SEMICONDUCTOR TECHNICAL DATA
1
REV 7
Motorola, Inc. 1995
10/95
! !
! "
High–Performance Silicon–Gate CMOS
The MC54/74HC158 is identical in pinout to the LS158. The device
inputs are compatible with Standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
These devices route 2 nibbles (A or B) to a single port (Y) as determined by the Select input. The data is presented at the outputs in inverted
form for the HC158. A high level on the Output Enable input sets all four Y
outputs to a high level for the HC158.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS and TTL
• Operating Voltage Range: 2 to 6V
• Low Input Current: 1µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance With the JEDEC Standard No. 7A Requirements
• Chip Complexity: 74 FETs or 18.5 Equivalent Gates
LOGIC DIAGRAM
Select
Nibble
A Inputs
Pin 16 = VCC
Pin 8 = GND
1
A3
14
A2
11
A1
5
A0
2
Y3
12
Y2
9
Y1
7
Y0
4
Output
Enable
15
Data
Outputs
Nibble
B Inputs
B3
13
B2
10
B1
6
B0
3
1516 14 13 12 11 10
21 3 4 5 6 7
V
CC
9
8
Output
Enable
A3 B3 Y3 A2 B2 Y2
Select A0 B0 Y0 A1 B1 Y1 GND
Pinout: 16–Lead Plastic Package (Top View)
X = Don’t Care
A0–A3, B0–B3 = the levels of the respec-
tive Data–Word inputs.
H
L
L
X
L
H
FUNCTION TABLE
Inputs Outputs
Output
Enable
Select
H
A0
–A3
B0–B3
Y0–Y3
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ORDERING INFORMATION
MC54HCXXXJ
MC74HCXXXN
MC74HCXXXD
Ceramic
Plastic
SOIC
1
16
1
16
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
1
16
MC54/74HC158
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 2) VCC = 4.5 V
VCC = 6.0 V
ns
DC CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol Parameter Condition
–55 to 25°C ≤85°C ≤125°C Unit
V
IH
Minimum High–Level Input Voltage V
out
= 0.1V or VCC –0.1V
|I
out
| ≤ 20µA
2.0
4.5
6.0
1.50
3.15
4.20
1.50
3.15
4.20
1.50
3.15
4.20
V
V
IL
Maximum Low–Level Input Voltage V
out
= 0.1V or VCC – 0.1V
|I
out
| ≤ 20µA
2.0
4.5
6.0
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V
V
OH
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| ≤ 20µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin =VIH or VIL|I
out
| ≤ 4.0mA
|I
out
| ≤ 5.2mA
4.5
6.0
3.98
5.48
3.84
5.34
3.70
5.20
V
OL
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| ≤ 20µA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
Vin = VIH or VIL|I
out
| ≤ 4.0mA
|I
out
| ≤ 5.2mA
4.5
6.0
0.26
0.26
0.33
0.33
0.40
0.40
I
in
Maximum Input Leakage Current Vin = VCC or GND 6.0 ±0.1 ±1.0 ±1.0 µA
I
CC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0µA
6.0 8 80 160 µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.