
SEMICONDUCTOR TECHNICAL DATA
3–1
REV 0
Motorola, Inc. 1996
3/96
! !
! "
High–Performance Silicon–Gate CMOS
The MC74HC158A is identical in pinout to the LS158. The device
inputs are compatible with Standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
These devices route 2 nibbles (A or B) to a single port (Y) as determined by the Select input. The data is presented at the outputs in inverted
form for the HC158A. A high level on the Output Enable input sets all four
Y outputs to a high level for the HC158A.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS and TTL
• Operating Voltage Range: 2 to 6V
• Low Input Current: 1µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance With the JEDEC Standard No. 7A Requirements
• Chip Complexity: 74 FETs or 18.5 Equivalent Gates
LOGIC DIAGRAM
Select
Nibble
A Inputs
Pin 16 = VCC
Pin 8 = GND
1
A3
14
A2
11
A1
5
A0
2
Y3
12
Y2
9
Y1
7
Y0
4
Output
Enable
15
Data
Outputs
Nibble
B Inputs
B3
13
B2
10
B1
6
B0
3
1516 14 13 12 11 10
21 3 4 5 6 7
V
CC
9
8
Output
Enable
A3 B3 Y3 A2 B2 Y2
Select A0 B0 Y0 A1 B1 Y1 GND
Pinout: 16–Lead Plastic Package (Top View)
This document contains information on a new product. Specifications and information herein are subject to
change without notice.
X = Don’t Care
A0–A3, B0–B3 = the levels of the respec-
tive Data–Word inputs.
H
L
L
X
L
H
FUNCTION TABLE
Inputs Outputs
Output
Enable
Select
H
A0
–A3
B0–B3
Y0–Y3
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ORDERING INFORMATION
MC74HCXXXAN
MC74HCXXXAD
MC74HCXXXADT
Plastic
SOIC
TSSOP
1
16
1
16
1
16
DT SUFFIX
TSSOP PACKAGE
CASE 948F-01

MC74HC158A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 2) VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.

MC74HC158A
High–Speed CMOS Logic Data
DL129 — Rev 6
3–3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Low–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 2.4 mA
|I
out
| v 4.0 mA
|I
out
| v 5.2 mA
Maximum Input Leakage Current
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6.0 ns)
Maximum Propagation Delay, Input A to Output Y
(Figures 1 and 4)
Maximum Propagation Delay, CS1 to Output Y
(Figures 2 and 4)
Maximum Propagation Delay, CS2 or CS3 to Output Y
(Figures 3 and 4)
Maximum Output Transition Time, Any Output
(Figures 2 and 4)
Maximum Input Capacitance
pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Package)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).

MC74HC158A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–4
SWITCHING WAVEFORMS
Figure 1. Figure 2. Y versus Select, Inverted
CL*
*Includes all probe and jig capacitance
TEST
POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 3. Figure 4. Test Circuit
V
CC
GND
Output Enable
Output Y
t
PLH
t
PHL
90%
50%
10%
t
r
t
TLH
t
f
t
THL
90%
50%
10%
V
CC
GND
Input Aor B
Output Y
t
PHL
t
PLH
90%
50%
10%
t
r
t
THL
t
f
t
TLH
90%
50%
10%
V
CC
GND
Select
Output Y
t
PHL
t
PLH
90%
50%
10%
t
r
t
THL
t
f
t
TLH
90%
50%
10%

MC74HC158A
High–Speed CMOS Logic Data
DL129 — Rev 6
3–5 MOTOROLA
PIN DESCRIPTIONS
INPUTS
A0–A3 (Pins 2,5,11,14)
Nibble A inputs. The data present on these pins is transferred to the outputs when the Select input is at a low level and
the Output Enable input is at a low level. The data is presented
to the outputs in inverted form for the HC158A.
B0–B3 (Pins 3,6,10,13)
Nibble B inputs. The data present on these pins is transferred to the outputs when the Select input is at a high level and
the Output Enable input is at a low level. The data is presented
to the outputs in inverted form for the HC158A.
OUTPUTS
Y0–Y3 (Pins 4,7,9,12)
Data outputs. The selected input nibble is presented at
these outputs when the Output Enable input is at a low level.
The data present on these pins is in its inverted form for the
HC158A. For the Output Enable input at a high level, the outputs are at a high level for the HC158A.
CONTROL INPUTS
Select (Pin 1)
Nibble select. This input determines the data word to be
transferred to the outputs. A low level on this input selects the
A inputs and a high level selects the B inputs.
Output Enable (Pin 15)
Output Enable input. A low level on thisinput allows the
selected data to be presented at the outputs. A high level on
this input sets all of the outputs to a high level for the HC158A.
Figure 5. Expanded Logic Diagram
2
A0
4
Y0
7
Y1
9
Y2
12
Y3
3
B0
5
A1
6
B1
11
A2
10
B2
14
A3
13
B3
15
Output Enable
1
Select
Data
Outputs
Nibble
Inputs

MC74HC158A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
3–6
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
ISSUE V
19.05
6.10
—
0.39
1.40
0.21
3.18
19.93
7.49
5.08
0.50
1.65
0.38
4.31
0
°
0.51
15
°
1.01
1.27 BSC
2.54 BSC
7.62 BSC
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
0.750
0.240
—
0.015
0.055
0.008
0.125
0.785
0.295
0.200
0.020
0.065
0.015
0.170
0.050 BSC
0.100 BSC
0.300 BSC
A
B
C
D
E
F
G
J
K
L
M
N
0
°
0.020
15
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMENSION F MAY NARROW TO 0.76 (0.030)
WHERE THE LEAD ENTERS THE CERAMIC
BODY.
1 8
916
-A-
-B-
C
KN
G
E
F
D 16 PL
-T-
SEATING
PLANE
M
L
J
16 PL
0.25 (0.010) T A
M
S
0.25 (0.010) T B
M
S
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
-A-
B
1 8
916
F
H
G
D
16 PL
S
C
-T-
SEATING
PLANE
K
J
M
L
T A0.25 (0.010)
M M
0.25 (0.010) T B A
M
S S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
1
8
916
-A-
-B-
D
16 PL
K
C
G
-T-
SEATING
PLANE
R X 45°
M
J
F
P 8 PL
0.25 (0.010) B
M M

MC74HC158A
High–Speed CMOS Logic Data
DL129 — Rev 6
3–7 MOTOROLA
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200
B 4.30 4.50 0.169 0.177
C ––– 1.20 ––– 0.047
D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030
G 0.65 BSC 0.026 BSC
H 0.18 0.28 0.007 0.011
J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC
M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT
EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE –W–.
_ _ _ _
SECTION N–N
SEATING
PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC54/74HC158A/D
*MC54/74HC158A/D*
◊
CODELINE