Parts List of JF5 system module – 45. . . . . . . . . . . . . . . . . . . . . . . .
Technical Documentation
Page 3 – 4
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
Transceiver NHN–5N
Introduction
Functional Description
The NHN–5N transceiver electronics consists of the UI module PCB and
the RF/system PCB. The UI module is connected to the system module
with a connector. The system and RF submodules are interconnected
with PCB wiring. The phone can be connected to accessories with a bot-
tom system connector, which includes charging and accessory control.
Block Diagram
The NHN–5N consist of 2 PCB’s: JF5 system module and GN4 user inter-
face module.
System Module JF5
The JF5 consists of 2 submodules, BASEBAND and RF. BASEBAND
consist of 3 functional blocks: PWRU, CTRLU and AUDIO; RF also con-
sists of 3 modules: RX, SYNT, TX; while the GN4 is the User Interface
module (UIF–module, kindly refer to section 4.).
RX
PWRU
CTRLU
BASEBAND–submodule
UIF–module
LCDLCD
LCD Driver
AUDIO
SYNT
TX
RF–submodule
BUZZER
MIC,EAR
DUP
ANT
Originat 05/98
Page 3 – 5
NHN–5NT
PAMS
System Module JF5
Baseband
Introduction
The baseband submodule controls the internal operation of the phone. It
controls the user interface, i.e. LCD driver, keyboard and audio interface
functions. The module performs all signalling towards the system and car-
ries out audio–frequency signal processing. In addition, it controls the op-
eration of the transceiver and stores tuning data for the phone.
Baseband Technical Summary
All functional blocks of the baseband are mounted on a single multi layer
printed circuit board. This PCB contains also the RF–parts. The chassis
of the radio unit contains separating walls for baseband and RF. All com-
ponents of the baseband are surface mounted and soldered by reflow.
The connections to accessories are fed through the CAP (Common Ac-
cessory Platform) bottom connector of the radio unit. The connections to
User Interface –module (UIF) are fed through a board to board connector.
There is no physical connector between RF and baseband.
Technical Documentation
Modes of Operation
The module has three operating modes: stand–by, listening and con-
versation mode.
Standby mode:
MCU clock is switched off, only NIPA timer is running to enable battery
save timings.
If a charger is connected, the MCU doesn‘t go to standby mode.
Listening mode:
In the listening mode some blocks of the audio IC (NIPA) are in standby
state.
Conversation mode:
In the conversation mode all ICs are active.
Page 3 – 6
Originat 05/98
PAMS
bits/s
NHN–5NT
Technical Documentation
Maximum Ratings
ParameterValue
Operating temperature range –25 ... +55 deg. C
Storage temperature range –40 ... +85 °C
VBAT max. 8.8 V (TX off)
VBAT max. 7.5 V (TX on)
VC max.16 V.
Battery charging is enabled +5 ... +45 °C
DC Characteristics
Pin / Conn.Line SymbolMinimumTypical /
Nominal
VCS
11.0V12.0V 16.0V Slow charger
MaximumUnit / Notes
System Module JF5
VBA T 5.3V 6.0V 8.8V
VRF 5.3V 6.0V 8.8V VBAT for RF mod-
4.1V 4.5V5.0VOutput high level
0V0.5VInput low level
2.4V3.2VInput high level
Hook
Page 3 – 7
NHN–5NT
detection
detection
resistor in
g
F
key ad
PAMS
System Module JF5
Line SymbolPin /
Conn.
2/systemVOUT
5/systemBOOST0
11/system
BOOST1
Technical Documentation
Minimum
0V 0.2V0.4VOutput low, power
4.1V 4.5V5.0VOutput high, power
Typi-
cal /
Nomi-
nal
0Vbooster detect /
3.3Vbooster detect /
0Vbooster detect /
i-
mum
off
on
power control ”0”
power control ”1”
power control ”0”
NotesMax-
HDA device power on/off
RF
booster
/ power
select
RF
booster
3.3Vbooster detect /
power control ”1”
12/system
2/batteryBSI
3/batteryBTEMP1.0V47k, B=4050 NTC between
3,4/UIFBACKLIGHT
VCS
9.8V16VIsink < 730mA
1.95V400mAh Li–ION
0.45V550mAh NiMH
1.95V1500mAh Li–ION
BTEMP and ground in battery
pack.
A 47k pull–up resistor in HP.
Vibrator control output (AC–
controlled)
0mAbacklights off
40mAbacklights on
/ power
select
A 47k
pull–up
HP.
Backlight–
ing for
keymat
17–24/UI
7–9/UIFROW(0:2)
Page 3 – 8
LD(0:7)
0V0.7VOutput/Input low
2.3V3.3VOutput/Input high
0V0.7VInput low
2.8V3.3VInput high
LCD I/O,
p
output
Keypad
input
Originat 05/98
PAMS
data/con
ON but
NHN–5NT
Technical Documentation
Line SymbolPin /
Conn.
25/UIFLCDREG
26/UIFLCDCS
27/UIFLCDRESET
11/UIFXNWR
Minimum
0V0.7VOutput low
2.8V3.3VOutput high
0V0.7VOutput low
2.8V3.3VOutput high
0V0.7VOutput low
2.8V3.3VOutput high
0V0.7VOutput low
2.8V3.3VOutput high
Typi-
cal /
Nomi-
nal
i-
mum
System Module JF5
NotesMax-
LCD
-
trol
LCD chip
select
LCD re-
set
LCD write
28/UIFXNRD
10/UIFLCDCLK
12/UIFXPWRON
0V0.7VOutput low
2.8V3.3VOutput high
0V0.7VOutput low
2.8V3.3VOutput high
0V0.7VInput low
2.8V3.3VInput high
LCD read
LCD
clock
Power
ton
UIF Connector
Signal NamePinNotes
VL1Logic supply voltage 3.3V
CALLLED2Call LED
BACKLIGHT3,4Backlights on/off
VNEG6Negative voltage for LCD module
ROW0,1,27–9Lines for keyboard read
-
LCDCLK10LCD Driver clock
XNWR11LCD Driver write selection input
XPWRON12Power on control from keyboard
GND13,14,15,16Ground
LD(0:7)17–24Parallel data for LCD driver
LCDREG25LCD Driver control/data select
47k pull–up resistor.
VOUT2Hand–free device power on/off.
XEAR9External audio output to accessories or
handsfree speaker. There is a DC volt-
age control for HF unit mute control.
BGNDBGNDBattery connector
BTEMPBTEMPBattery connector, Battery temperature
BSIBSIBattery connector
VBATB+Battery connector
VCS12,CH+,
DC+
Battery charging voltage
Page 3 – 10
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
Connections
Battery Connector
4
+
34
Charging Connectors
3
127
1 6
12
Locking
System Module JF5
1
–
2
RF–connector
(not used)
System Connector
Originat 05/98
Page 3 – 11
NHN–5NT
PAMS
System Module JF5
Technical Documentation
CTRLU Control Block
The Control block controls all phones functions and it includes modem
and SIS–processor too.
CTRLU internal signals, input
Signal NameNotesFrom
VLLogic supply voltage, 3.3V.PWRU
VL3Logic supply voltage, 4.75V.PWRU
VREFReference voltage 3.3V 3%. Max.PWRU
XRESReset line from MUUMIPWRU
PWRONPower on signal from MUUMIPWRU
VCHARGCharger voltage to A/D converterPWRU
VBATSWBattery voltage to A/D converter.VCHARG
CLKMCUClock signal from NIP A.AUDIO
NMINo maskable Interrupt reques from NIPAAUDIO
XINTInterrupt reques from NIPA.AUDIO
HOOKHOOK–indicationSYSTEM
BTEMPBattery temperatureSYSTEM
BSIBattery size indicationSYSTEM
M2BUSSerial interfaceSYSTEM
RFTEMPRF temperatureSYNT
RSSIReceived signal strenght indicationRX
TXITransmitter output power level indicationTX
XPWRONPower buttom from UIF.UIF
ROW0Line for keyboard read.UIF
ROW1Line for keyboard read.UIF
ROW2Line for keyboard read.UIF
ACCDETAccessory detection lineSYSTEM
Page 3 – 12
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
System Module JF5
CTRLU internal signals, output
Signal NameNotesTo
CSWCharger controlPWRU
VOUTHeadset–adapter powersupplySYSTEM
M2BUSCommon serial clock (NIPA,sis)SYSTEM
AGCGain controlRX
RXERX Circuit power on/offRX
SCLKSynchronous data clock for synthesizersSYNT
SDATSynchronous data for synthesizers /
TX duplex filter current control 2 (option)
SLESynthesizer data latch enableSYNT
TXETransmitter control (on/off)TX
TXCTransmitter Power ControlTX
XNCSNIPA chip select signalAUDIO
XNWRNIPA/LCD write control signalAUDIO.UIF
MCU controls the watchdog timer in the MUUMI ASIC. It sends a positive
pulse approximately once every 1 s to the XPWROFF pin of the MUUMI
to keep the power on. If the CTRLU fails to deliver this pulse, the MUUMI
will remove power from the system. The CTRLU controls also the charger on/off switching in the PWRU block. When power off is requested,
the CTRLU leaves the MUUMI watchdog without reset. After the watchdog has elapsed the MUUMI cuts off the supply voltages from the phone.
Battery charging is controlled by CSW line.
VBATSW , Battery voltage measurement
Battery voltage can be measured from 5.4 V to 10.3 V nominal with 3.3 V
reference voltage. The absolute accuracy is low because of the reference 3 % accuracy and A/D–converter +/– 8 LSB accuracy . This battery
voltage measurement offset error must be calibrated with input voltage
6.0 V and 8.2 V. The A/D conversion result can be calculated from the
following equation:
Technical Documentation
A/D readout = 1024 * (VBATSW* ( 47/147)) / VREF
VREF=3.3 V
For example:
8.2 V results 814 = 32EH
6.0 V results595 = 253H
VCHARG , Charger voltage measurement
Charger voltage can be measured up to 18.3 V nominal. The A/D–conversion result can be calculated from equation :
A/D readout = 1024 * (VCSW*(22/122)) / VREF VREF=3.3 V
For example:
12.0 Vgives671 = 29FH
6.0 Vgives336 = 150H
BSI , Battery size indication
Battery type can be defined with the BSI resistor value. A NiMH battery
has a different BSI resistor compared with a Li–ION battery. Different
sizes of the Li–ION batteries cannot be identified.
