Motorola MC13027P, MC13027DW, MC13022DW, MC13022P Datasheet

 
AMAX STEREO
IC CHIPSET
DW SUFFIX
PLASTIC PACKAGE
CASE 751D
(SO–20L)
20
Order this document from Analog Marketing
DW SUFFIX
PLASTIC PACKAGE
CASE 751F
(SO–28L)
28
20
28
MC13027
MC13122
P SUFFIX
PLASTIC PACKAGE
CASE 710
P SUFFIX
PLASTIC PACKAGE
CASE 738
1
MOTOROLA ANALOG IC DEVICE DATA
 
  
The MC13027 and MC13122 have been specifically designed for AM radio which can meet the EIA/NAB AMAX requirements. They are essentially the same as the MC13022A and MC13025 with the addition of noise blanking circuitry. The noise blanker consists of a wide band amplifier with an RF switch for blanking ahead the IF amplifier and a stereo audio blanker with adjustable delay and blanking times.
Operating Voltage Range of 6.0 V to 10 V
RF Blanker with Built–In Wide Band AGC Amplifier
Audio Noise Blanker with Audio Track and Hold
Mixer Third Order Intercept of 8.0 dBm (115 dBµV)
Wide Band AGC Detector for RF Amplifier
Local Oscillator VCO Divide–by–4 for Better Phase Noise
Buffered Local Oscillator Output at the Fundamental Frequency
Fast Stereo Decoder Lock
Soft Stereo Blend
Signal Quality Detector to Control Variable Q–Notch Filters for Adaptive
Audio Bandwidth and Whistle Reduction
Signal Quality Detector for AM Stereo
Very Low Distortion Envelope and Synchronous Detectors
Variable Bandwidth IF
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
MC13027DW
SO–20L
MC13027P
°
°
Plastic DIP
MC13122DW
T
A
= –
40 ° to +85°C
SO–28L
MC13122P Plastic DIP
Fast AGC Control
Audio
Blanking
Functional Block Diagram
Oscillator
Buffer
Voltage
Controlled
Oscillator
Wide Band
AGC
AM
Detector
Automatic
Gain Controlled
RF Amplifier
Pulse
Detector
÷
4 Mixer
IF Amplifier
IF Amplifier
AGC
Shunt
Switch
Pulse Length
Timer
Pulse Delay
Timer
Signal Quality
Detector
Pilot
Detector
Decoder
Track & Hold
Post Detector
Filter
450 kHz IF
Signal Level
450 kHz Blend cos
θ
Fast Lock Control
Stereo Indicator Lamp
Stop–Sense RF AGC Meter Drive
Right Audio
Left Audio
Y es/NoI
RF Blanking
AGC Output
To Synthesizer
Osc
Tank
AGC
Input
RF
Input
RF Input
L R
Q
Fast/ Slow
MC13027 MC13122
This device contains 428 active transistors. This device contains 670 active transistors.
Pulse Length
Timer
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.
Motorola, Inc. 1996 Issue 1
MC13027 MC13122
2
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Input Voltage V
CC
12 Vdc
Ambient Operating Temperature T
A
–40 to +85 °C
Storage Temperature Range T
stg
–60 to +150 °C
Operating Junction Temperature T
J
150 °C
NOTE: ESD data available upon request.
MC13027 ELECTRICAL CHARACTERISTICS (T
A
= 25°C, 8.0 VCC Test Circuit as shown in Figure 1.)
