Motorola MC330077D Datasheet

Device
Operating
Temperature Range
Package

SEMICONDUCTOR
TECHNICAL DATA
DUAL, LOW NOISE
ORDERING INFORMATION
MC33077D MC33077P
TA = – 40° to +85°C
SO–8
Plastic DIP
Order this document by MC33077/D
4
2
V
EE
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
P SUFFIX
PLASTIC PACKAGE
CASE 626
1
1
8
8
PIN CONNECTIONS
1
3
5
6
7
8V
CC
Output 2
Inputs 2
Inputs 1
(Dual, Top View)
– +
1
+
2
Output 1
1
MOTOROLA ANALOG IC DEVICE DATA
    
The MC33077 is a precision high quality, high frequency, low noise monolithic dual operational amplifier employing innovative bipolar design techniques. Precision matching coupled with a unique analog resistor trim technique is used to obtain low input offset voltages. Dual–doublet frequency compensation techniques are used to enhance the gain bandwidth product of the amplifier. In addition, the MC33077 offers low input noise voltage, low temperature coefficient of input offset voltage, high slew rate, high AC and DC open loop voltage gain and low supply current drain. The all NPN transistor output stage exhibits no deadband cross–over distortion, large output voltage swing, excellent phase and gain margins, low open loop output impedance and symmetrical source and sink AC frequency performance.
The MC33077 is tested over the automotive temperature range and is available in plastic DIP and SO–8 packages (P and D suffixes).
Low Voltage Noise: 4.4 nV/ Hz
Ǹ
@ 1.0 kHz
Low Input Offset Voltage: 0.2 mV
Low TC of Input Offset Voltage: 2.0 µV/°C
High Gain Bandwidth Product: 37 MHz @ 100 kHz
High AC Voltage Gain: 370 @ 100 kHz
High AC Voltage Gain: 1850 @ 20 kHz
Unity Gain Stable: with Capacitance Loads to 500 pF
High Slew Rate: 11 V/µs
Low Total Harmonic Distortion: 0.007%
Large Output Voltage Swing: +14 V to –14.7 V
High DC Open Loop Voltage Gain: 400 k (112 dB)
High Common Mode Rejection: 107 dB
Low Power Supply Drain Current: 3.5 mA
Dual Supply Operation: ±2.5 V to ±18 V
Q1
R1 R6 R8 R11 R16
Q17
Q19
Q13
Q11
D3
R9
C3
Q8
R3
Q6
C1
J
1
Q1
D
1
Q5
R2
R4 R7
R5
C2
PosQ7 Q9
Q10
Q12
V
CC
Q21
V
out
R19
Q22
R20
Q20
C8
C7
D7
R17 R18
D6
Q14
D4
R13
C6
R14
Q16
Z1
Neg
Q4
D2
R10 R12
D5
R15
V
EE
Bias Network
Representative Schematic Diagram (Each Amplifier)
Q2
Motorola, Inc. 1996 Rev 0
MC33077
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) V
S
+36 V
Input Differential Voltage Range V
IDR
(Note 1) V
Input Voltage Range V
IR
(Note 1) V
Output Short Circuit Duration (Note 2) t
SC
Indefinite sec
Maximum Junction Temperature T
J
+150 °C
Storage Temperature T
stg
–60 to +150 °C
Maximum Power Dissipation P
D
(Note 2) mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE (See Applications Information).
2.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded (See power dissipation performance characteristic, Figure 1).
DC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
|VIO|
— —
0.13 —
1.0
1.5
mV
Average Temperature Coefficient of Input Offset Voltage
RS = 10 , VCM = 0 V, VO = 0 V, TA = –40° to +85°C
VIO/T 2.0 µV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IB
— —
280—1000
1200
nA
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = –40° to +85°C
I
IO
— —
15 —
180 240
nA
Common Mode Input Voltage Range (VIO ,= 5.0 mV, VO = 0 V) V
ICR
±13.5 ±14 V
Large Signal Voltage Gain (VO = ±1.0 V , RL = 2.0 k)
TA = +25°C TA = –40° to +85°C
A
VOL
150 k 125 k
400 k
— —
V/V
Output Voltage Swing (VID = ±1.0 V)
RL = 2.0 k RL = 2.0 k RL = 10 k RL = 10 k
V
O+
V
O–
V
O+
V
O–
+13.0
+13.4