BTEMP , Battery temperature measurement
Battery temperature measurement is implemented with a 47 kohm NTC
with N value of 4050 and 47 kohm pullup resistor. The A/D conversion
readout can be calculated from equation:
Page 3 – 14
A/D readout= 1024* ( R
For example:
45 Cgives?
25 Cgives?
5 Cgives?
0 Cgives?
NTC
/( R
NTC
+47k))
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
Battery voltage is measured over the VBATSW and charging voltage over
the VCHARG. Battery temperature is measured over the BTEMP line.
Battery size is determined by reading the BSI line. This is pulled to +3,3V
by a 47kohm resistor. In the battery pack a ”size” resistor is connected
between BSI and GND. Battery charging is controlled by the CSW line.
Muumi watchdog is refreshed by controlling XPWROFF line.
– CTRLU – AUDIO
Interface between the MCU and the NIPA circuit is a bidirectional 8–bit
data bus with 4 address lines. Address, data and control lines are used in
the MCU as I/O–port pins. The data lines direction is controlled with the
MCU data direction register. The interface includes address outputs
NA0–3, data inputs (read) / outputs (write) ND0–7, chip select control output XCS , read control output XRD, write control output XWR and interrupt input XINT. When the MCU is in sleep state, the control signals XRD
and XCS must be in ’0’ state and the address output NA0–3 and NWR in
’1’ state and data lines ND0–7 must be in ‘0‘ state.
– CTRLU – UIF
System Module JF5
The keyboard is connected directly to the controller. ND0–6 are the output lines and ROW0–2 are the input lines. Keyboard scanning is done by
driving one ND line to 0 V at the time. If any key is pressed, then the corresponding ROW line goes to 0V and the phone knows which key is
pressed.
Data to the LCD Driver is written and read by ND(0:7) lines. XNRD/
XNWT are the read / write selection lines and NA0 is the instruction / data
register selection line. LCDCS line enables the LCD driver.
ND(0:7) lines are in 0 V state when phone is in sleep mode so that any
key pressing can be indicated.
Keyboard and LCD lights are controlled by LIGHTS signal.
– CTRLU – RX
RX circuit power is switched on/off by RXE signal.
The received signal strength is measured over the RSSI and the inter-
mediate frequency is measured over the IF.
– CTRLU – SYNT
RF temperature is measured over the RFTEMP. Frequency is controlled
by the AFC signal. The synthesizer is controlled via the synchronous serial bus SDAT/SCLK. The data is latched to the synthesizer by the positive edge of SLE line. The TX synthesizer power on/off (TXS/port P3) line
is controlled via PLL circuit.
Originat 05/98
Page 3 – 15
NHN–5NT
PAMS
System Module JF5
– CTRLU – TX
The transmitter output power level is measured over the TXI. TXE line
activates the power module. The power is controlled via TXC line which
is a PWM–controlled output port.
Technical Documentation
Main Components
– MCU
The phone MCU H8/3092 is a CMOS MCU. All the memory needed (128
kB ROM, 4 kB RAM) except the EEPROM, is located in the controller.
MCU operating clock (7.3728 MHz) is generated on the NIPA.
MCU Pins are listed in the table:
Pin NoPortSignalDescription
1PB0SISCLKClock for SIS prosessor
2PB1SISDATASerialdata to SIS prosessor
3PB2EDATASerial data to EEPROM
4PB3RXDSerial interface (M2BUS)
5PB4SCLKSerial clock for synthesiz
6PB5HOOKHandset hook signal
7PB6PWRONPower button
8PB7SLERX/TX synthesizer latch
9P90TXDSerial interface (M2BUS)
10P92RXDM2BUS net free timer input
11P94ECLKClock to EEPROM
12VssGNDMCU Ground
13–20P30–P37ND0–7Paraller data bus for NIPA,LCD & keys
21VccVLPower supply for processor
22P10NA0Address line for NIPA and LCD regis-
ter
23P11NA1Address line for NIPA
24P12NA2Address line for NIPA
25P13NA3Address line for NIPA
26P14XNCSNIPA chip select
27P15XNWRRead/write control to NIPA
28P16XNRDRead/write control to NIPA
29P17LCDCDLCD chip select
30GNDMCU Ground
Page 3 – 16
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
31
32–35P21–P24ROW0–3Keypad inputs
36P25protoseries indicator, pull–down if pro-
37P26
38P27CALLCNTCall continue during battery change
39P50XPWROFFMuumi watchdog refresh
40P51EARENAEAR amplifier enable
41P52
42P53LCDRESETReset to LCD
43P60
44MD0
45MD1
46
P20LIGHTSBacklight control
to
System Module JF5
47STBY
48RESXRESReset from MUUMI
49NMINMIInterrupt request from NIPA
50VssGNDGround
51EXTALEXTALExternal system clock from NIPA
52XTAL
53VccVL
54P63TXETransmitter on/off
55P64AGCGain control
56P65RXERX circuit power on/off
57RESO
58AVcc
59P70VBATSWBattery voltage
60P71VCHARGCharger voltage
61P72RSSIReceived signal strength
62P73TXITransmitter power monitor
63P74BTEMPBattery temperature
64P75BSIBattery size indication
65P76RFTEMPRF temperature
66P77ACCDETAccessory detection
67VrefVrefReference voltage for processor
68AVccVrefReference voltage for processor
Originat 05/98
Page 3 – 17
NHN–5NT
PAMS
System Module JF5
69
P80XINTInterrupt request from NIPA
Technical Documentation
70P81
71P82
72P83
73PA0BOOST1RF booster control
74PA1BOOST0RF booster control
75PA2XEARDCDC to XEAR line control
76PA3XEARONXEAR amplifier ON
77PA4CSWCharging control
78PA5SDATSerial data for synthesiz
79PA6TXCTX syntetisizer enable. Active high.
80PA7VOUTPower supply to HDA
– SIS
Motorola SIS 68HC11A8 (subscriber identification) circuit connected to
the controller over serial bus IIC.
SIS processor signals:
PinDescription
EXTALClock input from NIPA
RESETReset input
PD0IIC bus data
PD1IIC bus clock
– EEPROM
There is two 8k EEPROM in phone. EEPROM is a nonvolatile memory
into which is stored the tuning data for the phone. In addition, it contains
the short code memory locations to retain user selectable phone numbers.
EEPROM signals:
PinDescription
SDAIIC bus data
SCLIIC bus clock
Page 3 – 18
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
System Module JF5
PWRU
Introduction
The power block generates the supply voltages for the baseband and includes also the charging electronics.
Technical Specifications
TPWRU internal signals, inputs
Signal NameNotesFrom
CSWCharger controlCTRLU
MBUSOUTSerial interfaceCTRLU
XPWRONPower on control from keyboardUIF
XPWROFFPower off control from controller (watch dog)CTRLU
VBATBattery voltage inputSYSTEM
VCSCharging supply voltage from chargerSYSTEM
TPWRU internal signals, outputs
Signal NameSignal descriptionTo
XRESMaster resetCTRLU
PWRONPower on signal for microprosessor.CTRLU
VLLogic supply voltage, 3.3VCTRLU,AU-
DIO,UIF
VL3Logic supply voltage, 4.75VCTRLU,
AUDIO
VAAnalog supply voltage. Max 40 mA.SYNT,
AUDIO
VREFReference voltage 3.3V 3%. Max. 5mA.CTRLU, RF,
TX
VBATSWBattery voltage to A/D converter.CTRLU
VCHARGCharger voltage to A/D converter.CTRLU
VRFBattery voltage to RX–unitRX
VBATBattery voltage to TX–unitTX
M2BUSSerial interfaceSYSTEM
Originat 05/98
Page 3 – 19
NHN–5NT
PAMS
System Module JF5
Block Description
The baseband power supplying circuit includes:
– the supply voltages:
– Regulator has been used before MUUMI – switched output of battery
(VBATSW) and charger voltage (VCHARG) measurements to the MCU
A/D–converter
– battery voltage detection and reset logic
– charger switch control output used to limit battery voltage VBAT < 8.8V
– power on/off switch input (XPWRON), buffered output to MCU
(PWRON)
– watchdog timer using oscillator in COFF pin , cleared by falling edge
input in PWROFFX, elapsing time for watchdog timer is 3 ... 4 seconds
– M2BUS open drain output driver is not used.
Technical Documentation
VL40mA for digital circuits
VL320mA for RF
VA20mA for analog circuits
VREF5mA reference voltage for A/D–converters and
regulators
The charge switch driving circuit is implemented with discrete components. This circuit includes transient voltage protection, soft charge
switching, low voltage battery charging and battery disconnecting with
charger connected protection. This circuit also limits battery voltage when
charger is connected to protect MUUMI and TX transistors.
Power circuitry have three different operating modes: POWER OFF , RESET and POWER ON. In POWER OFF state MUUMI regulator outputs
are disabled and reset control output signal (PURX) is active low.
MUUMI internal oscillator at pin COFF is working in all operating modes.
MUUMI goes through short RESET state (100ms ) to POWER ON–state
, if PWR–button is pressed or charger voltage input is connected to
charging input VCS (charging voltage detection in MUUMI input VCHAR
is level active). In RESET–state regulator outputs VL,VA and VREF are
active and PURX–signal is active low. If battery voltage on MUMMIs pin
is lower than 4.1 V (3.9V...4.3V) the circuit cannot go to POWER ON
state. MUUMI goes also to RESET state, when battery voltage on MUUMIs pin is falling below 3.9 V (3.7V...4.1V). This situation is possible, when
battery is fully discharged or battery is disconnected.
In POWER ON mode all regulator outputs are active and MUUMI reset
signal output PURX is inactive high. MCU XPWROFF–output signal
clears at falling edge the watchdog inside MUUMI. If the watchdog is not
cleared , MUUMI goes to POWER OFF state. When the charger is connected and battery voltage on MUUMIs pin is higher than 4.1V , module
stays in POWER ON mode.
The MCU controls battery charging with CSW output (which is PWM–controlled output port) and MUUMI limits the maximum battery voltage to 8.8
V with CHRGSW–output.
Page 3 – 20
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
No current flows from charger (VCHARG) to battery , if MCU output CSW
is active low and XRES signal is inactive high. The battery is charged
also, when charger is connected and XRES signal is active low. The
charging circuit charges the battery during RESET to higher than 5.3 V.
The charging electronics is controlled by the CTRLU. When the charging
voltage is applied to the phone while the phone is powered up, the
CTRLU detects it and starts controlling the charging.
If the phone is in power–off, the MUUMI will detect the charging voltage .
If the battery voltage is high enough the reset will be released and the
CTRLU will start controlling the charging. If the battery voltage is too low
the phone is in reset and charging control circuitry will pass the charging
current to the battery. When the battery voltage on MUUMIs pin has
reached 4.1V (3.9...4.3V) the reset will be removed and the CTRLU
starts controlling the charging. This all is invisible to the user.
