose of the module is to receive and demodulate the radio frequency sig­nal from base station and transmit modulated RF signal to base station.
EMC leakage is prevented with magnesium shield on component side and metallic inner surface of B–cover.
List of Submodules
Name of submodule
Rx module Tx module
Synthesizer module
System Module JF5
All submodules are only functional blocks, They are constructed on same PCB and have no material codes by themselves.

Specification and Functional Description

Parameter Value
RX frequency band 935.0125 – 959.9875 MHz TX frequency band 890.0125 – 914.9875 MHz RX LO frequency band 980.0125 – 1004.9875 MHz Duplex spacing 45 MHz Channel numbers 1 – 1000, 1025 – 2023 Number of channels 1999 Channel spacing 12.5/25 kHz TX output power 0.1 W low power, 0.55 W high power Method of frequency synthesis Dual PLL with two UHF signals for RX LO and
TX Frequency control AFC with +/– 2.5 kHz limits Receiver type Superheterodyne with double IF Modulator type FM–modulator
Current consumption, reception 60 mA Current consumption, extended standby 5 mA Current consumption, transmission 500 mA max. 400 mA typ.
Originat 05/98
Page 3 – 31
PAMS
System Module JF5
Characteristics of the Module
The maximum battery voltage during transmission should not exceed 8.5 V. Higher battery voltages may destroy the power amplifier module.
Parameter Value
Battery voltage 8.5 V, Regulated supply voltage 3.6 V +/– 5 % Operating temperature range –25 ... +55 deg. C
DC Characteristics
Maximum ratings
There are two regulators in the RF unit. Regulators get their reference voltages 3.3 V (Vref) from BB unit. Regulators regulate the battery voltage to the fixed 3.6 V level.
Technical Documentation
Control Signals
In the following table the RF current consumption can be seen with differ­ent status of the control signals. RX and TX synthesizer phase locked loops are switched on/off by a control byte that is loaded to the PLL cir­cuit.
Table 1. Control Signals and Current Consumtion
RXE + SW power­up for RX synthe-
sizer
H H H 400 mA Power Level 2 H H L 60 mA Stanby mode L L L 1 mA All RF parts has
TXS + SW power­up for TX synthe-
sizer
TXE Typical Current
Consumption /mA
been powered off
Power distribution diagram is shown in the figure next page.
Note
Page 3 – 32
Originat 05/98
Originat 05/98
PAMS
Technical Documentation
Figure: Power distribution diagran
740 mA (high) 320 mA (low)
30 mA
switch
synthesizer IC
battery
6.0 V
regulator
VCCR 3.6 V
6 mA (TX off)10 mA 9 mA (TX on)
LNA
10 mA (AGC off) 1 mA (AGC on)
IF amp
regulator
VRXVCO 3.6 V
4 mA2 mA
FM DETTX buffer TX VCOPA
9 mA
RX buffer
RX VCO
2 mA10 mA
VCTCXO
TXE
System Module JF5
Page 3 – 33
PAMS
System Module JF5
Technical Documentation

Connections

Connections to the Baseband Module
Signal Name Type Function
AFC Analog out The reference oscillator frequency adjust.
AGC Digital out Automatic gain Control for LNA. Active state: High
DAF Analog in Demodulated received signal (audio + fii+ data)
GND Power Common ground
IF Analog out 2nd IF signal (450 kHz)
MOD Analog out Modulation signal for transmitter (audio + fii + data)
RFTEMP Analog in RF temperature which is determined by NTC resistor.
RSSI Analog in Received signal strength indicator. Voltage measurement.