Characteristic
Min Typ Max Unit
Supply Voltage Range (Pin 8) 6.0 to 10 V Wideband (WB) AGC Threshold 1.0 mVrms IF Output DC Current 1.0 mAdc Mixer DC Current Output 0.83 mAdc Local Oscillator Output 600 mVpp Wideband AGC Pull–Down Current (Pin 20) 1.0 mAdc Power Supply Current 16 mAdc Mixer 3rd Order Intercept Point (Pin 6) 8.0 dBm Mixer Conversion Gain 2.9 mS IF Amplifier Input Impedance (Pin 14) 2.2 k IF Amplifier Transconductance 2.8 mS IF Amplifier Load Resistance (Pin 16) 5.7 k IF Amplifier Collector Current (Pin 16) 990 µA
MC13027 MC13122
3
MOTOROLA ANALOG IC DEVICE DATA
Figure 1. MC13027 Test Circuit
34
RF In
1
2
3
4
5
6
7
8
V
CC
Gnd
Mixer In
Mixer 4.0 V
Tuning V
VCLO
VCLO 4.0 V
C87
0.1
R2
82
R1
100 k
RL2
51
RM2
16.7
R299 51
RM1
16.7
Pulse In
RF In
Pulse On
RF
Mixer In Blanker In
WB AGC
RL1 51
R10 56 k
C5
22
µ
F
C14 47
µ
F
R200 560 k
V
CC
V
CC
On
R4 47
R11 47
Q1 MMBFJ309L
RM5
16.7
CM1
0.01
C11
0.1
C293
10
µ
F
C6
0.1
R201
120
C37
0.01
100
LO Out
Tuning Voltage 4.0 V Reg
C9 47
µ
F
C16 10
µ
F
C26
1.0
µ
F
C10
0.01
R20 47 k
C90
0.1
R3b 10 k
R18
2.35 k
R1b 10 k
R16
3.3 k
RT1 39 k
Q2 (Note 1)
Q3 (Note 1)
R19 500 k
R17 500 k
R15 500 k
C103
0.1
R12
1.8 k
Q1b (Note 1)
R5b 390 k
R21 510
C16 120
L2 1.0 mH
Murata
SFG450E
20
19
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
9
10
WB AGC
Out
Audio
Blank Time
Audio
Blank Pulse
Audio Blank
Delay Time
IF Out
RF Blank
Time
IF In
Gnd2
RF Blank
Mixer Out
WB AGC In
Blanker AGC
Feedback
4.0 V Reg
RF Gnd
Mixer In Blanker RF In
4.0 Filter
V
CC
VCO
LO Out
WB AGC Out
Audio Blank
IF Out
RF Blank
R2b 10 k
12
V
CC
AGC Feedback
MC13027
RF Module
Q4 MMBT3904L
V
CC
V
CC
+
+
+
+
+
+
NOTE: 1.General purpose NPN transistor 2N3904 or equivalent.
MC13027 MC13122
4
MOTOROLA ANALOG IC DEVICE DATA
MC13122 MAXIMUM RATINGS
Rating Symbol Value Unit
Power Supply Input Voltage V
CC
12 Vdc Stereo (Pilot) Indicator Lamp Current (Pin 21) 30 mAdc Operating Ambient Temperature T
A
–40 to +85 °C
Storage Temperature Range T
stg
–65 to +150 °C
Operating Junction Temperature T
J(max)
150 °C
Power Dissipation Derated above 25°C P
D
1.25
p
D
10 mW/C
NOTE: ESD data available upon request.
MC13122 ELECTRICAL CHARACTERISTICS
(VCC = 8.0 V , TA = 25°C, Test Circuit of Figure 2.)
Characteristic
Min Typ Max Unit
Power Supply Operating Range 6.0 8.0 10 V Supply Current Drain (Pin 25) 10 20 25 mA Minimum Input Signal Level, Unmodulated, for AGC Start 5.0 mV Audio Output Level, 50% Modulation, L Only or R Only 290 400 530 mV rms Audio Output Level, 50% Mono 140 200 265 mV rms Output THD, 50% Modulation (Monaural Stereo) 0.3 0.8 %
p, ( )
0.5 1.6
Channel Separation, L Only or R Only, 50% Modulation 22 35 dB IF Input Voltage Range 1.0–1000 mV IF Input Resistance Range 10 to 50
k
IF Amplifier Transconductance 9.6 mS IF Detector Circuit Impedance 8.3 k Input AGC Threshold 5.0 mV Stop–Sense Output Range 2.2 to 4.0 V Audio Output Impedance at 1.0 kHz (Pins 7 and 14) 300 Stereo Indicator Lamp Leakage 1.0 µA Stereo Indicator Saturation Voltage @ 3.0 mA 200 mVdc Oscillator Capture Range ±3.0 kHz
MC13027 MC13122
5
MOTOROLA ANALOG IC DEVICE DATA
Figure 2. MC13122 Test Circuit
MC13122
IC2
U2
THB122
1
Ch2 Out
2
3
4
5
6
Ch2 Cont
Ch2 In Ch1 In
Ch1 Cont
Ch1 Out
23
I Det
24
25
26
27
28
L–R Det
Q Det
V
CC
Loop Filt
Blend
17
Gnd
18
19
20
21
22
Pilot Ind
Osc Out
Osc In
Pilot Det I
Pilot I
16
Pilot Q
15
Audio Blank
E Det Det In
3.0 V Reg AGC IF In SS L Out L Filt In L Filt Ctr
L Mat Out R Mat Out
R Filt Ctr R Filt In R Out
6
5
4
3
2
1
12
11
10
9
8
7
13 14
R10 13 k
C3 47
µ
F
C4 10 µF
450 kHz IF In
SS Out Left
Audio Out
Right
Audio Out
C6
1.0
µ
F
C1 1000
.01
100 k
R6
10 k
R5
C28 1000
C27 1000
10001000
33 k
R11
C16
0.47
µ
F
C17 10 µF
C31
1.0
µ
F
1000 C30
3.9 k R12
C18 22
µ
F
1.0 k R20
X1
3.6 MHz
AF Blank
Blend Disable
8.0 V
Envelope Det Out I Detector Out
Q Detector Out
2.2 k R26
C23 22
µ
F
C24 47
µ
F
C22
220
µ
F
Stereo
D1
CA
MPS6515
Q3
C
B
E
51 C29
L1
1.0 mH
C2 120
MC13027 MC13122
6
MOTOROLA ANALOG IC DEVICE DATA
AMAX STEREO CHIPSET
What is AMAX?