V116 is the charging switch; it is governed by the controller (CSW line) via
voltage regulator V114 and V115. In fast charge mode CSW is ”1” and in
maintain charge mode there is controller controlled pulses. In charge off
state CSW is ”0”. In maintain charge mode pulse ratio depends of charger
and temperature.
System Module JF5
There are three different ways to switch the power on:
– Power key pressing grounds the XPWRON line. The MUUMI defects
that and switches the power on.
– Charger detection on MUUMI detects that charger is connected and
switches power on.
– MUUMI will switch power on when the battery is connected. If the bat-
tery is changed during the call, the power is kept on. If not the power
is switched off.
Originat 05/98
Page 3 – 21
NHN–5NT
PAMS
System Module JF5
Block Diagram of MUUMI ASIC
VBAT1
1
VBAT2
22
VBAT3
5
M2BUSIN
11
760k
PWM
15
760k
CHARGER
CTRL
LOGIC
BANDGAP
REF
Technical Documentation
70k
40k
VBATSW
M2BUSOUT
VREF
17
12
VL
23
VA
2
4
VCHAR
21
PWRONX
13
PWROFFX
14
TEST
3
Main components
– MUUMI asic
VBAT
32k
760k
760k
LOW VBAT
& CHARGER
DETECT
PWR ON/OFF
&
RESET LOGIC
Creset
20
16
Coff
VL_ENA
VA_ENA
VREF_ENA
VSW_ENA
VCHAR
GND1
24
GND2
19
GND3
7
CHRGSW
PWRONXBUFF
VCHARSW
Cref
6
PURX
8
10
9
18
– Transistor V116 and diode V118
– Regulators N130 and N140
Page 3 – 22
Creates the voltages, comprises power switch, charger, battery
detection and watchdog.
The charging current is passed through these components.
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
N130 decreases battery voltage to 4.75 volts which is suitable
for MUUMI asic.
N140 creates the supply voltage VL3 (4.75 volts) to display
and logic circuits.
System Module JF5
Originat 05/98
Page 3 – 23
NHN–5NT
PAMS
System Module JF5
AUDIO
Introduction
The block includes a NIPA audio/signalling prosessor in a 64 TQFP package.
Main features
– Single chip FFSK modem and audio circuit
– Full duplex 1200 baud signalling
– DMS facility
– Low power consumption modes
– Programmable output clocks with clock stop for MCU and LCD
– 8 bit parallel interface with pull ups
– FSK indicator and level detector
– Speech volume indicator
– Programmable timer
– IF counter
– 8 bit DAC
– FII filter and gain control
– Low noise microphone amplifier
– Input for a handset microphone or an accessory
– Microphone sensitivity compensation +4.8/–4.2 dB range (4 bits)
– Compandor
– RX and TX filters
– Tx hard limiter
– Tx AGC
– Internal reference compensation +1.00/–0.75 dB range(3 bits)
– Summing stage for voice/data, signalling and fii
– Transmitter compensation amplifier with +3.75/–3.75 dB range (4 bits)
– Receiver compensation amplifier with +3.75/–3.75 dB range (4 bits)
– Volume control amplifier with –20/+17.5 range (4 bits)
– Earphone amplifier with drive capability for ceramic earpiece
– Buffered output for a handset or an accessory
– Mute switches
– Dual and single tone multifrequency generator
– Driver for buzzer amplifier
– Hands free functions
Technical Documentation
Page 3 – 24
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
System Module JF5
Technical specifications
AUDIO internal signals, inputs
Signal NameNotesFrom
VLLogic supply voltage, 3.3VPWRU
VAAnalog supply voltage, 3.3VPWRU
VL3Logic supply voltage, 4.75VPWRU
XRESReset line from MUUMIPWRU
XNRDRead control signalCTRLU
XNCSChip select signalCTRLU
XNWRWrite control signalCTRLU
NA0...A34–bit address busCTRLU
ND0...D78–bit bidirectional data busCTRLU
EARENAEarphone amplifier enableCTRLU
XEARONexternal earphone amplifier enableCTRLU
XEARDCExternal earphone DC enableCTRLU
KBINTKeyboard interruptCTRLU
MBUSINTMBUS interruptCTRLU
DAFDetected audio signal from receiverRX
IF(2nd) Intermediate frequency for AFC functionRX
XMICExternal audio input from accessoriesSYSTEM
MICPMicrophone (positive node)SYSTEM
MICNMicrophone (negative node)SYSTEM
AUDIO internal signals, outputs
Signal NameNotesTo
XEARExternal audio output to accessoriesSYSTEM
ACCDETAccessory detection signalSYSTEM
MODAudio output to synthesizerSYNT
AFCVCTCXO controlSYNT
BUZZERBuzzer signalSYSTEM
EARPEarpiece (positive node)UIF
EARNEarpiece (negative node)UIF
CLKMCUClock signal for MCUCTRLU
XINTInterrupt reques to MCUCTRLU
NMINo maskable Interrupt reques to MCUCTRLU
Originat 05/98
Page 3 – 25
NHN–5NT
PAMS
System Module JF5
Technical Documentation
Pin list of NIPA audio/signalling processor
Pin noSymbolPin typeNotes
1VDD1+ 3.3 V Supply voltage, digital
2XRDDIN/pdRead control signal, active state LOW, pull–down > 50
k
3XCSDIN/pdChip select signal, active state LOW, pull–down > 50
k
4A3DIN/pu4–bit address bus, MSB, pull–up > 50 k
5A2DIN/pu4–bit address bus, pull–up > 50 k
6A1DIN/pu4–bit address bus, pull–up > 50 k
7A0DIN/pu4–bit address bus, LSB, pull–up > 50 k
8D7DIO8–bit bidirectional data bus MSB
9D6DIO8–bit bidirectional data bus
10D5DIO8–bit bidirectional data bus
11D4DIO8–bit bidirectional data bus
12D3DIO8–bit bidirectional data bus
13D2DIO8–bit bidirectional data bus
14D1DIO8–bit bidirectional data bus
15D0DIO8–bit bidirectional data bus LSB
16VDD2+ 3.3 V Supply voltage, digital
17NMIDOUTNon maskable Interrupt request
18XCLRDINHW reset input, active state LOW
19TMODEDIN/pdTest mode selection, pull–down > 50 k
20TSELDIN/pdTest select, pull–down > 50 k
21XINTDOUTInterrupt request to MCU, active state LOW
22MBUSINTDINMBUS interrupt request, falling edge active
23KBINTDINKeyboard interrupt request, falling edge active
24IFAINIF input
25VSS20 V Supply voltage, digital ground
26VSA20 V Supply voltage, analog ground
27DAFAINSignal input
28FILOAOUTRxfilter output
29EXPIAINExpander input
30EAMPBOAOUTExpander Amplifier B output
31EWCIAINExpander Window Comparator input
32EXPOAOUTExpander output
33VDA2+ 3.3 V Supply voltage, analog
34VOLIAINVolume control ampl. input (Volume)
Page 3 – 26
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
NotesPin typeSymbolPin no
35EXTEARAOUTBuffered output for handset or an accessory
36EVGNDAINEarphone driver virtual ground
37EARMAOUTEarphone driver output
38EARPAOUTEarphone driver output
39CWCIAINCompressor window comparator input
40DACOAOUTDA converter output
41SIDEARAOUTSidetone output
42REFAINInternal analog signal ground 1.65 V
43MICAINMicrophone amplifier input
44BIMICAOUTMicrophone bias current output
45CMICAINMicrophone current stabilization capacitor
46EXTMICAINAudio input for a handset or an accessory
47TXBPOAOUTTransmit bandpass filter output
System Module JF5
48VDA1+ 3.3 V Supply voltage, analog
49COMIAINCompressor input
50COMOAOUTCompressor output
51EMPIAINPre emphasis input
52FIIOUTAOUTReceived FII signal
53TOUTDOUTTest output, digital
54ATSTAOUTAudio Filter Test output
55MODAOUTTransmit path output
56VSA10 V Supply voltage, analog ground
57VSS10 V Supply voltage, digital ground
58BUZZDOUTBuzzer output
59ATOUTAOUTTest pin
60CLKOUTCOUT(7.3728 MHz) 3.6864 MHz crystal oscillator output
61CLKINCIN(7.3728 MHz) 3.6864 MHz crystal oscillator input or
input for the external clock
62CLKLCDDOUTClock signal for LCD, 230.4 kHz or 57.6 kHz
63CLKMCUDOUTClock signal for MCU, 3.6864 MHz or 7.3728 MHz
64XWRDIN/puWrite control signal, active state LOW, pull–up > 50
k
Originat 05/98
Page 3 – 27
NHN–5NT
PAMS
System Module JF5
Block description, Audio Processor
WPOSFIL
WTRFIL
SUM
TRREG
STATUS
BITS
RECREG
DPLL
MOD
BUZZ
BUZZ
ddtmf
SMUX
DFLAG
loop (to MODRXFIL)
MODTRPOST
DRIV
CONTROL BITS
DETED
TXAAF
PREEMP
EMPI
CWCI
COMICOMO
TXBPO
ATST
LIM
AGC
SUM
TXTRI
SINGEN
MODTRFIL
TXLPTXTRI+TXPOSTFIL
AGC
PREEMLIM
COMPR
ATOUT
VOL
RXAAF
MODRXFIL
DATACOMP
aloop (to RXMUX)
SINGEN MODTRFIL
TRSTBY
TFLAG
txbpo
(to SIDEAR)
FSKMOD
TR
RFLAG
RECCTRL
INTERNAL
CLOCKS
CTRL
AFC
XBSSBY
XTALKSBY
XBUZZSBY
XIFSBY
CREG
TIMER
DETFIL
DACO
D/A
8 bit
XDACSBY
XDTMFSBY
INTERFACE
Technical Documentation
FIIOUT
FIIBUF
A0 A1 A2 A3 D0 D1 D2 D3 D4 D5 D6 D7
NMI
XINT
XWR
XRD
XCS
EARP
EAR
HF
FIIPOST
EARM
CONTR
EVGND
DEEMP+RXFIL
SIDEAR
EXTEAR
RXATTACC
EXPVOL
SIDEAR
txbpo
(from TXBP)
64 pins
VOLI
EXPO
EWCI
EAMPBO
EXPI
FILO
Page 3 – 28
TXMUX+TXAAFTXATTMICTRI TXBP
MICAM
MIC
CMIC
BIMIC
ddtmf (to BUZZDRIV)
DTMFCOMP
dtmf
DTMF GEN
EXTMIC
CLKLCD CLKMCU
XCLR
TMODE
(to RXMUX)
REF GEN
CLKIN
CLOCKDIV
TSEL
OSC
IFAMP
CLKOUT
IFCNTR
FSKDIS
IF
FSKIND
MBUSINT
DATACOMP
MODRXFIL
GND GEN
REF
KBINT
LEVEL
FSKLEV
VDD2
VDD1
Figure 1. NIPA block diagram
FIIFIL(4kHz)+FIITRI
dtmf
loop (from WPOSFIL)
VSS2
VSA1
VDA1
VDA2
RXMUX+AAFIL
VSA2
VSS1
aloop (from TXPOSTFIL)
RXTRIRXAAF
DAF
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
Transmitting data path
The data to be transmitted will be loaded into the transmitting register
TRREG. From the TRREG register the 8 bit data is transformed to serial
data which is sent to the FSK modulator (FSKMOD) and sine wave generator (SINGEN) and then to the summing block (SUM).