RXE Digital out Receiver on/off control. Active state: High SCLK Digital out Serial clock for synthesizer. Active state: Rising edge SDAT Digital out Serial data for synthesizer. Active state: High
SLE Digital out Synthesizer latch enable
TXC PWM out Transmitter power control
TXE Digital out Transmitter enable. Active state: High
TXI Analog in ”TX power on” –indicator
TXS Digital out TX synthesizer enable. Active state: High VBAT Power Battery voltage
VRF Power Unregulated voltage from battery VREF Power Reference voltage
Values of digital control signal
Supply voltage VDD 3.3 V Logical 1 VOH >VDD*0,7 Logical 0 VOL <VDD*0,3 Logical 1 IOH <1mA , 1mA (typical) Logical 0 IOL <1mA , 1mA (typical)
AFC VCTCXO control voltage
Type analog signal (DC–level) Level 0.3...3,0 V DC Source impedance Zs < 1.5 kohm Load impedance 10 kohm // 10 pF ± 10 % Control step size for TX freq. 100 Hz (typical)
Page 3 – 34
Originat 05/98
PAMS
Technical Documentation
AGC Receiver gain control
Type Digital signal Function 0 = AGC off
1 = AGC on
DAF Demodulated audio and data
signal
Type analog signal Nominal level 50 mVrms @3,0 kHz deviation Unit to unit variation 35 mV ...65 mV Source impedance ZS < 5 kohm Load impedance ZL > 50 kohm
IF 450 kHz 2nd IF signal
Level 250 mVpp (typical) not speci-
fied by manufacturer
Source impedance < 10 k W
System Module JF5
Load impedance > 50 k W
MOD Modulation signal for trans-
mitter (Audio + data)
Type Analog signal Nominal level 300 mVpp @3,0 kHz deviation Load impedance ZL > 10 kW Source impedance Zs < 5 kW
RFTEMP VCTCXO temperature
Type analog signal Level 0...3,3 V DC Temp. range –25...+55 degrees centigrade
RSSI Received signal strength in-
dicator
DC–level 0.2...3.0 V Source impedance 56 kW (typical)
RXE Receiver enable
Type Digital signal Function 0 = RX off
1 = RX on
On–state current 150 mA (typical) (300 mA max.)
Originat 05/98
Page 3 – 35
PAMS
System Module JF5
SCLK Serial clock for synthesizer
Type digital signal Pulse width > 1 us
SDAT Serial data for synthesizer
Type digital signal Pulse width > 1 us VALUES: Control byte x110 011x x001 11xx
Reference divider 1188 Divider formulas for RX oscilla-
tor (ch 1...1000) Divider formulas for RX oscilla-
tor (ch 1025...2023) Divider formulas for TX oscilla-
tor (ch 1...1000) Divider formulas for TX oscilla-
tor (ch 1025...2023)
Technical Documentation
(x = don‘t care bit)
N = 2*ch +78400
N = 2*(ch–1024) +78401
N = 2*ch +71200
N = 2*(ch–1024) +71201
SLE Synthesizer enable
Type Digital signal Function 0 = synthesizer enabled
1 = syntheziser disabled
TXC Transmitter power control
Type PWM signal Function Duty cycle of the TXC signal
defines the TX power level PWM frequency 5 kHz Level 0...3.3 V DC Number of duty cycle steps 256 Load impedance > 100 kohm
TXE Transmitter on/off control
Type Digital signal Function 0 = TX off
1 = TX on
TXI ”TX power on” –indicator
Type Analog signal Source impedance > 47 k Level < 1 V = TX off
> 1 V = TX on
Page 3 – 36
Originat 05/98
PAMS
Technical Documentation
TXS TX synthesizer on/off
Type Digital signal Function 0 = Supply off
1 = Supply on
VBAT Battery voltage
Nominal value 6.5 V Minimum value 5.3 V (NiMh) Absolute maximum 8.8 V (Li–ion) Max. current 700 mA
VRF Battery voltage for RX regula-
tor
Nominal value 6.5 V Minimum value 5.8 V
System Module JF5
Absolute maximum 8.5 V Max. current 600 mA
VREF Reference voltage
Level 3.3 V 4%

Antenna

The phone is fitted with a retractable antenna. Electrical lenght of the an­tenna is 1/4 wave lenght.
Originat 05/98
Page 3 – 37
PAMS
System Module JF5

Functional description , RF section

Block Diagram
Block diagram of the RF module is below.
RSSI
DAF
IF
PHASE SHIFTER
TX VCO
TX BUFFER
MOD
SLE
SCLK
AGC
SDATA
TXC
TXE
AFC
VCTCXO 14.85 MHz
Technical Documentation
TXI
VBAT
RXE
REGULATOR
4.75 V
VCCR
TSYN SWITCH
REGULATOR
4.75 V
450 kHz FILTER
IF AMPLIFIER
45 MHz
CRYSTAL FILTER
DIODE MIXER
IF CIRCUIT
TANK CIRCUIT FOR 2.ND LO
UMA 1015
SYNTHESIZER IC
LOOP FILTER
RX LO BUFFER
PLL
PLL
LOOP FILTER
VRXVCO
RX VCO
AMPLIFIER MODULE
TX POWER CONTROL
Page 3 – 38
RX–FILTER
LNA
ANTENNA
DUPLEX–FILTER
POWER DETECTOR
DIR_COUPLER
Originat 05/98
PAMS
Technical Documentation
System Module JF5

RF Key components

Name Manufacturer Type NMP Code
Antenna LK–Products RS1–GS7HH1.0 0660168 Duplexer LK–Products HY–4F/NN1 4512059 Saw Filter Toshiba SRF947–VDC–TB12R 4511016 45 MHz IF filter KDS DSF753SB 4510085 450 kHz IF filter NTK MLF–HSR12N–450 4510061 IF circuit Toshiba TA31136 4349694 VCTCXO KSS VC–TCXO–112CB 4510043 PLL IC Philips UMA1015M / C2 4349616 RX VCO Kyocera EK–301R0993A1 4350015 TX VCO Kyocera EK–301T0903A1 435001 1 Power Amplifier RF Micro Devices RF2131 4340163
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the low noise RF amplifier. The amplifier has 17 dB gain and 1,5 dB noise figure.