In 1993, a joint proposal by the EIA (Electronic Industries Association) and the NAB (National Association of Broadcasters) was issued. It included a unified standard for pre–emphasis and distortion for broadcasters as well as a set of criteria for the certification of receivers. The purpose of this proposal was to restore quality and uniformity to the AM band and to make it possible for the consumer to receive high quality signals using the AM band. The FCC has been supportive of this initiative and has required all new broadcast licensees to meet AMAX standards. The NAB and EIA have continued to encourage receiver manufacturers by offering the AMAX certification logo to be displayed on all qualifying radios. This logo is shown below.
or
The Receiver Criteria
An AMAX receiver must have wide bandwidth: 7.5kHz for home and auto, 6.5 kHz for portables. It must have some form of bandwidth control, either manual or automatic, including at least two bandwidth provisions, such as “narrow” and “wide”. It must meet NRSC receiver standards for distortion and deemphasis. It must have provisions for an external antenna. It must be capable of tuning the expanded AM band (up to 1700 kHz). And finally, home and auto receivers must have effective noise blanking. All of these requirements, except the noise blanking, have been met by Motorola’s previous AM radio products, such as MC13025 Front End and the MC13022A C–QUAM stereo decoder. It is the Noise Blanker requirement which is met by the two devices on this data sheet, the MC13027 and MC13122.
Noise blanking, especially in AM auto radios, has become extremely important. The combination of higher energy
ignitions, using multiple spark coils, along with increased use of plastic in the auto body, have increased the noise energy at the radio. Also, the consumer has learned to expect higher quality audio due to advances in many other media. For the AM band to sustain interest to the consumer, a truly effective noise blanker is required.
The block diagram below shows the Motorola AMAX stereo chipset. It offers a two–pronged approach to noise blanking which is believed to be the most effective yet offered in the consumer market. The initial blanking takes place in the output of the mixer, using a shunt circuit triggered by a carefully defined wideband receiver. For most noises, some residual audible disturbance is almost always still present after this process. The disturbance becomes stretched and delayed as it passes through the rest of the selectivity in the receiver. The stretching and delay are predictable, so the MC13027 can provide a noise blanking pulse with the correct delay and stretch to the output stages of the MC13122 decoder. The MC13122 has a Track and Hold circuit which receives the blanking signal from the Front End and uses it to gently hold the audio wherever it is as the pulse arrives, and hold that value until the noise has passed. The combined effect is dramatic. A wide range of types of noise is successfully suppressed and the resulting audio seems almost clean until the noise is so intense that the blanking approaches full–time.
The amount of extra circuitry to accomplish noise blanking is relatively small. The external components for this added capability are shown in Figure 3. In the MC13027 Front end, the noise receiver/detector requires two capacitors. The presettings for blanking timing and blanking delay require three external fixed resistors. Finally the decoder requires two track and hold capacitors to store the “audio” voltage during the track and hold function.