Receiving data path
The data from anti alias filter is connected through the modems RX filter
(MODRXFIL) to the data comparator (DA TACOMP) and then to FSK discriminator. Further from FSK discriminator data is connected to detecting filter
(DETFIL) and from there to digital phase locked loop (DPLL).
IF
Intermediate frequency counter (IFCTR) is on the modem to measure
the frequency of IF signal.
AFC
AFC makes the synthesizer fine tuning. It can be used for channel sidestep also.
AFC DA–converter output DC level tunes RF oscillator (VCXO). See section 2.4.2.
System Module JF5
FII path
The FII signal is filtered and amplified with a 4 kHz bandpass filter (FIIFIL). FIITRI is for FII sensitivity compensation. The filtered FII is then fed to
summing block (SUM).
Buzzer driver
Buzzer driver is a ’semi PWM’ signal generator. It detects rising edges of
DTMF signal and generates a pulse on every rising edge. The length of the
pulse can be set by writing length control word to the register BUZZVOL. The
length is N * 2.17 us, where N is a value in BUZZVOL register.
Value 0x0H in the BUZZVOL register disables the buzzer driver, i.e. BUZZ
output is always low.
Clock divider
Clock divider generates the internal clock frequencies by dividing the
master clock frequency which is created by an internal crystal oscillator
and an external 7.3728 MHz or 3.6864 MHz crystal. An external clock
signal can also be used. If the crystal is used, the oscillator output
CLKOUT must not be loaded. The buffered crystal frequency can be obtained at pin CLKMCU directly or divided by two. The 230.4kHz / 57.6kHz
clock can be obtained at pin CLKLCD. Frequency is selected with control
bit SELLCDC.
Earphone amplifier
NIPA can drive ceramic earphone only. Because of the dynamic earphone, it need power amplifier for earphone, for that purpose is used
N761 and N762 IC’s.
Originat 05/98
Page 3 – 29
NHN–5NT
PAMS
System Module JF5
Main components
– NIPA (asic).
– IC’s N761 and N762
Technical Documentation
NIPA is a single chip audio/signalling processor.
Power amplifier for earphone/external earphone.
Page 3 – 30
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
RF Section
Technical Summary
The RF module is designed for handportable cellular phone which operates in the NMT900 system (specification NMT DOC.900–3). The purpose of the module is to receive and demodulate the radio frequency signal from base station and transmit modulated RF signal to base station.
EMC leakage is prevented with magnesium shield on component side
and metallic inner surface of B–cover.
List of Submodules
Name of submodule
Rx module
Tx module
Synthesizer module
System Module JF5
All submodules are only functional blocks, They are constructed on same
PCB and have no material codes by themselves.
Specification and Functional Description
ParameterValue
RX frequency band935.0125 – 959.9875 MHz
TX frequency band890.0125 – 914.9875 MHz
RX LO frequency band980.0125 – 1004.9875 MHz
Duplex spacing45 MHz
Channel numbers1 – 1000, 1025 – 2023
Number of channels1999
Channel spacing12.5/25 kHz
TX output power0.1 W low power, 0.55 W high power
Method of frequency synthesisDual PLL with two UHF signals for RX LO and
TX
Frequency controlAFC with +/– 2.5 kHz limits
Receiver typeSuperheterodyne with double IF
Modulator typeFM–modulator
Current consumption, reception60 mA
Current consumption, extended standby5 mA
Current consumption, transmission500 mA max. 400 mA typ.
Originat 05/98
Page 3 – 31
NHN–5NT
PAMS
System Module JF5
Characteristics of the Module
The maximum battery voltage during transmission should not exceed 8.5
V. Higher battery voltages may destroy the power amplifier module.
ParameterValue
Battery voltage 8.5 V,
Regulated supply voltage 3.6 V +/– 5 %
Operating temperature range –25 ... +55 deg. C
DC Characteristics
Maximum ratings
There are two regulators in the RF unit. Regulators get their reference
voltages 3.3 V (Vref) from BB unit. Regulators regulate the battery voltage
to the fixed 3.6 V level.
Technical Documentation
Control Signals
In the following table the RF current consumption can be seen with different status of the control signals. RX and TX synthesizer phase locked
loops are switched on/off by a control byte that is loaded to the PLL circuit.
Table 1. Control Signals and Current Consumtion
RXE + SW powerup for RX synthe-
sizer
HHH400 mAPower Level 2
HHL60 mAStanby mode
LLL1 mAAll RF parts has
TXS + SW powerup for TX synthe-
sizer
TXETypical Current
Consumption /mA
been powered off
Power distribution diagram is shown in the figure next page.
Note
Page 3 – 32
Originat 05/98
Originat 05/98
PAMS
Technical Documentation
Figure: Power distribution diagran
740 mA (high)
320 mA (low)
30 mA
switch
synthesizer
IC
battery
6.0 V
regulator
VCCR 3.6 V
6 mA (TX off)10 mA
9 mA (TX on)
LNA
10 mA (AGC off)
1 mA (AGC on)
IF amp
regulator
VRXVCO 3.6 V
4 mA2 mA
FM DETTX bufferTX VCOPA
9 mA
RX buffer
RX VCO
2 mA10 mA
VCTCXO
TXE
System Module JF5
Page 3 – 33
NHN–5NT
NHN–5NT
PAMS
System Module JF5
Technical Documentation
Connections
Connections to the Baseband Module
Signal NameTypeFunction
AFCAnalog outThe reference oscillator frequency adjust.
AGCDigital outAutomatic gain Control for LNA. Active state: High
DAFAnalog inDemodulated received signal (audio + fii+ data)
GNDPowerCommon ground
IFAnalog out2nd IF signal (450 kHz)
MODAnalog outModulation signal for transmitter (audio + fii + data)
RFTEMPAnalog inRF temperature which is determined by NTC resistor.
RSSIAnalog inReceived signal strength indicator. Voltage measurement.
RXEDigital outReceiver on/off control. Active state: High
SCLKDigital outSerial clock for synthesizer. Active state: Rising edge
SDATDigital outSerial data for synthesizer. Active state: High
SLEDigital outSynthesizer latch enable
TXCPWM outTransmitter power control
TXEDigital outTransmitter enable. Active state: High
TXIAnalog in”TX power on” –indicator
TXSDigital outTX synthesizer enable. Active state: High
VBATPowerBattery voltage
VRFPowerUnregulated voltage from battery
VREFPowerReference voltage
Typeanalog signal
Level0...3,3 V DC
Temp. range–25...+55 degrees centigrade
RSSIReceived signal strength in-
dicator
DC–level0.2...3.0 V
Source impedance56 kW (typical)
RXEReceiver enable
TypeDigital signal
Function0 = RX off
1 = RX on
On–state current150 mA (typical) (300 mA max.)
Originat 05/98
Page 3 – 35
NHN–5NT
PAMS
System Module JF5
SCLKSerial clock for synthesizer
Typedigital signal
Pulse width> 1 us
SDATSerial data for synthesizer
Typedigital signal
Pulse width> 1 us
VALUES:
Control bytex110 011x x001 11xx
Reference divider1188
Divider formulas for RX oscilla-
tor (ch 1...1000)
Divider formulas for RX oscilla-
tor (ch 1025...2023)
Divider formulas for TX oscilla-
tor (ch 1...1000)
Divider formulas for TX oscilla-
tor (ch 1025...2023)
Technical Documentation
(x = don‘t care bit)
N = 2*ch +78400
N = 2*(ch–1024) +78401
N = 2*ch +71200
N = 2*(ch–1024) +71201
SLESynthesizer enable
TypeDigital signal
Function0 = synthesizer enabled
1 = syntheziser disabled
TXCTransmitter power control
TypePWM signal
FunctionDuty cycle of the TXC signal
defines the TX power level
PWM frequency5 kHz
Level0...3.3 V DC
Number of duty cycle steps256
Load impedance> 100 kohm
TXETransmitter on/off control
TypeDigital signal
Function0 = TX off
1 = TX on
TXI”TX power on” –indicator
TypeAnalog signal
Source impedance> 47 k
Level< 1 V = TX off
> 1 V = TX on
Page 3 – 36
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
TXSTX synthesizer on/off
TypeDigital signal
Function0 = Supply off
1 = Supply on
VBATBattery voltage
Nominal value6.5 V
Minimum value5.3 V (NiMh)
Absolute maximum8.8 V (Li–ion)
Max. current700 mA
VRFBattery voltage for RX regula-
tor
Nominal value6.5 V
Minimum value5.8 V
System Module JF5
Absolute maximum8.5 V
Max. current600 mA
VREFReference voltage
Level 3.3 V 4%
Antenna
The phone is fitted with a retractable antenna. Electrical lenght of the antenna is 1/4 wave lenght.
Originat 05/98
Page 3 – 37
NHN–5NT
PAMS
System Module JF5
Functional description , RF section
Block Diagram
Block diagram of the RF module is below.