Next the signal is filtered with Z321. The filter is followed by a single balanced diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz bandwidth. Next the IF signal is amplified by V380. From the amplifier the IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized with tank circuit C372 and L371. After the mixer the 450kHz IF signal is filtered with ceramic filter Z370. The IF amplifier output signal is phase shifted by resonance circuit. After this the signal is fed to a quadrature detector.
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
The first injection frequency for receiver is generated by a digital phase locked loop (PLL). The output frequency of the loop (LO) is obtained from a voltage–controlled oscillator (VCO) G530. The VCO output signal is amplified by RX–LO–buffer and fed to the receiver mixer . The injection level required by the receiver mixer is about +3 dBm. In addition, the signal is feeded back to the dualsynthesizer circuit N820.
Originat 05/98
Page 3 – 39
PAMS
System Module JF5
The overall divisor of the chain is selected according to the desired chan­nel.
The internal dividers of N820 are programmed with 17 bits, which are transferred serially on the SDAT (synthesizer data) line from the processor into an internal shift register also located in N820. Data transfer is timed with SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency by a phase comparator in the PLL circuit. The phase comparator controls the VCO frequency by means of a DC voltage through the loop filter so as to keep the divided frequency applied to the phase comparator equal to the fixed reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained from voltage and temperature controlled crystal oscillator (VCTCXO). Oscillator frequency is 14.85 MHz. The VCTCXO frequency is divided by
1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the output goes low and discharge integrator capacitor C521. After this, the DC control voltage and the VCO frequency will decrease.
Technical Documentation
If the VCO frequency is too low, the output goes high and charge the integrator capacitor C521. Thereafter the DC control voltage and the VCO frequency will go up.
Output pulses from the phase detector have to be supplied to the loop filter. The function of the integrator is to convert positive and negative pulses to DC voltage. The remaining ripple and AC components are filtered in the lowpass filter.
TX synthesizer and TX loop filter
The transmitter synthesizer generates a frequency modulated transmitter signal for the transmitter section. The modulated TX injection frequency is generated in TX–VCO (G430). The TX modulated TX signal is amplified in TX–buffer before the transmitter.
Output pulses from the phase detector N820 pin 17 have to be supplied to the loop filter. The integrator, which consists of R420 and C421, converts positive and negative pulses to DC voltage. The remaining ripple is filtered in the low–pass filter.
Transmitter
The transmitter is realized with a power amplifier module N601. The modulated RF signal from the TX synthesizer is applied to the 50 ohm input of the module. The power level is controlled by the voltage supplied to the pin 1. Zener diode V642 protects the module against too high control voltages (>4.5 V). Amplifier module has two pairs of output pins ( pins 10, 1 1 and 14, 15 ). The real part of the output impedance is 10 ohms. Amplified RF
Page 3 – 40
Originat 05/98
PAMS
Technical Documentation
signals are compined symmetrically and impedance is matched to 50 ohms. After that signal is fed to the duplex filter. The harmonics of the transmitter are attenuated in the matching circuit and in the duplex filter. A voltage proportional to the output power is rectified from a directional coupler by DC–biased Schottky diode V640. This rectified voltage is fed to a differential amplifier which consists of transistor V650. The reference voltage is filtered from the PWM signal provided by the TXC line. The differential amplifier adjusts the control voltage so that the reference voltage and the voltage proportional to the output power are equal. The transmitter is switched on when TXE goes high (logic 1). TXE enables the transmitter power control circuit by transistor V653. When the transmitter is inactive (TXE low) the RF level from the transmitter is reduced below –57 dBm.
Regulators
Voltages (3.6 V) for RF parts are realized by two regulator–components (N310, N311). Voltage from N311 is used for receiver VCO and VCTCXO. V oltage from N310 is used for other RF–parts excluding P A module. TX syn­thesizer and transmitter VCO get supply voltage via switch (V41 1). It is con­trolled by PLL circuit. Regulators are controlled by RXE–line.
