Motorola MJD243 Datasheet

1
Motorola Bipolar Power Transistor Device Data
  
DPAK For Surface Mount Applications
. . . designed for low voltage, low–power, high–gain audio amplifier applications.
Collector–Emitter Sustaining Voltage — V
CEO(sus)
= 100 Vdc (Min) @ IC = 10 mAdc
High DC Current Gain — hFE= 40 (Min) @ IC = 200 mAdc = 15 (Min) @ IC = 1.0 Adc
Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
Straight Lead Version in Plastic Sleeves (“–1” Suffix)
Lead Formed Version in 16 mm Tape and Reel (“T4” Suffix)
Low Collector–Emitter Saturation Voltage —
V
CE(sat)
= 0.3 Vdc (Max) @ IC = 500 mAdc = 0.6 Vdc (Max) @ IC = 1.0 Adc
High Current–Gain — Bandwidth Product — fT = 40 MHz (Min) @ IC = 100 mAdc
Annular Construction for Low Leakage — I
CBO
= 100 nAdc @ Rated V
CB
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Base Voltage
V
CB
100
Vdc
Collector–Emitter Voltage
V
CEO
100
Vdc
Emitter–Base Voltage
V
EB
7
Vdc
Collector Current — Continuous
Peak
I
C
4 8
Adc
Base Current
I
B
1
Adc
Total Device Dissipation @ TC = 25_C
Derate above 25_C
P
D
12.5
0.1
Watts W/_C
Total Device Dissipation @ TA = 25_C*
Derate above 25_C
P
D
1.4
0.011
Watts W/_C
Operating and Storage Junction
Temperature Range
TJ, T
stg
–65 to +150
_
C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
Junction to Ambient*
R
θJC
R
θJA
10
89.3
_
C/W
*When surface mounted on minimum pad sizes recommended.
25
25
Figure 1. Power Derating
T, TEMPERATURE (°C)
0
50 75 100 125 150
15
10
T
C
5
20
P
D
, POWER DISSIPATION (WATTS)
2.5
0
1.5
1
T
A
0.5
2
T
C
TA (SURFACE MOUNT)
Preferred devices are Motorola recommended choices for future use and best overall value.

SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJD243/D
Motorola, Inc. 1995

NPN SILICON
POWER TRANSISTOR
4 AMPERES
100 VOLTS
12.5 WATTS
*Motorola Preferred Device
MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS
0.243
6.172
0.063
1.6
0.118
3.0
0.07
1.8
0.165
4.191
0.190
4.826
inches
mm
CASE 369A–13
CASE 369–07
REV 1
MJD243
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Characteristic
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
Min
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1) (IC = 10 mAdc, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
CEO(sus)
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current (VCB = 100 Vdc, IE = 0)
Collector Cutoff Current (VCB = 100 Vdc, IE = 0, TJ = 125_C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
I
CBO
— —
100 100
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
nAdc µAdc
Emitter Cutoff Current (VBE = 7 Vdc, IC = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
I
EBO
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
nAdc
DC Current Gain (1) (IC = 200 mAdc, VCE = 1 Vdc)
DC Current Gain (1) (IC = 1 Adc, VCE = 1 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
h
FE
40 15
180
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Collector–Emitter Saturation Voltage (1)
(IC = 500 mAdc, IB = 50 mAdc) (IC = 1 Adc, IB = 100 mAdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
CE(sat)
— —
0.3
0.6
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage (1) (IC = 2 Adc, IB = 200 mAdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
BE(sat)
1.8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter On Voltage (1) (IC = 500 mAdc, VCE = 1 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
BE(on)
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product (2) (IC = 100 mAdc, VCE = 10 Vdc, f
test
= 10 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
f
T
40
ÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
C
ob
50
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle [ 2%. (2) fT = hFE• f
test
.
Figure 2. Active Region Maximum Safe
Operating Area
10
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
0.01 100
2
5
0.1
BONDING WIRE LIMITED THERMALLY LIMITED @ TC = 25
°
C
(SINGLE PULSE) SECOND BREAKDOWN LIMITED CURVES APPLY BELOW RATED V
CEO
500µs
dc
1
1 ms
502010521
100µs
I
C
, COLLECTOR CURRENT (AMPS)
0.02
0.05
0.2
0.5
5 ms
There are two limitations on the power handling ability of a transistor: average junction temperature and second break­down. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipa­tion than the curves indicate.
The data of Figure 2 is based on T
J(pk)
= 150_C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 1 0% provided T
J(pk)
v
150_C. T
J(pk)
may be calculated from the data in Fig­ure 3. At high case temperatures, thermal limitations will re­duce the power that can be handled to values less than the limitations imposed by second breakdown.
t, TIME (ms)
0.01
0.02 0.05 1 2 5 10 20 50 100 2000.1 0.50.2
1
0.2
0.1
0.05
r(t), TRANSIENT THERMAL
R
θ
JC
(t) = r(t)
θ
JC
R
θ
JC
= 10
°
C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
θ
JC
(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
0.2
RESISTANCE (NORMALIZED)
0.5
D = 0.5
0.05
0.3
0.7
0.07
0.03
0.02
0 (SINGLE PULSE)
Figure 3. Thermal Response
0.1
0.02
0.01
Loading...
+ 4 hidden pages