RSSI
DAF
IF
PHASE SHIFTER
TX VCO
TX BUFFER
MOD
SLE
SCLK
AGC
SDATA
TXC
TXE
AFC
VCTCXO 14.85 MHz
Technical Documentation
TXI
VBAT
RXE
REGULATOR
4.75 V
VCCR
TSYN SWITCH
REGULATOR
4.75 V
450 kHz FILTER
IF AMPLIFIER
45 MHz
CRYSTAL FILTER
DIODE MIXER
IF CIRCUIT
TANK CIRCUIT FOR 2.ND LO
UMA 1015
SYNTHESIZER IC
LOOP FILTER
RX LO BUFFER
PLL
PLL
LOOP FILTER
VRXVCO
RX VCO
AMPLIFIER MODULE
TX POWER CONTROL
Page 3 – 38
RX–FILTER
LNA
ANTENNA
DUPLEX–FILTER
POWER DETECTOR
DIR_COUPLER
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
System Module JF5
RF Key components
NameManufacturerTypeNMP Code
AntennaLK–ProductsRS1–GS7HH1.00660168
DuplexerLK–ProductsHY–4F/NN14512059
Saw FilterToshibaSRF947–VDC–TB12R4511016
45 MHz IF filterKDSDSF753SB4510085
450 kHz IF filterNTKMLF–HSR12N–4504510061
IF circuitToshibaTA311364349694
VCTCXOKSSVC–TCXO–112CB4510043
PLL ICPhilipsUMA1015M / C24349616
RX VCOKyoceraEK–301R0993A14350015
TX VCOKyoceraEK–301T0903A1435001 1
Power AmplifierRF Micro DevicesRF21314340163
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate
frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the low noise RF
amplifier. The amplifier has 17 dB gain and 1,5 dB noise figure.
Next the signal is filtered with Z321. The filter is followed by a single balanced
diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz
bandwidth. Next the IF signal is amplified by V380. From the amplifier the
IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature
detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized
with tank circuit C372 and L371. After the mixer the 450kHz IF signal is
filtered with ceramic filter Z370. The IF amplifier output signal is phase
shifted by resonance circuit. After this the signal is fed to a quadrature
detector.
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd
IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
The first injection frequency for receiver is generated by a digital phase
locked loop (PLL). The output frequency of the loop (LO) is obtained from
a voltage–controlled oscillator (VCO) G530. The VCO output signal is
amplified by RX–LO–buffer and fed to the receiver mixer . The injection level
required by the receiver mixer is about +3 dBm. In addition, the signal is
feeded back to the dualsynthesizer circuit N820.
Originat 05/98
Page 3 – 39
NHN–5NT
PAMS
System Module JF5
The overall divisor of the chain is selected according to the desired channel.
The internal dividers of N820 are programmed with 17 bits, which are
transferred serially on the SDAT (synthesizer data) line from the processor
into an internal shift register also located in N820. Data transfer is timed with
SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency
by a phase comparator in the PLL circuit. The phase comparator controls the
VCO frequency by means of a DC voltage through the loop filter so as to keep
the divided frequency applied to the phase comparator equal to the fixed
reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained
from voltage and temperature controlled crystal oscillator (VCTCXO).
Oscillator frequency is 14.85 MHz. The VCTCXO frequency is divided by
1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the
output goes low and discharge integrator capacitor C521. After this, the DC
control voltage and the VCO frequency will decrease.
Technical Documentation
If the VCO frequency is too low, the output goes high and charge the
integrator capacitor C521. Thereafter the DC control voltage and the VCO
frequency will go up.
Output pulses from the phase detector have to be supplied to the loop filter.
The function of the integrator is to convert positive and negative pulses to DC
voltage. The remaining ripple and AC components are filtered in the lowpass
filter.
TX synthesizer and TX loop filter
The transmitter synthesizer generates a frequency modulated transmitter
signal for the transmitter section. The modulated TX injection frequency is
generated in TX–VCO (G430). The TX modulated TX signal is amplified in
TX–buffer before the transmitter.
Output pulses from the phase detector N820 pin 17 have to be supplied to
the loop filter. The integrator, which consists of R420 and C421, converts
positive and negative pulses to DC voltage. The remaining ripple is filtered
in the low–pass filter.
Transmitter
The transmitter is realized with a power amplifier module N601. The
modulated RF signal from the TX synthesizer is applied to the 50 ohm input
of the module. The power level is controlled by the voltage supplied to the
pin 1. Zener diode V642 protects the module against too high control
voltages (>4.5 V). Amplifier module has two pairs of output pins ( pins 10, 1 1
and 14, 15 ). The real part of the output impedance is 10 ohms. Amplified RF
Page 3 – 40
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
signals are compined symmetrically and impedance is matched to 50 ohms.
After that signal is fed to the duplex filter. The harmonics of the transmitter
are attenuated in the matching circuit and in the duplex filter. A voltage
proportional to the output power is rectified from a directional coupler by
DC–biased Schottky diode V640. This rectified voltage is fed to a differential
amplifier which consists of transistor V650. The reference voltage is filtered
from the PWM signal provided by the TXC line. The differential amplifier
adjusts the control voltage so that the reference voltage and the voltage
proportional to the output power are equal. The transmitter is switched on
when TXE goes high (logic 1). TXE enables the transmitter power control
circuit by transistor V653. When the transmitter is inactive (TXE low) the RF
level from the transmitter is reduced below –57 dBm.
Regulators
Voltages (3.6 V) for RF parts are realized by two regulator–components
(N310, N311). Voltage from N311 is used for receiver VCO and VCTCXO.
V oltage from N310 is used for other RF–parts excluding P A module. TX synthesizer and transmitter VCO get supply voltage via switch (V41 1). It is controlled by PLL circuit. Regulators are controlled by RXE–line.
System Module JF5
AFC Function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming
receive signal from base station as a frequency reference. The control loop
consists of the receiver, the IF counter in the NIPA, MCU, an 8–bit D/A
converter in the NIPA and the VCTCXO, which is used as a reference
oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter
counts the received frequency. If the frequency differs from programmed
value, MCU adjusts the frequency of the VCTCXO by changing output
voltage of the D/A converter. This adjustment continues until the desired
receive frequency is achieved. AFC is not active during a channel scan and
below –90 dBm RX signal level.
RF Characteristics
Temperature range
Line SymbolMinimumTypical /
Nominal
Operating temperature–25+55°C
MaximumUnit / Notes
Receiver
The receiver is a dual–conversion superheterodyne using two intermediate
frequencies, 45 MHz and 450 kHz.
The RF signal from the duplexer RX port is applied to the RF amplifier. The
amplifier has 18 dB gain and 1,5 dB noise figure.
Originat 05/98
Page 3 – 41
NHN–5NT
PAMS
System Module JF5
Next the signal is filtered with Z321. The filter is followed by a single balanced
diode mixer, which has 6 dB conversion loss.
After the mixer signal is filtered with the crystal filter Z350, which has 7,5 kHz
bandwidth. Next the IF signal is amplified by V380. From the amplifier the
IF–signal is applied to the second mixer.
The second mixer, the LO buffer transistor, IF amplifier and quadrature
detector are all integrated in the circuit N370. The second LO frequency,
44.55 MHz, is third harmonic of the VCTCXO frequency . LO signal is realized
with tank circuit C372 and L371. After the mixer the 450kHz IF signal is
filtered with ceramic filter Z370. The IF amplifier output signal is phase
shifted by resonance circuit. After this the signal is fed to a quadrature
detector.
Signal DAF is low pass filtered by R372 and C379. The DAF, RSSI and 2nd
IF signal (450 kHz) are fed to the audio/logic unit.
RX Synthesizer
Technical Documentation
The first injection frequency for receiver is generated by a digital phase
locked loop (PLL). The output frequency of the loop (LO) is obtained from
a voltage–controlled oscillator (VCO) G530. The VCO output signal is
amplified by RX–LO–buffer and fed to the receiver mixer . The injection level
required by the receiver mixer is about +3 dBm. In addition, the signal is
feeded back to the dualsynthesizer circuit N820.
The overall divisor of the chain is selected according to the desired channel.
The internal dividers of N820 are programmed with 17 bits, which are
transferred serially on the SDAT (synthesizer data) line from the processor
into an internal shift register also located in N820. Data transfer is timed with
SCLK clock pulses.
The divided frequency is compared with a highly stable reference frequency
by a phase comparator in the PLL circuit. The phase comparator controls the
VCO frequency by means of a DC voltage through the loop filter so as to keep
the divided frequency applied to the phase comparator equal to the fixed
reference frequency.
The reference frequency is 12,5 kHz. This reference frequency is obtained
from voltage controlled crystal oscillator (VCXO or VCTCXO). Oscillator
frequency is 14.85 MHz. The VCXO frequency is divided by 1188.
RX loop filter
Phase comparator output is pin 3. If the VCO frequency is too high, the
output goes low and discharge integrator capacitor C521. After this, the DC
control voltage and the VCO frequency will decrease.
If the VCO frequency is too low, the output goes high and charge the
integrator capacitor C521. Thereafter the DC control voltage and the VCO
frequency will go up.
Page 3 – 42
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
Output pulses from the phase detector have to be supplied to the loop filter.
The function of the integrator is to convert positive and negative pulses to DC
voltage. The remaining ripple and AC components are filtered in the lowpass
filter.
TX Synthesizer
The transmitter synthesizer generates a frequency modulated transmitter
signal for the transmitter section. The modulated TX injection frequency is
generated in TX–VCO (G430). The TX modulated TX signal is amplified in
TX–buffer before the transmitter.
TX Loop Filter
Output pulses from the phase detector N820 pin 17 have to be supplied to
the loop filter. The integrator, which is constituted of R420 and C421,
converts positive and negative pulses to DC voltage. The remaining ripple
is filtered in the low–pass filter.
System Module JF5
Transmitter
The transmitter is realized with a power amplifier module. The modulated RF
signal from the TX synthesizer is applied to the 50 ohm input of the module.
The power level is controlled by the voltage supplied to the pin 1. Zener diode
V642 protects the module against too high control voltages (>4.5 V).
Amplifier module has two pairs of output pins ( pins 10, 11 and 14,15 ).
Amplified RF signals are compined symmetrically and fed through a
low–pass filter to the duplex filter. The harmonics of the transmitter are
reduced by the duplex filter. A voltage proportional to the output power is
rectified from a directional coupler by DC–biased Schottky diode V640. This
rectified voltage is fed to a differential amplifier which consists of transistor
V650. The reference voltage is filtered from the PWM signal by TXC line. The
differential amplifier adjusts the control voltage so that the reference voltage
and the voltage proportional to the output power are equal. The transmitter
is switched on when TXE goes high (logic 1), which enables the transmitter
power control circuit by transistor V653. When the transmitter is inactive
(TXE low) the RF level from the transmitter is reduced below –57 dBm.
Regulators
The voltage regulators for RF parts consist of the transistors V310, 31 1, 313
and 314. The first regulator (V310, 311) provides the operating voltage for
the receiver, PLL circuit and RX–VCO buffer. The other one is used to
regulate the operating voltage of the RX–VCO. These regulators are
realized using discrete transistors because the output noise has to be very
low. The 3.3 V reference voltage (VREF) is fed from the logic module. TX
synthesizer gets the supply voltage via a switch which is realized using
transistors V411 and V410. The switch is controlled by the digital TXS–line
from the logic module.