System Module JF5
AFC Function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming receive signal from base station as a frequency reference. The control loop consists of the receiver, the IF counter in the NIPA, MCU, an 8–bit D/A converter in the NIPA and the VCTCXO, which is used as a reference oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter counts the received frequency. If the frequency differs from programmed value, MCU adjusts the frequency of the VCTCXO by changing output voltage of the D/A converter. This adjustment continues until the desired receive frequency is achieved. AFC is not active during a channel scan and below –90 dBm RX signal level.

RF Characteristics

Temperature range
Line Symbol Minimum Typical /
Nominal
Operating temperature –25 +55 °C
Maximum Unit / Notes
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the RF amplifier. The amplifier has 18 dB gain and 1,5 dB noise figure.
Originat 05/98
Page 3 – 41
PAMS
System Module JF5
Next the signal is filtered with Z321. The filter is followed by a single balanced diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz bandwidth. Next the IF signal is amplified by V380. From the amplifier the IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized with tank circuit C372 and L371. After the mixer the 450kHz IF signal is filtered with ceramic filter Z370. The IF amplifier output signal is phase shifted by resonance circuit. After this the signal is fed to a quadrature detector.
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
Technical Documentation
The first injection frequency for receiver is generated by a digital phase locked loop (PLL). The output frequency of the loop (LO) is obtained from a voltage–controlled oscillator (VCO) G530. The VCO output signal is amplified by RX–LO–buffer and fed to the receiver mixer . The injection level required by the receiver mixer is about +3 dBm. In addition, the signal is feeded back to the dualsynthesizer circuit N820.
The overall divisor of the chain is selected according to the desired chan­nel.
The internal dividers of N820 are programmed with 17 bits, which are transferred serially on the SDAT (synthesizer data) line from the processor into an internal shift register also located in N820. Data transfer is timed with SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency by a phase comparator in the PLL circuit. The phase comparator controls the VCO frequency by means of a DC voltage through the loop filter so as to keep the divided frequency applied to the phase comparator equal to the fixed reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained from voltage controlled crystal oscillator (VCXO or VCTCXO). Oscillator frequency is 14.85 MHz. The VCXO frequency is divided by 1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the output goes low and discharge integrator capacitor C521. After this, the DC control voltage and the VCO frequency will decrease.
If the VCO frequency is too low, the output goes high and charge the integrator capacitor C521. Thereafter the DC control voltage and the VCO frequency will go up.
Page 3 – 42
Originat 05/98
PAMS
Technical Documentation
Output pulses from the phase detector have to be supplied to the loop filter. The function of the integrator is to convert positive and negative pulses to DC voltage. The remaining ripple and AC components are filtered in the lowpass filter.
TX Synthesizer
The transmitter synthesizer generates a frequency modulated transmitter signal for the transmitter section. The modulated TX injection frequency is generated in TX–VCO (G430). The TX modulated TX signal is amplified in TX–buffer before the transmitter.
TX Loop Filter
Output pulses from the phase detector N820 pin 17 have to be supplied to the loop filter. The integrator, which is constituted of R420 and C421, converts positive and negative pulses to DC voltage. The remaining ripple is filtered in the low–pass filter.
System Module JF5
Transmitter
The transmitter is realized with a power amplifier module. The modulated RF signal from the TX synthesizer is applied to the 50 ohm input of the module. The power level is controlled by the voltage supplied to the pin 1. Zener diode V642 protects the module against too high control voltages (>4.5 V). Amplifier module has two pairs of output pins ( pins 10, 11 and 14,15 ). Amplified RF signals are compined symmetrically and fed through a low–pass filter to the duplex filter. The harmonics of the transmitter are reduced by the duplex filter. A voltage proportional to the output power is rectified from a directional coupler by DC–biased Schottky diode V640. This rectified voltage is fed to a differential amplifier which consists of transistor V650. The reference voltage is filtered from the PWM signal by TXC line. The differential amplifier adjusts the control voltage so that the reference voltage and the voltage proportional to the output power are equal. The transmitter is switched on when TXE goes high (logic 1), which enables the transmitter power control circuit by transistor V653. When the transmitter is inactive (TXE low) the RF level from the transmitter is reduced below –57 dBm.
Regulators
The voltage regulators for RF parts consist of the transistors V310, 31 1, 313 and 314. The first regulator (V310, 311) provides the operating voltage for the receiver, PLL circuit and RX–VCO buffer. The other one is used to regulate the operating voltage of the RX–VCO. These regulators are realized using discrete transistors because the output noise has to be very low. The 3.3 V reference voltage (VREF) is fed from the logic module. TX synthesizer gets the supply voltage via a switch which is realized using transistors V411 and V410. The switch is controlled by the digital TXS–line from the logic module.