Figure 3. AMAX Stereo Receiver with Noise Blanker
MC13027 MC13122
Audio Blank
450 kHz Filter
RF Attenuate
Left
Right
RF In
Pin Diode
Reset
AGC
RF
Amplifier
Mixer
IF
Amplifier
AGC’d IF
Amplifier
AM
Stereo
Decoder
Track
and
Hold
Variable
Notch Filter
Wideband
AGC
4.0 V
Regulator
Divide
by 4
VCO
RF
Attenuator
Switch
RF Blank
Timer
AGC’d RF
AmplifierAMDetector
Audio Reject
Filter
Pulse
Detector
Delay Timer
Audio Blank
Timer
Audio Blank
Switch
MC13027 MC13122
7
MOTOROLA ANALOG IC DEVICE DATA
Figure 4. MC13027 Internal Block Diagram
20 19 18 17 16 15 14 13 12 11
12345678910
WB AGC Amp
Mixer
IF Amp
NB Amp
V
CC
÷
4
RF Time
MV
AF Del
MV
AF Time
MV
X1
Reg
X1
WB AGCInBlanker
AGC
Feedback 4.0 V Reg RF Gnd Mixer In
Blanker RF In
4.0 Filter V
CC
VCO LO Out
WB AGC
Out
Audio
Blank Time
Audio
Blank Pulse
Audio Blank
Delay Time
IF Out
RF Blank
Time
IF In Gnd2 RF Blank Mixer Out
MC13027 FUNCTIONAL DESCRIPTION
The MC13027 contains the mixer, wide band AGC system, local oscillator, IF pre–amplifier and noise blanker for an AM radio receiver. It is designed to be used with the MC13122 to produce a complete AM stereo receiver. The VCO runs at 4 (Fin+FIF) and is divided internally by 4 for the mixer input and local oscillator buffered output. Dividing the VCO reduces the phase noise for AM stereo applications.
The noise blanker input is connected in parallel with the mixer input at Pin 6. The noise blanker circuitry contains a high gain amplifier with its own AGC so it remains linear throughout the mixer’s linear range. It can detect noise pulses as low as 120 µV and generates three pulses when the noise threshold is exceeded. The width and timing of the blanking pulses is set by the resistors connected to Pins 15, 17 and 19. The resistor on Pin 15 sets the length of the RF blanking pulse and determines the time the transistor on
Pin 12 is “on”. The audio blanking pulse delay is set by the resistor on Pin 17 and the width by the resistor on Pin 19. This is necessary because the IF filtering delays and stretches the noise as it arrives at the detector. The transistor on Pin 18 goes “on” to cause noise blanking in the track and hold circuit in the MC13122 (Pin 15).
Wideband AGC is used in auto receivers to prevent overload – it drives the base of a cascode transistor RF amplifier and also a pin diode at the antenna (See Figures 6 and 7).
A low gain IF amplifier between Pins 14 and 16 is used as a buffer amplifier between the mixer output filter and IF filter. The input resistance of the IF amplifier is designed to match a ceramic IF filter. The gain of the IF amplifier is determined by the impedance of the load on Pin 16.
MC13027 MC13122
8
MOTOROLA ANALOG IC DEVICE DATA
Figure 5. MC13122 Internal Block Diagram
28 27 26 25 24 23 22
1234567
21 20 19 18
891011
17 16 15
12 13 14
I L–R Q
V
CC
VGA
±
0.9
VGA
±
0.9
LR
LevelFast AGC
1.0 V
3.0 V
AGC
Matrix
C–QUAM
Comparator
Blend
Disable
450 <90
°
450 <0
°
Signal Quality
Detector
÷
32
÷
137/144
÷
4
Count
Control
Clamp
25.6 Hz 24.4 Hz
Fast Lock
VCO
Loop
Driver
Pilot
Level
Det
÷
8
Pilot I
Det
Pilot Q
Det
cos
θ
330
Loop
Filt
Blend Gnd Pilot Ind Osc Out Osc In Pilot Det I Pilot I Pilot Q
Audio Blank
L–R
L+R
IF Amp
V
CC
Q DetL–R DetI Det
IF In SS L Out L Filt In L Filt Ctr L Mat
Out
R Mat
Out
R Filt
Ctr
R Filt In R OutAGC3.0 V
Reg
Det InE Det
MC13122 FUNCTIONAL DESCRIPTION
The MC13122 is designed to accept a 450 kHz C–QUAM input signal from approximately 1.0 mV to 1.0 V and produce L and R audio output signals. It has additional features: stop signal, variable bandwidth IF and audio response, stereo indicator driver and track and hold noise blanking.