Originat 05/98
Page 3 – 43
NHN–5NT
PAMS
System Module JF5
AFC function
The transceiver unit is equipped with AFC function, i.e. it uses the incoming
receive signal from base station as a frequency reference. The control loop
consists of the receiver, the IF counter in the NIPA, MCU, an 8–bit D/A
converter in the NIPA and the VCTCXO, which is used as a reference
oscillator for the synthesizer.
The 2nd IF signal (450 kHz) from receiver is fed to the NIP A. The IF counter
counts the received frequency. If the frequency differs from programmed
value, MCU adjusts the frequency of the VCXO by changing output voltage
of the D/A converter. This adjustment continues until the desired receive
frequency is achieved. AFC is not active during a channel scan and below
–90 dBm RX signal level.
Technical Documentation
Page 3 – 44
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
System Module JF5
Parts List of JF5 system module
Issue 5.0 Code: 0201130
ITEMCODEDESCRIPTIONVALUETYPE
R441430690Chip jumper0402
R1011430804Chip resistor100 k5 % 0.063 W 0402
R1021430796Chip resistor47 k5 % 0.063 W 0402
R1111430804Chip resistor100 k5 % 0.063 W 0402
R1121430788Chip resistor22 k5 % 0.063 W 0402
R1131430796Chip resistor47 k5 % 0.063 W 0402
R1141430754Chip resistor1.0 k5 % 0.063 W 0402
R1151430738Chip resistor270 5 % 0.063 W 0402
R1161430804Chip resistor100 k5 % 0.063 W 0402
R1171430788Chip resistor22 k5 % 0.063 W 0402
R1181430770Chip resistor4.7 k5 % 0.063 W 0402
R1191430730Chip resistor150 5 % 0.063 W 0402
R1201430764Chip resistor3.3 k5 % 0.063 W 0402
R1211430778Chip resistor10 k5 % 0.063 W 0402
R1221430780Chip resistor12 k5 % 0.063 W 0402
R1231430780Chip resistor12 k5 % 0.063 W 0402
R1241430778Chip resistor10 k5 % 0.063 W 0402
R1301430804Chip resistor100 k5 % 0.063 W 0402
R1401430804Chip resistor100 k5 % 0.063 W 0402
R1521430740Chip resistor330 5 % 0.063 W 0402
R1531430726Chip resistor100 5 % 0.063 W 0402
R1571430770Chip resistor4.7 k5 % 0.063 W 0402
R1581430778Chip resistor10 k5 % 0.063 W 0402
R1701430700Chip resistor10 5 % 0.063 W 0402
R1711430778Chip resistor10 k5 % 0.063 W 0402
R1721430796Chip resistor47 k5 % 0.063 W 0402
R1731430754Chip resistor1.0 k5 % 0.063 W 0402
R2021430796Chip resistor47 k5 % 0.063 W 0402
R2031430778Chip resistor10 k5 % 0.063 W 0402
R2041430792Chip resistor33 k5 % 0.063 W 0402
R2051430792Chip resistor33 k5 % 0.063 W 0402
R2061430778Chip resistor10 k5 % 0.063 W 0402
R2081430770Chip resistor4.7 k5 % 0.063 W 0402
R2101430770Chip resistor4.7 k5 % 0.063 W 0402
R2141430804Chip resistor100 k5 % 0.063 W 0402
R2151430796Chip resistor47 k5 % 0.063 W 0402
R2171430788Chip resistor22 k5 % 0.063 W 0402
R2211430778Chip resistor10 k5 % 0.063 W 0402
R2221430778Chip resistor10 k5 % 0.063 W 0402
R2231430778Chip resistor10 k5 % 0.063 W 0402
R2241430792Chip resistor33 k5 % 0.063 W 0402
R2251430792Chip resistor33 k5 % 0.063 W 0402
Originat 05/98
Page 3 – 45
NHN–5NT
PAMS
System Module JF5
R2261430792Chip resistor33 k5 % 0.063 W 0402
R2301430796Chip resistor47 k5 % 0.063 W 0402
R2311430830Chip resistor1.0 M5 % 0.063 W 0402
R2321430814Chip resistor270 k5 % 0.063 W 0402
R2331430804Chip resistor100 k5 % 0.063 W 0402
R2341430792Chip resistor33 k5 % 0.063 W 0402
R2351430802Chip resistor82 k5 % 0.063 W 0402
R2411430754Chip resistor1.0 k5 % 0.063 W 0402
R2431430792Chip resistor33 k5 % 0.063 W 0402
R2441430792Chip resistor33 k5 % 0.063 W 0402
R2451430770Chip resistor4.7 k5 % 0.063 W 0402
R2461430804Chip resistor100 k5 % 0.063 W 0402
R2511430792Chip resistor33 k5 % 0.063 W 0402
R2521430792Chip resistor33 k5 % 0.063 W 0402
R2701430804Chip resistor100 k5 % 0.063 W 0402
R2711430754Chip resistor1.0 k5 % 0.063 W 0402
R2721430778Chip resistor10 k5 % 0.063 W 0402
R3101430778Chip resistor10 k5 % 0.063 W 0402
R3111430710Chip resistor22 5 % 0.063 W 0402
R3191430690Chip jumper0402
R3201430754Chip resistor1.0 k5 % 0.063 W 0402
R3211430786Chip resistor18 k5 % 0.063 W 0402
R3221430726Chip resistor100 5 % 0.063 W 0402
R3301430754Chip resistor1.0 k5 % 0.063 W 0402
R3311430808Chip resistor150 k5 % 0.063 W 0402
R3321430734Chip resistor220 5 % 0.063 W 0402
R3331430700Chip resistor10 5 % 0.063 W 0402
R3341430710Chip resistor22 5 % 0.063 W 0402
R3351430764Chip resistor3.3 k5 % 0.063 W 0402
R3401430778Chip resistor10 k5 % 0.063 W 0402
R3411430764Chip resistor3.3 k5 % 0.063 W 0402
R3421430700Chip resistor10 5 % 0.063 W 0402
R3431430734Chip resistor220 5 % 0.063 W 0402
R3501430726Chip resistor100 5 % 0.063 W 0402
R3601430744Chip resistor470 5 % 0.063 W 0402
R3611430778Chip resistor10 k5 % 0.063 W 0402
R3621430778Chip resistor10 k5 % 0.063 W 0402
R3631430756Chip resistor1.2 k5 % 0.063 W 0402
R3651430690Chip jumper0402
R3661430714Chip resistor33 5 % 0.063 W 0402
R3701430758Chip resistor1.5 k5 % 0.063 W 0402
R3711430770Chip resistor4.7 k5 % 0.063 W 0402
R3721430754Chip resistor1.0 k5 % 0.063 W 0402
R3731430714Chip resistor33 5 % 0.063 W 0402
R3741430804Chip resistor100 k5 % 0.063 W 0402
R3811430770Chip resistor4.7 k5 % 0.063 W 0402
R4111430770Chip resistor4.7 k5 % 0.063 W 0402
Technical Documentation
Page 3 – 46
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
R4141430778Chip resistor10 k5 % 0.063 W 0402
R4201430766Chip resistor3.9 k5 % 0.063 W 0402
R4211430754Chip resistor1.0 k5 % 0.063 W 0402
R4221430770Chip resistor4.7 k5 % 0.063 W 0402
R4231430778Chip resistor10 k5 % 0.063 W 0402
R4301430718Chip resistor47 5 % 0.063 W 0402
R4311430734Chip resistor220 5 % 0.063 W 0402
R4321430788Chip resistor22 k5 % 0.063 W 0402
R4331430786Chip resistor18 k5 % 0.063 W 0402
R4341430700Chip resistor10 5 % 0.063 W 0402
R4401430762Chip resistor2.2 k5 % 0.063 W 0402
R4411430772Chip resistor5.6 k5 % 0.063 W 0402
R4421430734Chip resistor220 5 % 0.063 W 0402
R4431430700Chip resistor10 5 % 0.063 W 0402
R4441430690Chip jumper0402
R5201430764Chip resistor3.3 k5 % 0.063 W 0402
R5211430754Chip resistor1.0 k5 % 0.063 W 0402
R5221430770Chip resistor4.7 k5 % 0.063 W 0402
R5231430778Chip resistor10 k5 % 0.063 W 0402
R5301430724Chip resistor82 5 % 0.063 W 0402
R5311430734Chip resistor220 5 % 0.063 W 0402
R5321430690Chip jumper0402
R6011430700Chip resistor10 5 % 0.063 W 0402
R6321430700Chip resistor10 5 % 0.063 W 0402
R6411430726Chip resistor100 5 % 0.063 W 0402
R6421430796Chip resistor47 k5 % 0.063 W 0402
R6431430786Chip resistor18 k5 % 0.063 W 0402
R6441430754Chip resistor1.0 k5 % 0.063 W 0402
R6461430776Chip resistor8.2 k5 % 0.063 W 0402
R6471430744Chip resistor470 5 % 0.063 W 0402
R6491430806Chip resistor120 k5 % 0.063 W 0402
R6511430796Chip resistor47 k5 % 0.063 W 0402
R6521430786Chip resistor18 k5 % 0.063 W 0402
R6531430754Chip resistor1.0 k5 % 0.063 W 0402
R6541430778Chip resistor10 k5 % 0.063 W 0402
R6561430796Chip resistor47 k5 % 0.063 W 0402
R6591430778Chip resistor10 k5 % 0.063 W 0402
R6601430690Chip jumper0402
R7111430796Chip resistor47 k5 % 0.063 W 0402
R7121430796Chip resistor47 k5 % 0.063 W 0402
R7211430754Chip resistor1.0 k5 % 0.063 W 0402
R7221430788Chip resistor22 k5 % 0.063 W 0402
R7231430700Chip resistor10 5 % 0.063 W 0402
R7241430812Chip resistor220 k5 % 0.063 W 0402
R7251430812Chip resistor220 k5 % 0.063 W 0402
R7311430762Chip resistor2.2 k5 % 0.063 W 0402
R7321430792Chip resistor33 k5 % 0.063 W 0402
System Module JF5
Originat 05/98
