1
Motorola Bipolar Power Transistor Device Data
!
These devices are designed for high–voltage, high–speed power switching
inductive circuits where fall time is critical. They are particularly suited for 115 and
220 V SWITCHMODE applications such as Switching Regulator’s, Inverters, Motor
Controls, Solenoid/Relay drivers and Deflection circuits.
SPECIFICATION FEATURES:
• V
CEO(sus)
400 V
• Reverse Bias SOA with Inductive Loads @ TC = 100_C
• Inductive Switching Matrix 2 to 4 Amp, 25 and 100_C
. . . tc @ 3A, 100_C is 180 ns (Typ)
• 700 V Blocking Capability
• SOA and Switching Applications Information.
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Voltage
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Collector Current — Continuous
— Peak (1)
ОООООООО
ОООООООО
ОООООООО
Base Current — Continuous
— Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Emitter Current — Continuous
— Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Total Power Dissipation @ TA = 25_C
Derate above 25_C
ОООООООО
ОООООООО
ОООООООО
Total Power Dissipation @ TC = 25_C
Derate above 25_C
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Operating and Storage Junction Temperature Range
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Thermal Resistance, Junction to Ambient
ОООООООО
ОООООООО
ОООООООО
Thermal Resistance, Junction to Case
ОООООООО
ОООООООО
ОООООООО
Maximum Lead Temperature for Soldering
Purposes: 1/8″ from Case for 5 Seconds
ОООООООО
ОООООООО
ОООООООО
ОООООООО
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE13005/D
4 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS
75 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB
MJE13005
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Collector–Emitter Sustaining Voltage
(IC = 10 mA, IB = 0)
Collector Cutoff Current
(V
CEV
= Rated Value, V
BE(off)
= 1.5 Vdc)
(V
CEV
= Rated Value, V
BE(off)
= 1.5 Vdc, TC = 100_C)
Emitter Cutoff Current
(VEB = 9 Vdc, IC = 0)
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with Base Reverse Biased
DC Current Gain
(IC = 1 Adc, VCE = 5 Vdc)
(IC = 2 Adc, VCE = 5 Vdc)
Collector–Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 2 Adc, IB = 0.5 Adc)
(IC = 4 Adc, IB = 1 Adc)
(IC = 2 Adc, IB = 0.5 Adc, TC = 100_C)
Base–Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 2 Adc, IB = 0.5 Adc)
(IC = 2 Adc, IB = 0.5 Adc, TC = 100_C)
Current–Gain — Bandwidth Product
(IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
SWITCHING CHARACTERISTICS
IB1 = IB2 = 0.4 A, tp = 25 µs,
Duty Cycle v 1%)
Inductive Load, Clamped (Table 2, Figure 13)
(IC = 2 A, V
clamp
= 300 Vdc,
I
= 0.4 A, V
= 5 Vdc, T
= 100_C)
IB1 = 0.4 A, V
BE(off)
= 5 Vdc, TC = 100_C)
µs
*Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.
(VCC = 125 Vdc, IC = 2 A,
MJE13005
3
Motorola Bipolar Power Transistor Device Data
C, CAPACITANCE (pF)
V
CE(sat)
, COLLECTOR–EMITTER SATURATION
VOLTAGE (VOLTS)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
1.1
1.3
0.7
0.3
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.1 0.4 2 4
10
Figure 2. Collector Saturation Region
0.03
IB, BASE CURRENT (AMP)
0.30.05
1.2
0.4
0
100
h
FE
, DC CURRENT GAIN
0.1 0.2 0.5 3
Figure 3. Base–Emitter Voltage Figure 4. Collector–Emitter Saturation Voltage
Figure 5. Collector Cutoff Region
2
0.8
0.1
VBE, BASE–EMITTER VOLTAGE (VOLTS)
0
TJ = 25°C
0.2 1
Figure 6. Capacitance
2 k
VR, REVERSE VOLTAGE (VOLTS)
C
ib
C
ob
0.3
, COLLECTOR CURRENT ( A)
µ
I
C
–0.4 –0.2
70
50
300
1.6
0.5
IC = 1 A
TJ = –55°C
5
0.04
0.6
0.06 0.1 10.04 0.40.2 0.6
70
50
30
7
300
200
100
20
30
10050510.5
150°C
IC/IB = 4
+0.6
2 A
0.7 1 2
0.9 0.35
0.55
0.25
0.05
0.45
0.06
VCE = 2 V
VCE = 5 V
TJ = 150°C
25°C
–55°C
2
0.15
+0.4+0.2
1
10
100
1 k
10 k
500
700
1 k
10 30
REVERSE FORWARD
VCE = 250 V
V
BE(sat)
@ IC/IB = 4
V
BE(on)
@ VCE = 2 V
20
3 A 4 A
4
25°C
25°C
0.06 0.1 10.04 0.40.2 0.6 2 4
3
TJ = –55°C
25°C
150°C
TJ = 150°C
125°C
100°C
75°C
50°C
25°C