Originat 05/98
Page 3 – 43
PAMS
System Module JF5
AFC function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming receive signal from base station as a frequency reference. The control loop consists of the receiver, the IF counter in the NIPA, MCU, an 8–bit D/A converter in the NIPA and the VCTCXO, which is used as a reference oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter counts the received frequency. If the frequency differs from programmed value, MCU adjusts the frequency of the VCXO by changing output voltage of the D/A converter. This adjustment continues until the desired receive frequency is achieved. AFC is not active during a channel scan and below –90 dBm RX signal level.
Technical Documentation
Page 3 – 44
Originat 05/98
PAMS
Technical Documentation
System Module JF5

Parts List of JF5 system module

Issue 5.0 Code: 0201130
ITEM CODE DESCRIPTION VALUE TYPE
R44 1430690 Chip jumper 0402 R101 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R102 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R111 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R112 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R113 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R114 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R115 1430738 Chip resistor 270 5 % 0.063 W 0402 R116 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R117 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R118 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R119 1430730 Chip resistor 150 5 % 0.063 W 0402 R120 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R121 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R122 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R123 1430780 Chip resistor 12 k 5 % 0.063 W 0402 R124 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R130 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R140 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R152 1430740 Chip resistor 330 5 % 0.063 W 0402 R153 1430726 Chip resistor 100 5 % 0.063 W 0402 R157 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R158 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R170 1430700 Chip resistor 10 5 % 0.063 W 0402 R171 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R172 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R173 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R202 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R203 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R204 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R205 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R206 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R208 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R210 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R214 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R215 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R217 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R221 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R222 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R223 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R224 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R225 1430792 Chip resistor 33 k 5 % 0.063 W 0402
Originat 05/98
Page 3 – 45
PAMS
System Module JF5
R226 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R230 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R231 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R232 1430814 Chip resistor 270 k 5 % 0.063 W 0402 R233 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R234 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R235 1430802 Chip resistor 82 k 5 % 0.063 W 0402 R241 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R243 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R244 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R245 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R246 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R251 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R252 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R270 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R271 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R272 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R310 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R311 1430710 Chip resistor 22 5 % 0.063 W 0402 R319 1430690 Chip jumper 0402 R320 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R321 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R322 1430726 Chip resistor 100 5 % 0.063 W 0402 R330 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R331 1430808 Chip resistor 150 k 5 % 0.063 W 0402 R332 1430734 Chip resistor 220 5 % 0.063 W 0402 R333 1430700 Chip resistor 10 5 % 0.063 W 0402 R334 1430710 Chip resistor 22 5 % 0.063 W 0402 R335 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R340 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R341 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R342 1430700 Chip resistor 10 5 % 0.063 W 0402 R343 1430734 Chip resistor 220 5 % 0.063 W 0402 R350 1430726 Chip resistor 100 5 % 0.063 W 0402 R360 1430744 Chip resistor 470 5 % 0.063 W 0402 R361 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R362 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R363 1430756 Chip resistor 1.2 k 5 % 0.063 W 0402 R365 1430690 Chip jumper 0402 R366 1430714 Chip resistor 33 5 % 0.063 W 0402 R370 1430758 Chip resistor 1.5 k 5 % 0.063 W 0402 R371 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R372 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R373 1430714 Chip resistor 33 5 % 0.063 W 0402 R374 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R381 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R411 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402
Technical Documentation
Page 3 – 46
Originat 05/98
PAMS
Technical Documentation