Page 3 – 47
NHN–5NT
PAMS
System Module JF5
R7331430778Chip resistor10 k5 % 0.063 W 0402
R7341430816Chip resistor330 k5 % 0.063 W 0402
R7401430700Chip resistor10 5 % 0.063 W 0402
R7411430762Chip resistor2.2 k5 % 0.063 W 0402
R7421430804Chip resistor100 k5 % 0.063 W 0402
R7431430718Chip resistor47 5 % 0.063 W 0402
R7441430718Chip resistor47 5 % 0.063 W 0402
R7511430796Chip resistor47 k5 % 0.063 W 0402
R7521430796Chip resistor47 k5 % 0.063 W 0402
R7531430700Chip resistor10 5 % 0.063 W 0402
R7661430820Chip resistor470 k5 % 0.063 W 0402
R7671430788Chip resistor22 k5 % 0.063 W 0402
R7681430788Chip resistor22 k5 % 0.063 W 0402
R7691430700Chip resistor10 5 % 0.063 W 0402
R7701430700Chip resistor10 5 % 0.063 W 0402
R7711430792Chip resistor33 k5 % 0.063 W 0402
R7721430798Chip resistor56 k5 % 0.063 W 0402
R7731430804Chip resistor100 k5 % 0.063 W 0402
R7741430788Chip resistor22 k5 % 0.063 W 0402
R7751430778Chip resistor10 k5 % 0.063 W 0402
R7761430830Chip resistor1.0 M5 % 0.063 W 0402
R7771430788Chip resistor22 k5 % 0.063 W 0402
R7781430804Chip resistor100 k5 % 0.063 W 0402
R7791430778Chip resistor10 k5 % 0.063 W 0402
R7801430788Chip resistor22 k5 % 0.063 W 0402
R7811430770Chip resistor4.7 k5 % 0.063 W 0402
R7821430784Chip resistor15 k5 % 0.063 W 0402
R7831430772Chip resistor5.6 k5 % 0.063 W 0402
R7851430796Chip resistor47 k5 % 0.063 W 0402
R7861430700Chip resistor10 5 % 0.063 W 0402
R7891430770Chip resistor4.7 k5 % 0.063 W 0402
R7901430754Chip resistor1.0 k5 % 0.063 W 0402
R7911430764Chip resistor3.3 k5 % 0.063 W 0402
R7931430778Chip resistor10 k5 % 0.063 W 0402
R8001800673NTC resistor15 k10 % 0.12 W 0805
R8111430778Chip resistor10 k5 % 0.063 W 0402
R8121430754Chip resistor1.0 k5 % 0.063 W 0402
R8161430700Chip resistor10 5 % 0.063 W 0402
R8201430786Chip resistor18 k5 % 0.063 W 0402
R8211430714Chip resistor33 5 % 0.063 W 0402
R8221430714Chip resistor33 5 % 0.063 W 0402
R8261430786Chip resistor18 k5 % 0.063 W 0402
R8401430714Chip resistor33 5 % 0.063 W 0402
C1012611668Tantalum cap.4.7 u20 % 10 V
C1022320620Ceramic cap.10 n5 % 16 V 0402
C1032310791Ceramic cap.33 n20 % 50 V 0805
C1042320620Ceramic cap.10 n5 % 16 V 0402
Technical Documentation
Page 3 – 48
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
C1052604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1062604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1072604199Tantalum cap.2.2 u20 % 3.2x1.6x1.6
C1082320107Ceramic cap.10 n5 % 50 V 0603
C1092320620Ceramic cap.10 n5 % 16 V 0402
C1112320620Ceramic cap.10 n5 % 16 V 0402
C1122604209Tantalum cap.1.0 u20 % 16 V
C1132320620Ceramic cap.10 n5 % 16 V 0402
C1142320560Ceramic cap.100 p5 % 50 V 0402
C1202320546Ceramic cap.27 p5 % 50 V 0402
C1212320546Ceramic cap.27 p5 % 50 V 0402
C1222320546Ceramic cap.27 p5 % 50 V 0402
C1232320546Ceramic cap.27 p5 % 50 V 0402
C1302604209Tantalum cap.1.0 u20 % 16 V
C1312320107Ceramic cap.10 n5 % 50 V 0603
C1322320560Ceramic cap.100 p5 % 50 V 0402
C1422320560Ceramic cap.100 p5 % 50 V 0402
C1432611668Tantalum cap.4.7 u20 % 10 V
C1442604209Tantalum cap.1.0 u20 % 16 V
C1452320107Ceramic cap.10 n5 % 50 V 0603
C1512320560Ceramic cap.100 p5 % 50 V 0402
C1522320560Ceramic cap.100 p5 % 50 V 0402
C1532320560Ceramic cap.100 p5 % 50 V 0402
C1562320560Ceramic cap.100 p5 % 50 V 0402
C1572320560Ceramic cap.100 p5 % 50 V 0402
C1582320560Ceramic cap.100 p5 % 50 V 0402
C1602320560Ceramic cap.100 p5 % 50 V 0402
C1622320560Ceramic cap.100 p5 % 50 V 0402
C1632320560Ceramic cap.100 p5 % 50 V 0402
C1642320560Ceramic cap.100 p5 % 50 V 0402
C1672320560Ceramic cap.100 p5 % 50 V 0402
C1682320560Ceramic cap.100 p5 % 50 V 0402
C1692320560Ceramic cap.100 p5 % 50 V 0402
C1702320560Ceramic cap.100 p5 % 50 V 0402
C1712320560Ceramic cap.100 p5 % 50 V 0402
C1722320560Ceramic cap.100 p5 % 50 V 0402
C1732320560Ceramic cap.100 p5 % 50 V 0402
C1742320560Ceramic cap.100 p5 % 50 V 0402
C1752320560Ceramic cap.100 p5 % 50 V 0402
C1762320560Ceramic cap.100 p5 % 50 V 0402
C1772320560Ceramic cap.100 p5 % 50 V 0402
C1782320560Ceramic cap.100 p5 % 50 V 0402
C1892320584Ceramic cap.1.0 n5 % 50 V 0402
C1902320584Ceramic cap.1.0 n5 % 50 V 0402
C1912320584Ceramic cap.1.0 n5 % 50 V 0402
C1922320584Ceramic cap.1.0 n5 % 50 V 0402
C1932320584Ceramic cap.1.0 n5 % 50 V 0402
System Module JF5
Originat 05/98
Page 3 – 49
NHN–5NT
PAMS
System Module JF5
C1942320584Ceramic cap.1.0 n5 % 50 V 0402
C1952320584Ceramic cap.1.0 n5 % 50 V 0402
C1962320584Ceramic cap.1.0 n5 % 50 V 0402
C1972320584Ceramic cap.1.0 n5 % 50 V 0402
C1982320584Ceramic cap.1.0 n5 % 50 V 0402
C1992320584Ceramic cap.1.0 n5 % 50 V 0402
C2012307816Ceramic cap.47 n20 % 25 V 0805
C2022307816Ceramic cap.47 n20 % 25 V 0805
C2032307816Ceramic cap.47 n20 % 25 V 0805
C2052307816Ceramic cap.47 n20 % 25 V 0805
C2062307816Ceramic cap.47 n20 % 25 V 0805
C2072307816Ceramic cap.47 n20 % 25 V 0805
C2282320620Ceramic cap.10 n5 % 16 V 0402
C2292307816Ceramic cap.47 n20 % 25 V 0805
C2302307816Ceramic cap.47 n20 % 25 V 0805
C2312312296Ceramic cap.Y5 V 1210
C2412307816Ceramic cap.47 n20 % 25 V 0805
C2422307816Ceramic cap.47 n20 % 25 V 0805
C2432320781Ceramic cap.47 n20 % 16 V 0603
C2512307816Ceramic cap.47 n20 % 25 V 0805
C2522307816Ceramic cap.47 n20 % 25 V 0805
C3012604209Tantalum cap.1.0 u20 % 16 V
C3022312296Ceramic cap.Y5 V 1210
C3102320778Ceramic cap.10 n10 % 16 V 0402
C3112320560Ceramic cap.100 p5 % 50 V 0402
C3122312296Ceramic cap.Y5 V 1210
C3132320560Ceramic cap.100 p5 % 50 V 0402
C3142307816Ceramic cap.47 n20 % 25 V 0805
C3152320560Ceramic cap.100 p5 % 50 V 0402
C3162307816Ceramic cap.47 n20 % 25 V 0805
C3172320560Ceramic cap.100 p5 % 50 V 0402
C3192320560Ceramic cap.100 p5 % 50 V 0402
C3202320107Ceramic cap.10 n5 % 50 V 0603
C3222320546Ceramic cap.27 p5 % 50 V 0402
C3232320518Ceramic cap.1.8 p0.25 % 50 V 0402
C3242320546Ceramic cap.27 p5 % 50 V 0402
C3252320534Ceramic cap.8.2 p0.25 % 50 V 0402
C3262320546Ceramic cap.27 p5 % 50 V 0402
C3272320526Ceramic cap.3.9 p0.25 % 50 V 0402
C3282611668Tantalum cap.4.7 u20 % 10 V
C3312320620Ceramic cap.10 n5 % 16 V 0402
C3322320584Ceramic cap.1.0 n5 % 50 V 0402
C3332320584Ceramic cap.1.0 n5 % 50 V 0402
C3402320520Ceramic cap.2.2 p0.25 % 50 V 0402
C3412320546Ceramic cap.27 p5 % 50 V 0402
C3422320518Ceramic cap.1.8 p0.25 % 50 V 0402
C3432320526Ceramic cap.3.9 p0.25 % 50 V 0402
Technical Documentation
Page 3 – 50
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
C3442320546Ceramic cap.27 p5 % 50 V 0402
C3452320546Ceramic cap.27 p5 % 50 V 0402
C3502320544Ceramic cap.22 p5 % 50 V 0402
C3512320584Ceramic cap.1.0 n5 % 50 V 0402
C3542320532Ceramic cap.6.8 p0.25 % 50 V 0402
C3602320620Ceramic cap.10 n5 % 16 V 0402
C3612320620Ceramic cap.10 n5 % 16 V 0402
C3622320620Ceramic cap.10 n5 % 16 V 0402
C3702320584Ceramic cap.1.0 n5 % 50 V 0402
C3712320584Ceramic cap.1.0 n5 % 50 V 0402
C3722320546Ceramic cap.27 p5 % 50 V 0402
C3732320620Ceramic cap.10 n5 % 16 V 0402
C3742320598Ceramic cap.3.9 n5 % 50 V 0402
C3752604329Tantalum cap.4.7 u20 % 10 V
C3762320598Ceramic cap.3.9 n5 % 50 V 0402
C3772310490Ceramic cap.360 p2 % 50 V 0805
C3782320556Ceramic cap.68 p5 % 50 V 0402
C3792320584Ceramic cap.1.0 n5 % 50 V 0402
C3802320620Ceramic cap.10 n5 % 16 V 0402
C3812320620Ceramic cap.10 n5 % 16 V 0402
C3822320560Ceramic cap.100 p5 % 50 V 0402