The IF amplifier on Pin 5 has its own AGC system. It operates by varying the input resistance on Pin 5. With weak signals below approximate 5.0 mV, the input resistance is very high and the amplifier is at maximum gain. For this AGC to be effective, it is necessary to feed the IF input signal from a relatively high impedance. The input resistance variation also reduces the Q of the coil (T1 in the application) so the receiver bandwidth is narrow for weak signals and wide for strong signals. The value of the input resistor (R5) is selected for the desired loading of the IF coil. The impedance of the IF coil on Pin 2 determines the IF gain. Pin 2 is also the input to the C–QUAM decoder.
The IF signal drives the envelope (E), in–phase (I), quadrature (Q) and (L–R) detectors. The E detector is a quasi–synchronous true envelope detector. The others are true synchronous detectors. The E detector output provides the L+R portion of the C–QUAM signal directly to the matrix. The AGC signal of the IF amplifier drives the signal strength output at Pin 6. An external resistor on Pin 6 (sets the gain of the AGC). The Pin 6 voltage is used to control the Q of the audio notch filter, causing the audio bandwidth and depth of the 10 kHz notch to change with signal strength. It is also used as one of the inputs to the signal quality detector which generates the stop–sense and blend signal on Pins 6 and 23 respectively and tells the signal quality detector that the RF input is below the AGC threshold.
VCO
The 3.6 MHz ceramic resonator on Pins 19 and 20 is part of a phase locked loop which locks to the 450 kHz IF signal. The 3.6 MHz is divided by 8 to produce in–phase and quadrature signals for the I, Q and L–R detectors. It is also divided by 32, and 137/144 to provide signals for the pilot I and Q detectors. The pilot detector is a unique circuit which does not need filtering to detect the 25 Hz pilot.
Blend Circuit
The purpose of the blend circuit is to provide an AM stereo radio with the capability of very fast lock times, protection against stereo falsing when there is no pilot present and control of the L–R signal so as to provide as much stereo information as possible, while still sounding good in the presence of noise or interference. The circuit also provides an optional stop–sense usable by a radio with seek and/or scan. The stop–sense signal provides a “stop” signal only when the radio is locked on station, signal strength is above minimum level, and the level of interference is less than a predetermined amount. The last feature prevents stopping on frequencies where there is is a multiplicity of strong co–channel stations. It is common for AM radios without this capability to stop on many frequencies with unlistenable stations, especially at night.
The blend circuit controls the PLL fast lock, pilot detector, IF amplifier AGC rate, decoder L–R gain, cosθ compensation and stop–sense as a function of the voltage on a signal external blend capacitor. Timing is determined by the rate of change of voltage on the blend cap. Timing is changed by varying charge and discharge current and pulled down by a current source, switch, and optionally an external switch. The current sources and switches are controlled by various measures of signal quality, signal strength, and presence or absence of pilot tone.
MC13027 MC13122
9
MOTOROLA ANALOG IC DEVICE DATA
Detectors
In AM stereo operation, the Q detector delivers pilot signal
via an external low–pass filter to the pilot detector input (Pin
18). The E and I detectors drive the C–QUAM comparator. The L–R signal and the output of the envelope detector are combined in the matrix to produce the L and R signals. The C–QUAM system modifies the in–phase and quadrature components of the transmitted signal by the cosine of the phase angle of the resultant carrier, for proper stereo decoding. An uncompensated L–R would be distorted, primarily by second harmonics. Where there is noise or interference in the L–R, it has been subjectively determined that reducing the cosθ compensation at the expense of increased distortion sounds better than full decoding. The blend line operates over a small voltage range to eliminate cosine compensation.
Signal Quality Detector – Blend Voltage Control
The signal quality detector output is dependent on signal strength, over–modulation, and whether or not the blend pin has been pulled low prior to searching. Over–modulation usually occurs when a radio is tuned one channel away from a desired strong signal, so this prevents stopping one channel away from a strong signal.
In a radio tuned to a strong, interference free C–QUAM station, the blend voltage will be approximately 3.6 V. In the presence of noise or interference, when the modulation envelope is at a minimum, it is possible for the I detector to produce a negative, or below zero carrier signal. The Signal Quality Detector produces an output each time the negative I exceeds 4%. The output of the detector sets a latch. The output of the latch turns on current source which pulls down the voltage of the blend cap at a predetermined rate. The latch is then reset by a low frequency signal from the pilot detector logic. This produces about a 200 mV change each time 4% negative I is detected. Tables 1 and 2 describe the blend behavior under various conditions.