+13.6 –14.1 +14.0 –14.7
–13.5
–14.3
V
Common Mode Rejection (Vin = ±13 V) CMR 85 107 dB Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V
PSR 80 90 dB
Output Short Circuit Current (VID = ±1.0 V , Output to Ground)
Source Sink
I
SC
+10 –20
+26 –33
+60 +60
mA
Power Supply Current (VO = 0 V, All Amplifiers)
TA = +25°C TA = –40° to +85°C
I
D
— —
3.5 —
4.5
4.8
mA
NOTE: 3. Measured with VCC and VEE simultaneously varied.
MC33077
3
MOTOROLA ANALOG IC DEVICE DATA
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, CL = 100 pF, AV = +1.0) SR 8.0 11 V/µs Gain Bandwidth Product (f = 100 kHz) GBW 25 37 MHz AC Voltage Gain (RL = 2.0 k, VO = 0 V)
f = 100 kHz f = 20 kHz
A
VO
— —
370
1850
— —
V/V
Unity Gain Frequency (Open Loop) f
U
7.5 MHz
Gain Margin (RL = 2.0 k, CL = 10 pF) A
m
10 dB
Phase Margin (RL = 2.0 k, CL = 10 pF)
m
55
Degrees
Channel Separation (f = 20 Hz to 20 kHz, RL = 2.0 k, VO = 10 Vpp) CS –120 dB Power Bandwidth (VO = 27
p–p
, RL = 2.0 k, THD 1%) BW
p
200 kHz
Distortion (RL = 2.0 kΩ)
AV = +1.0, f = 20 Hz to 20 kHz
VO = 3.0 V
rms
AV = 2000, f = 20 kHz
VO = 2.0 V
pp
VO = 10 V
pp
AV = 4000, f = 100 kHz
VO = 2.0 V
pp
VO = 10 V
pp
THD
— —
— —
0.007
0.215
0.242
0.3.19
0.316
— —
— —
%
Open Loop Output Impedance (VO = 0 V, f = fU) |ZO| 36 Differential Input Resistance (VCM = 0 V) R
in
270 k
Differential Input Capacitance (VCM = 0 V) C
in
15 pF
Equivalent Input Noise Voltage (RS = 100 )
f = 10 Hz f = 1.0 kHz
e
n
— —
6.7
4.4
— —
nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
f = 10 Hz f = 1.0 kHz
i
n
— —
1.3
0.6
— —
pA/ Hz
P
D(MAX)
, MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation
versus Temperature
Figure 2. Input Bias Current
versus Supply Voltage
TA, AMBIENT TEMPERATURE (°C)
MC33077P
MC33077D
VCC, |VEE|, SUPPLY VOLTAGE (V)
, INPUT BIAS CURRENT (nA)I
IB
VCM = 0 V TA = 25
°
C
2400
2000
1600
1200
800 400
0
800
600
400
200
0
–60 –40 –20 0 20 40 60 80 100 120 140 160 180
0 2.5 5.0 7.5 10 12.5 15 17.5 20
MC33077
4
MOTOROLA ANALOG IC DEVICE DATA
Figure 3. Input Bias Current
versus Temperature
Figure 4. Input Offset Voltage
versus Temperature
Figure 5. Input Bias Current versus
Common Mode Voltage
Figure 6. Input Common Mode Voltage Range
versus Temperature
Figure 7. Output Saturation Voltage versus
Load Resistance to Ground
Figure 8. Output Short Circuit Current
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V VEE = –15 V VCM = 0 V
, INPUT BIAS CURRENT (nA)I
IB
V , INPUT OFFSET VOLTAGE (mV)
IO
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V VEE = –15 V RS = 10
VCM = 0 V AV = +1.0
VCM, COMMON MODE VOLTAGE (V)
, INPUT BIAS CURRENT (nA)I
IB
VCC = +15 V VEE = –15 V TA = 25
°
C
TA, AMBIENT TEMPERATURE (°C)
Input
Voltage
Range
VCC = +3.0 V to +15 V VEE = –3.0 V to –15 V
VIO = 5.0 mV
VO = 0 V
+V
CM
–V
CM
V
ICR
, INPUT COMMON MODE VOT AGE RANGE (V)
RL, LOAD RESISTANCE T O GROUND (kΩ)
V , OUTPUT SATURATION VOLTAGE (V)
sat
VCC = +15 V VEE = –15 V
125°C
25
°
C
–55
°
C
125°C
25°C
–55°C
Sink
Source
TA, AMBIENT TEMPERATURE (°C)
|I |, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
VCC = +15 V VEE = –15 V VID =
±
1.0 V
RL < 100
1000
800
600
400
200
0
1.0
0.5
0
–0.5
–1.0
600
500
400
300
200
100
0
VCC 0.0 VCC –0.5
VCC –1.0 VCC –1.5
VEE +1.5 VEE +1.0
VEE +0.5 VEE +0.0
VCC 0
VCC –2
VCC –4
VEE +4
VEE +2
VEE 0
50
40
30
20
10
–55 –25 0 25 50 75 100 125 –55 –25 0 25 50 75 100 125
–15 –10 –5.0 0 5.0 10 15
–55 –25 0 25 50 75 100 125
0 0.5 1.0 1.5 2.0 2.5 3.0 –55 –25 0 25 50 75 100 125
Loading...
+ 8 hidden pages