C4102611668Tantalum cap.4.7 u20 % 10 V
C4112320778Ceramic cap.10 n10 % 16 V 0402
C4202320620Ceramic cap.10 n5 % 16 V 0402
C4212604209Tantalum cap.1.0 u20 % 16 V
C4222307816Ceramic cap.47 n20 % 25 V 0805
C4232320120Ceramic cap.22 n10 % 25 V 0603
C4242320620Ceramic cap.10 n5 % 16 V 0402
C4302611668Tantalum cap.4.7 u20 % 10 V
C4312320546Ceramic cap.27 p5 % 50 V 0402
C4322320546Ceramic cap.27 p5 % 50 V 0402
C4332320584Ceramic cap.1.0 n5 % 50 V 0402
C4342320584Ceramic cap.1.0 n5 % 50 V 0402
C4402320778Ceramic cap.10 n10 % 16 V 0402
C4412320530Ceramic cap.5.6 p0.25 % 50 V 0402
C4422320546Ceramic cap.27 p5 % 50 V 0402
C4432320778Ceramic cap.10 n10 % 16 V 0402
C5202320620Ceramic cap.10 n5 % 16 V 0402
C5212604209Tantalum cap.1.0 u20 % 16 V
C5222307816Ceramic cap.47 n20 % 25 V 0805
C5232320120Ceramic cap.22 n10 % 25 V 0603
C5242320620Ceramic cap.10 n5 % 16 V 0402
C5302604209Tantalum cap.1.0 u20 % 16 V
C5312320546Ceramic cap.27 p5 % 50 V 0402
C5322320546Ceramic cap.27 p5 % 50 V 0402
C6012320620Ceramic cap.10 n5 % 16 V 0402
C6022320546Ceramic cap.27 p5 % 50 V 0402
System Module JF5
Originat 05/98
Page 3 – 51
NHN–5NT
PAMS
System Module JF5
C6032320546Ceramic cap.27 p5 % 50 V 0402
C6042320520Ceramic cap.2.2 p0.25 % 50 V 0402
C6052320620Ceramic cap.10 n5 % 16 V 0402
C6252611668Tantalum cap.4.7 u20 % 10 V
C6312320524Ceramic cap.3.3 p0.25 % 50 V 0402
C6332320620Ceramic cap.10 n5 % 16 V 0402
C6342320546Ceramic cap.27 p5 % 50 V 0402
C6352320546Ceramic cap.27 p5 % 50 V 0402
C6412320524Ceramic cap.3.3 p0.25 % 50 V 0402
C6422320584Ceramic cap.1.0 n5 % 50 V 0402
C6432320546Ceramic cap.27 p5 % 50 V 0402
C6442320546Ceramic cap.27 p5 % 50 V 0402
C6452320546Ceramic cap.27 p5 % 50 V 0402
C6462320598Ceramic cap.3.9 n5 % 50 V 0402
C6482320620Ceramic cap.10 n5 % 16 V 0402
C6502307816Ceramic cap.47 n20 % 25 V 0805
C6632320530Ceramic cap.5.6 p0.25 % 50 V 0402
C7002320530Ceramic cap.5.6 p0.25 % 50 V 0402
C7012320552Ceramic cap.47 p5 % 50 V 0402
C7022320556Ceramic cap.68 p5 % 50 V 0402
C7032320107Ceramic cap.10 n5 % 50 V 0603
C7042320107Ceramic cap.10 n5 % 50 V 0603
C7112320107Ceramic cap.10 n5 % 50 V 0603
C7122320107Ceramic cap.10 n5 % 50 V 0603
C7132320107Ceramic cap.10 n5 % 50 V 0603
C7142320107Ceramic cap.10 n5 % 50 V 0603
C7152320107Ceramic cap.10 n5 % 50 V 0603
C7162307816Ceramic cap.47 n20 % 25 V 0805
C7172307816Ceramic cap.47 n20 % 25 V 0805
C7212310777Ceramic cap.22 n20 % 50 V 0805
C7232307816Ceramic cap.47 n20 % 25 V 0805
C7242307816Ceramic cap.47 n20 % 25 V 0805
C7312320560Ceramic cap.100 p5 % 50 V 0402
C7322320107Ceramic cap.10 n5 % 50 V 0603
C7332604209Tantalum cap.1.0 u20 % 16 V
C7342320778Ceramic cap.10 n10 % 16 V 0402
C7352320107Ceramic cap.10 n5 % 50 V 0603
C7402320560Ceramic cap.100 p5 % 50 V 0402
C7412320546Ceramic cap.27 p5 % 50 V 0402
C7422312296Ceramic cap.Y5 V 1210
C7502320584Ceramic cap.1.0 n5 % 50 V 0402
C7622307816Ceramic cap.47 n20 % 25 V 0805
C7632604209Tantalum cap.1.0 u20 % 16 V
C7662320107Ceramic cap.10 n5 % 50 V 0603
C7672320560Ceramic cap.100 p5 % 50 V 0402
C7682320560Ceramic cap.100 p5 % 50 V 0402
C7772604209Tantalum cap.1.0 u20 % 16 V
Technical Documentation
Page 3 – 52
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
C7782312296Ceramic cap.Y5 V 1210
C7792307816Ceramic cap.47 n20 % 25 V 0805
C7802307816Ceramic cap.47 n20 % 25 V 0805
C7822320107Ceramic cap.10 n5 % 50 V 0603
C7832604209Tantalum cap.1.0 u20 % 16 V
C7852320107Ceramic cap.10 n5 % 50 V 0603
C7902307816Ceramic cap.47 n20 % 25 V 0805
C7912320560Ceramic cap.100 p5 % 50 V 0402
C7922307816Ceramic cap.47 n20 % 25 V 0805
C7932307816Ceramic cap.47 n20 % 25 V 0805
C7942307816Ceramic cap.47 n20 % 25 V 0805
C7952320107Ceramic cap.10 n5 % 50 V 0603
C8122604209Tantalum cap.1.0 u20 % 16 V
C8132320534Ceramic cap.8.2 p0.25 % 50 V 0402
C8142320598Ceramic cap.3.9 n5 % 50 V 0402
C8152320598Ceramic cap.3.9 n5 % 50 V 0402
C8202611668Tantalum cap.4.7 u20 % 10 V
3.2x1.6x1.6
C8212320778Ceramic cap.10 n10 % 16 V 0402
C8232611668Tantalum cap.4.7 u20 % 10 V
3.2x1.6x1.6
C8242320620Ceramic cap.10 n5 % 16 V 0402
C8252611668Tantalum cap.4.7 u20 % 10 V
Z6604512059Dupl 890–915/935–960mhz 45x15.9
V1104113828Trans. supr.SMBJ28ADO214AA
V1114219904Transistor x 2UMX1npn 40 V SOT363
V1134210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V1144200226Darl. transistor BCV27npn 30 V 300 mA SOT23
V1154200226Darl. transistor BCV27npn 30 V 300 mA SOT23
V1164210020Transistor BCP69–25pnp 20 V 1 A SOT223
V1174210100Transistor BC848Wnpn 30 V SOT323
V1184110034Schottky diodeMBRS14040 V 1 A DO214AA
V1404100285Diode x 2 BAV9970 V 200 mA SER.SOT23
V1514200811Transistor BC849Cnpn 30 V 0.1 A SOT23
V1704210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V1714210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V1724210100Transistor BC848Wnpn 30 V SOT323
V2104210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V2314210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V2634119902Diode x 4 IMP1180 V 0.3 A IMD
V2714210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V3204210074Transistor BFP420npn 4. V SOT343
V3304210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V3314219922Transistor x 2UM6
V3404115802Sch. diode x 24V30 mA SOT23
V3414210090Transistor BFG540/X npn 15 V 129 mA SOT143
V3804210066Transistor BFR93AWnpn 12 V 35 mA SOT323
V4114210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V4404210090Transistor BFG540/Xnpn 15 V 129 mA SOT143
V6404100567Sch. diode x 2 BAS70–04 70V15 mA SERSOT23
V6414116536Zener diode BZX84 5 % 2.4 V 0.3 W SOT23
V6504219904Transistor x 2UMX1npn 40 V SOT363
V6514210054Transistor***
V6534210100TransistorBC848Wnpn 30 V SOT323
V7234100285Diode x 2 BAV9970 V 200 mA SER.SOT23
V7414200226Darl. transistor BCV27npn 30 V 300 mA SOT23
V7424111824Diode BAS1675 V 250 mA 6 ns SOT23
V7724100285Diode x 2 BAV9970 V 200 mA SER.SOT23
V7754100285Diode x 2 BAV9970 V 200 mA SER.SOT23
V7774210102Transistor BC858Wpnp 30 V 100 mA 200MWSOT323
V7784210100Transistor BC848Wnpn 30 V SOT323
V7904100567Sch. diode x 2 BAS70–04 70V15 mASERSOT23
V7914100567Sch. diode x 2 BAS70–0470V15 mA SERSOT23
V7924100285Diode x 2 BAV9970 V 200 mA SER.SOT23
D2414370029IC, ASICPQFP64
D2514342264IC, EEPROMSO8S
D2524342264IC, EEPROMSO8S
D7904341611IC, 2xbin.counter 4bit so14 74HC393SO14S
N1014370084IC, mas1013s–t muumi ssop2NMP70084SSOP24
N1404340164IC, regulatorTK112474.75 V 180 mA SSO6
Technical Documentation
Page 3 – 54
Originat 05/98
PAMS
NHN–5NT
Technical Documentation
N1414340164IC, regulatorTK112474.75 V 180 mA SSO6
N3104340415IC, regulatorTK11236BMC3.6 V SOT23L
N3114340415IC, regulatorTK11236BMC3.6 V SOT23L
N3704349694IC, if amp+fm detector TA31136SSO16
N6014340163IC, pow.amp.SO16SB
N7014370137IC Nipa3 nmt audio/signalling TQFP64
N7614340331IC, Power amp.LM4862P W SO8S
N7624340331IC, Power amp.LM4862P W SO8S
N7634340059IC, lp opamp+3/15v r&r LMC7101SSOP5
N8204349616IC, 2xsynth 1.1ghz 3v UMA1015MSSO20
S1005219005IC, SWsp–no 30vdc 50ma smSW TACTSMD
S1015219005IC, SWsp–no 30vdc 50ma smSW TACTSMD
X0015469031SM, conn chp2502–0101 1x2 m P1.25
X0025469031SM, conn chp2502–0101 1x2 m P1.25
X0035469031SM, conn chp2502–0101 1x2 m P1.25
X1205469007Syst.conn 12af+jack+dc dct2 SMD
X1305460021SM, conn 2x14m spring p1.0 pcb/pPCB/PCB
X6005429007SM, coax conn m sw 50r 0.4–2ghz