R414 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R420 1430766 Chip resistor 3.9 k 5 % 0.063 W 0402 R421 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R422 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R423 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R430 1430718 Chip resistor 47 5 % 0.063 W 0402 R431 1430734 Chip resistor 220 5 % 0.063 W 0402 R432 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R433 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R434 1430700 Chip resistor 10 5 % 0.063 W 0402 R440 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R441 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R442 1430734 Chip resistor 220 5 % 0.063 W 0402 R443 1430700 Chip resistor 10 5 % 0.063 W 0402 R444 1430690 Chip jumper 0402 R520 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R521 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R522 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R523 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R530 1430724 Chip resistor 82 5 % 0.063 W 0402 R531 1430734 Chip resistor 220 5 % 0.063 W 0402 R532 1430690 Chip jumper 0402 R601 1430700 Chip resistor 10 5 % 0.063 W 0402 R632 1430700 Chip resistor 10 5 % 0.063 W 0402 R641 1430726 Chip resistor 100 5 % 0.063 W 0402 R642 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R643 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R644 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R646 1430776 Chip resistor 8.2 k 5 % 0.063 W 0402 R647 1430744 Chip resistor 470 5 % 0.063 W 0402 R649 1430806 Chip resistor 120 k 5 % 0.063 W 0402 R651 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R652 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R653 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R654 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R656 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R659 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R660 1430690 Chip jumper 0402 R711 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R712 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R721 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R722 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R723 1430700 Chip resistor 10 5 % 0.063 W 0402 R724 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R725 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R731 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R732 1430792 Chip resistor 33 k 5 % 0.063 W 0402
System Module JF5
Originat 05/98
Page 3 – 47
PAMS
System Module JF5
R733 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R734 1430816 Chip resistor 330 k 5 % 0.063 W 0402 R740 1430700 Chip resistor 10 5 % 0.063 W 0402 R741 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R742 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R743 1430718 Chip resistor 47 5 % 0.063 W 0402 R744 1430718 Chip resistor 47 5 % 0.063 W 0402 R751 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R752 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R753 1430700 Chip resistor 10 5 % 0.063 W 0402 R766 1430820 Chip resistor 470 k 5 % 0.063 W 0402 R767 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R768 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R769 1430700 Chip resistor 10 5 % 0.063 W 0402 R770 1430700 Chip resistor 10 5 % 0.063 W 0402 R771 1430792 Chip resistor 33 k 5 % 0.063 W 0402 R772 1430798 Chip resistor 56 k 5 % 0.063 W 0402 R773 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R774 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R775 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R776 1430830 Chip resistor 1.0 M 5 % 0.063 W 0402 R777 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R778 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R779 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R780 1430788 Chip resistor 22 k 5 % 0.063 W 0402 R781 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R782 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R783 1430772 Chip resistor 5.6 k 5 % 0.063 W 0402 R785 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R786 1430700 Chip resistor 10 5 % 0.063 W 0402 R789 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R790 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R791 1430764 Chip resistor 3.3 k 5 % 0.063 W 0402 R793 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R800 1800673 NTC resistor 15 k 10 % 0.12 W 0805 R811 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R812 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R816 1430700 Chip resistor 10 5 % 0.063 W 0402 R820 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R821 1430714 Chip resistor 33 5 % 0.063 W 0402 R822 1430714 Chip resistor 33 5 % 0.063 W 0402 R826 1430786 Chip resistor 18 k 5 % 0.063 W 0402 R840 1430714 Chip resistor 33 5 % 0.063 W 0402 C101 2611668 Tantalum cap. 4.7 u 20 % 10 V C102 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C103 2310791 Ceramic cap. 33 n 20 % 50 V 0805 C104 2320620 Ceramic cap. 10 n 5 % 16 V 0402
Technical Documentation
Page 3 – 48
Originat 05/98
PAMS
Technical Documentation
C105 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C106 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C107 2604199 Tantalum cap. 2.2 u 20 % 3.2x1.6x1.6 C108 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C109 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C111 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C112 2604209 Tantalum cap. 1.0 u 20 % 16 V C113 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C114 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C120 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C121 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C122 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C123 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C130 2604209 Tantalum cap. 1.0 u 20 % 16 V C131 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C132 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C142 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C143 2611668 Tantalum cap. 4.7 u 20 % 10 V C144 2604209 Tantalum cap. 1.0 u 20 % 16 V C145 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C151 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C152 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C153 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C156 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C157 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C158 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C160 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C162 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C163 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C164 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C167 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C168 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C169 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C170 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C171 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C172 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C173 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C174 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C175 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C176 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C177 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C178 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C189 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C190 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C191 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C192 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C193 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402
System Module JF5
Originat 05/98
Page 3 – 49
PAMS
System Module JF5