When the blend voltage reaches 2.2 V a blend control circuit starts to reduce the amplitude of the L–R signal fed to the decoder matrix. By 1.5 V the L–R has been reduced by about 40 dB. At lower voltages it is entirely off and the decoder output is monaural. This reduction of L–R signal, or blend as it is commonly called when done in FM stereo radios, reduces undesirable interference effects as a function of the amount of interference present.
Stop–Sense
Stop–sense is enabled when the blend voltage is externally pulled below 0.45 V. An input from the AGC indicating minimum signal, or detection of 10% negative I will cause the stop–sense pin to be pulled low. With signals greater than the AGC corner and less than 10% interference the stop–sense will be a minimum of 1.0 V below the 3.0 V line. Very rapid scanning is possible because the radio can scan to the next frequency as soon as the stop–sense goes low. The maximum wait time, set by the radio, is only reached on good stations.
The decoder will not lock on an adjacent channel because it is out of the lock range of the PLL. The beat note produced in the I detector by the out of lock condition will trigger the 10% negative I detector.
Sequence For Seek Scan
Change Station – Pull–Down Blend
Wait Approximately 50 ms for Synthesizer and Decoder
PLL to Lock
Observe Pin 6 Voltage
If it is Above 2.0 V and Stays Above 2.0 V for
Approximately 800 ms, Stay on the Station
No IF Count Now Needed
No AGC Level Detector Needed
Table 1. Normal Sequence When Changing Stations
External Pull–Down of
Blend Capacitor to Under
0.47 V
– Increased Current Supplied to
Loop Driver for Fast Lock – Fast AGC Activated – Extra Current Pull–Up Activated
on Blend Capacitor – Pilot Detector Disabled – Loop Locks – Stop–Sense Activated
Blend Released – Blend Capacitor Pulled Up to
0.7 V – Stops – Fast Lock Current Removed – Fast AGC Turned Off – Pilot Detector Enabled
Pilot Detected – Stereo Indicator Pin Pulled Low
– Blend Voltage Pulled Positive
Rapidly
Blend Voltage Reaches
1.4 V
– Audio Starts Into Stereo – 10% Negative I Detector
Enabled
Blend Voltage Reaches
2.2 V
– Stereo Separator Reaches 20
to 25 dB
– Rapid Current Pull–Up Turned
Off
– 4% Negative I Detector Enabled
Blend Voltage Reaches
3.0 V
– cosθ Enabled – Full C–QUAM
Decoding
– Blend Voltage Continues to Rise
to 3.6 V and Stops
Table 2. Operation In Adverse Conditions
4% Negative I Detected – Blend Pulls Down
Approximately 200 mV for Each Event – Acts Like One–Shot
– Stops at 2.2 V – cosθ Has Been
Defeated, Almost Full Stereo Remains
10% Negative I Detected – Blend Pulls Down 200 mV for
Each Event
– Stops at 1.4 V – Stereo Has
Blended to Mono
– Resets Fast Pull–Up if Blend
Has Not Been Above 2.2 V
50% Negative I Detected
(Out of Lock)
– Blend Pulls Down Fast During
Event – Stops at 0.47 V – Resets Fast Pull–Up – Pilot Indicator Turned Off
Minimum Signal Level
Detected
– Resets Fast Pull–Up – Pulls Down to 0.7 V
MC13027 MC13122
10
MOTOROLA ANALOG IC DEVICE DATA
MC13027 PIN FUNCTION DESCRIPTION
Pin Name
Internal Equivalent Circuit Description
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
1
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
WB AGC In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
V
CC
1
3.3 V
WB AGC In
R2
15 k
20 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Wideband AGC Input
The input impedance to the WB AGC detector is 15 k and is internally biased so it must be coupled through a capacitor. The threshold can be increased by adding a resistor in series with the input. The WB AGC begins at about 1.0 mV . In car radios, this input should be connected to the collector of the RF amplifier cascode stage through a resistor and capacitor. A 68 pF to ground will prevent undesired high frequency signals from activating the WB AGC and make the sensitivity more uniform across the band.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
2
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Blanker AGC
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
2
NB AGC
D1 D2
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Blanker AGC
The capacitor to ground is the bypass for the noise blanker AGC circuit. The noise blanker can be disabled by grounding this pin. 10 µF is used in the application, but it can be changed to match the time constant of the main IF AGC in the MC13122, Pin 4.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
3
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Feedback
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
3
NB Feedback
11 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Blanker Feedback
This pin is the dc feedback to the input stage of the wide band amplifier.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
4
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
4.0 V Reg
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
4
7
4.0 V Reg
4.0 V Filter
Buffer
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
4.0 V Regulator
The 4.0 V regulator supplies low impedance bias to many of the circuits in the IC. It should be bypassed to a ground near Pin 5.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
7
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
4.0 V Filt
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
V
CC
4.7 k Reg
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
4.0 V Filter
The external capacitor works with internal 4.7 k to filter noise from the bandgap regulator.
ÁÁ
Á
ÁÁ
Á
5
ÁÁÁ
Á
ÁÁÁ
Á
Gnd
БББББББББББББ
Á
БББББББББББББ
Á
5
RF Gnd
БББББББББББ
Á
БББББББББББ
Á
RF Ground
This pin is the ground for the RF section, blanker RF, filters and all radio circuits except the IF. In the PCB layout, the ground pin should be used as the internal return ground in the RF circuits.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
6
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
BlkRF/Mix
In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
6
11
Mixer Out
Mixer/ Blanker In
LO +
V
CC
50
50
50
50
V
CC
4.0 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Mixer Input/Blanker RF Input
The blanker RF input must be biased from the
4.0 V on Pin 4. The mixer input is to two bases of the upper mixer transistors. A low impedance dc path to the 4.0 V on Pin 4 is required. Normally, this would be a coil secondary connected between Pins 6 and 4.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
11
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Mixer Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
750
LO–
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Mixer Output
A single ended output of a double balanced mixer. A load resistor to supply is chosen to match the ceramic filter, typically 1.5 k to 1.8 k. Output current is 830 µA.
MC13027 MC13122
11
MOTOROLA ANALOG IC DEVICE DATA
MC13027 PIN FUNCTION DESCRIPTION (continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
8
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
V
CC
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
8
V
CC
V
CC
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Supply Voltage
The normal operating voltage range is 6.0 to 10 V .
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
9
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
VCLO
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
9
V
CC
VCLO
4.0 V
1.5 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Voltage Control Local Oscillator
The oscillator is a cross coupled negative resistance type and this pin must be connected through a low dc resistance to Pin 4, the 4.0 V regulator. Normally, this would be the secondary of the oscillator coil.
The impedance of the secondary winding should be around 2.8 k to guarantee that the oscillator will run. It operates at 4 times the LO frequency: f
osc
= 4(Fin+FIF).
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
10
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
LO Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
10
V
CC
390
LO Out
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Local Oscillator Output
This is an emitter follower for LO output to drive a synthesizer. It is a square wave output, the internal series resistance and allows a small bypass to reduce high frequency harmonics.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
12
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
RF Blank
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
12
100 k
RF Blk
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
RF Blanker
An unbiased NPN acts as a SHUNT impedance when turned on. The 100 k resistor provides a dc path for the capacitor.
ÁÁ
Á
ÁÁ
Á
13
ÁÁÁ
Á
ÁÁÁ
Á
Gnd2
БББББББББББББ
Á
БББББББББББББ
Á
13
Gnd
БББББББББББ
Á
БББББББББББ
Á
IF Ground
Pin 13 is the ground for the IF section and the timing and switching circuits in the blanker.
In the application circuit this should be common to the MC13122 ground.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
14
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
IF In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
16
V
CC
4.0 V
220
IF Out
2.2 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
IF Input
A degenerated differential amplifier internally biased to 4.0 V . The IF input impedance is approximately 1.8 k to match a ceramic filter. The IF amplifier is used as a buffer between the ceramic filter and the detector coil and has a fixed gain determined by the impedance of the output coil.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
16
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
IF Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
14
3.4 k 3.4 k
IF In
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
IF Output
An open collector provides high–impedance drive to the MC13122; the IF gain is set by the ac impedance on this pin.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
15
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
RF Time
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
15
4.0 V
10 k
RF Blk Time
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
RF Blank Time
A resistor to ground sets the RF blanking time. The time is set to the minimum required to attenuate the pulse received. This is normally longest at the low end of the band. The value is best approved by ear. A fixed value can be chosen for production. (50 µs is typical.)