C194 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C195 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C196 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C197 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C198 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C199 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C201 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C202 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C203 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C205 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C206 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C207 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C228 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C229 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C230 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C231 2312296 Ceramic cap. Y5 V 1210 C241 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C242 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C243 2320781 Ceramic cap. 47 n 20 % 16 V 0603 C251 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C252 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C301 2604209 Tantalum cap. 1.0 u 20 % 16 V C302 2312296 Ceramic cap. Y5 V 1210 C310 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C311 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C312 2312296 Ceramic cap. Y5 V 1210 C313 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C314 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C315 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C316 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C317 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C319 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C320 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C322 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C323 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C324 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C325 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C326 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C327 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C328 2611668 Tantalum cap. 4.7 u 20 % 10 V C331 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C332 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C333 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C340 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C341 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C342 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C343 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402
Technical Documentation
Page 3 – 50
Originat 05/98
PAMS
Technical Documentation
C344 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C345 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C350 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C351 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C354 2320532 Ceramic cap. 6.8 p 0.25 % 50 V 0402 C360 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C361 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C362 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C370 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C371 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C372 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C373 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C374 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C375 2604329 Tantalum cap. 4.7 u 20 % 10 V C376 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C377 2310490 Ceramic cap. 360 p 2 % 50 V 0805 C378 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C379 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C380 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C381 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C382 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C410 2611668 Tantalum cap. 4.7 u 20 % 10 V C411 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C420 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C421 2604209 Tantalum cap. 1.0 u 20 % 16 V C422 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C423 2320120 Ceramic cap. 22 n 10 % 25 V 0603 C424 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C430 2611668 Tantalum cap. 4.7 u 20 % 10 V C431 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C432 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C433 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C434 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C440 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C441 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C442 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C443 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C520 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C521 2604209 Tantalum cap. 1.0 u 20 % 16 V C522 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C523 2320120 Ceramic cap. 22 n 10 % 25 V 0603 C524 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C530 2604209 Tantalum cap. 1.0 u 20 % 16 V C531 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C532 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C601 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C602 2320546 Ceramic cap. 27 p 5 % 50 V 0402
System Module JF5
Originat 05/98
Page 3 – 51
PAMS
System Module JF5
C603 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C604 2320520 Ceramic cap. 2.2 p 0.25 % 50 V 0402 C605 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C625 2611668 Tantalum cap. 4.7 u 20 % 10 V C631 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C633 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C634 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C635 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C641 2320524 Ceramic cap. 3.3 p 0.25 % 50 V 0402 C642 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C643 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C644 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C645 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C646 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C648 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C650 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C663 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C700 2320530 Ceramic cap. 5.6 p 0.25 % 50 V 0402 C701 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C702 2320556 Ceramic cap. 68 p 5 % 50 V 0402 C703 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C704 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C711 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C712 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C713 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C714 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C715 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C716 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C717 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C721 2310777 Ceramic cap. 22 n 20 % 50 V 0805 C723 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C724 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C731 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C732 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C733 2604209 Tantalum cap. 1.0 u 20 % 16 V C734 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C735 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C740 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C741 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C742 2312296 Ceramic cap. Y5 V 1210 C750 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C762 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C763 2604209 Tantalum cap. 1.0 u 20 % 16 V C766 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C767 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C768 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C777 2604209 Tantalum cap. 1.0 u 20 % 16 V
Technical Documentation
Page 3 – 52
Originat 05/98
PAMS
Technical Documentation
C778 2312296 Ceramic cap. Y5 V 1210 C779 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C780 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C782 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C783 2604209 Tantalum cap. 1.0 u 20 % 16 V C785 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C790 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C791 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C792 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C793 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C794 2307816 Ceramic cap. 47 n 20 % 25 V 0805 C795 2320107 Ceramic cap. 10 n 5 % 50 V 0603 C812 2604209 Tantalum cap. 1.0 u 20 % 16 V C813 2320534 Ceramic cap. 8.2 p 0.25 % 50 V 0402 C814 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C815 2320598 Ceramic cap. 3.9 n 5 % 50 V 0402 C820 2611668 Tantalum cap. 4.7 u 20 % 10 V
3.2x1.6x1.6 C821 2320778 Ceramic cap. 10 n 10 % 16 V 0402 C823 2611668 Tantalum cap. 4.7 u 20 % 10 V
3.2x1.6x1.6 C824 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C825 2611668 Tantalum cap. 4.7 u 20 % 10 V
3.2x1.6x1.6 C826 2320620 Ceramic cap. 10 n 5 % 16 V 0402 L101 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 L102 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 L103 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 L151 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L154 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L155 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L156 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L157 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 L321 3645191 Chip coil 8n2 5 % Q=10/100 MHz 0603 L350 3645015 Chip coil 560 n 10 % Q=15/25 MHz 0603 L370 3640103 Chip coil 320 u2 % Q=40/796 kHz 1812 L371 3641302 Chip coil 470 n5 % Q=30/25 MHz 1008 L631 3641262 Ferrite bead 30r/100mhz 2a 1206 1206 B701 4510012 Crystal 7.3728 M +–50PPM 11x4x2mm G430 4350011 SM, vco 890–915mhz4.3v/10ma tx NMT9 G530 4350015 SM, vco980–1005mhz3.4v/10ma rx NMT G810 4510043 SM, VCTCXO112cb 14.85mhz+–2ppm3.3v F101 5119011 SM, fuse f2a 63v 1206 F102 5119011 SM, fuse f2a 63v 1206 Z321 4510065 Saw filter 947.5+–12.5 M 4X4 Z350 4510085 XTAL filter 45 M +–7.5KHZ 4POLE Z370 4510061 Cer.filt 450+–6khz 11.8x7.5 11.8x7.5
System Module JF5
Originat 05/98
Page 3 – 53
PAMS
System Module JF5
Z660 4512059 Dupl 890–915/935–960mhz 45x15.9 V110 4113828 Trans. supr. SMB J28A DO214AA V111 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V113 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V114 4200226 Darl. transistor BCV27 npn 30 V 300 mA SOT23 V115 4200226 Darl. transistor BCV27 npn 30 V 300 mA SOT23 V116 4210020 Transistor BCP69–25 pnp 20 V 1 A SOT223 V117 4210100 Transistor BC848W npn 30 V SOT323 V118 4110034 Schottky diode MBRS140 40 V 1 A DO214AA V140 4100285 Diode x 2 BAV99 70 V 200 mA SER. SOT23 V151 4200811 Transistor BC849C npn 30 V 0.1 A SOT23 V170 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V171 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V172 4210100 Transistor BC848W npn 30 V SOT323 V210 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V231 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V263 4119902 Diode x 4 IMP11 80 V 0.3 A IMD V271 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V320 4210074 Transistor BFP420 npn 4. V SOT343 V330 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V331 4219922 Transistor x 2 UM6 V340 4115802 Sch. diode x 2 4V 30 mA SOT23 V341 4210090 Transistor BFG540/X npn 15 V 129 mA SOT143 V380 4210066 Transistor BFR93AW npn 12 V 35 mA SOT323 V411 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V440 4210090 Transistor BFG540/X npn 15 V 129 mA SOT143 V640 4100567 Sch. diode x 2 BAS70–04 70V15 mA SER SOT23 V641 4116536 Zener diode BZX84 5 % 2.4 V 0.3 W SOT23 V650 4219904 Transistor x 2 UMX1 npn 40 V SOT363 V651 4210054 Transistor *** V653 4210100 Transistor BC848W npn 30 V SOT323 V723 4100285 Diode x 2 BAV99 70 V 200 mA SER. SOT23 V741 4200226 Darl. transistor BCV27 npn 30 V 300 mA SOT23 V742 4111824 Diode BAS16 75 V 250 mA 6 ns SOT23 V772 4100285 Diode x 2 BAV99 70 V 200 mA SER .SOT23 V775 4100285 Diode x 2 BAV99 70 V 200 mA SER. SOT23 V777 4210102 Transistor BC858Wpnp 30 V 100 mA 200MW SOT323 V778 4210100 Transistor BC848W npn 30 V SOT323 V790 4100567 Sch. diode x 2 BAS70–04 70V15 mA SER SOT23 V791 4100567 Sch. diode x 2 BAS70–0470V15 mA SER SOT23 V792 4100285 Diode x 2 BAV99 70 V 200 mA SER. SOT23 D241 4370029 IC, ASIC PQFP64 D251 4342264 IC, EEPROM SO8S D252 4342264 IC, EEPROM SO8S D790 4341611 IC, 2xbin.counter 4bit so14 74HC393 SO14S N101 4370084 IC, mas1013s–t muumi ssop2NMP70084 SSOP24 N140 4340164 IC, regulator TK11247 4.75 V 180 mA SSO6
Technical Documentation
Page 3 – 54
Originat 05/98
PAMS
Technical Documentation
N141 4340164 IC, regulator TK11247 4.75 V 180 mA SSO6 N310 4340415 IC, regulator TK11236BMC 3.6 V SOT23L N311 4340415 IC, regulator TK11236BMC 3.6 V SOT23L N370 4349694 IC, if amp+fm detector TA31136 SSO16 N601 4340163 IC, pow.amp. SO16SB N701 4370137 IC Nipa3 nmt audio/signalling TQFP64 N761 4340331 IC, Power amp. LM4862 P W SO8S N762 4340331 IC, Power amp. LM4862 P W SO8S N763 4340059 IC, lp opamp+3/15v r&r LMC7101 SSOP5 N820 4349616 IC, 2xsynth 1.1ghz 3v UMA1015M SSO20 S100 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD S101 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD X001 5469031 SM, conn chp2502–0101 1x2 m P1.25 X002 5469031 SM, conn chp2502–0101 1x2 m P1.25 X003 5469031 SM, conn chp2502–0101 1x2 m P1.25 X120 5469007 Syst.conn 12af+jack+dc dct2 SMD X130 5460021 SM, conn 2x14m spring p1.0 pcb/p PCB/PCB X600 5429007 SM, coax conn m sw 50r 0.4–2ghz
9854261 PCB JF5 131.0X43.95X1.0 M4 4/PA 0240522 IC, SWMCU SW PROGR.
System Module JF5
Originat 05/98
Page 3 – 55
PAMS
System Module JF5
Technical Documentation
This page intentionally left blank.
Page 3 – 56
Originat 05/98
Loading...