MC13027 MC13122
12
MOTOROLA ANALOG IC DEVICE DATA
MC13027 PIN FUNCTION DESCRIPTION
(continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
17
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Delay Time
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
17
4.0 k
10 k
Audio Delay Time
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Audio Blank Delay Time
A resistor to ground sets the delay time from the beginning of the RF blanking pulse to the beginning of the audio blanking pulse. This normally is about 50 µs for a wide AMAX filter. The ear is the most sensitive measure of the correct delay; start low, say 20 µs, and vary delay until noise is heard, and then reduce somewhat.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
18
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Audio Blank Cntl
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
18
V
CC
Audio Blank
4.7 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Audio Blank Pulse
When the blanker is operating, a positive pulse from this pin is fed to Pin 15 of the MC13122 to blank the audio signal.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
19
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Audio Time
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
19
V
CC
10 k
Audio Blk Time
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Audio Blank Time
A resistor to ground sets the width of the blanking pulse on Pin 18. This is usually selected by applying a pulse to the antenna of the receiver and adjusting a variable resistor. The blanking signal should be just long enough to suppress the audio pulse. Again the ear is the most sensitive tool. Start long, approximately 250 µs and reduce until noise is audible then increase.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
20
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
WB AGC Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
20
V
CC
440
330
WB AGC Out
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Wideband AGC Output
A push–pull current output. The resistor to voltage source (normally VCC) determines the gain. Used to bias a cascode transistor in series with the input FET and can also be used to drive a PNP transistor which drives a pin diode attenuator (refer to Application Circuit Figure 6.)
MC13027 MC13122
13
MOTOROLA ANALOG IC DEVICE DATA
MC13122 PIN FUNCTION DESCRIPTION
Pin Name
Internal Equivalent Circuit Description
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
1
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
E Detector
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
1
V
CC
Envelope Det
6.2 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Envelope Detector
This is the output of the envelope detector and is used for one input to the comparator that generates cosθ signal and the L+R input to the matrix. It is a quasi–synchronous full wave detector with very low distortion (<1% at 100% modulation). The output impedance is 6.2 k, and it is bypassed to VCC with 1.0 nF to eliminate 900 kHz components. The bypass capacitor must be the same as the one on Pin 27 and 28 for lowest stereo distortion and best separation.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
2
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Detector In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
2
Det In
V
CC
120
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
IF Out/Decoder Input
The IF coil is connected from Pin 2 to Pin 3, the
3.0 V regulator. The IF amplifier output is a current source. The gain is determined by the impedance between Pins 2 and 3. Bandwidth and gain is set by the resistance across the coil.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
3
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
3.0 V Reg
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
3
3.0 V Reg
3.0 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
3.0 V Regulator
This bandgap regulator supplies bias to many of the circuits in the IC.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
4
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
AGC Byp
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
4
IF AGC
2.3 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
IF AGC Bypass
The AGC has a fast and slow time constant. The fast AGC is 18X the slow one and is active when the 450 kHz loop is not locked. This allows for fast scanning in car radios. This capacitor should be selected for distortion for low frequencies at 80% modulation.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
5
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
IF In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
5
IF In
10 k
AGC Current
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
IF Input
The IF AGC varies the current through attenuator diodes. The diodes vary the input impedance shunting the IF signal. The varying impedance also varies the Q and therefore the bandwidth. The IF AGC is accomplished by turning on the diodes and lowering the IF input impedance.
MC13027 MC13122
14
MOTOROLA ANALOG IC DEVICE DATA
MC13122 PIN FUNCTION DESCRIPTION
(continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
6
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
SS
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
6
Stop–Sense
1.0 k
20 k
V
CC
3.0 V
Signal
Strength
Stop–Sense
Pull–Down
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Signal Strength/Stop–Sense
The signal strength is a push–pull circuit. The voltage is 2.2 V at minimum signal and 3.5 to 5.0 V at strong signal. This dc voltage is also used to control the audio output notch filters. If the Blend pin is low the stop–sense is activated and this pin can go low. This can be used to control the seek–scan in the radio.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
7
14
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Left Out Right Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
V
CC
7
L Out
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Filtered Left and Filtered Right Output This can drive a de–emphasis filter to bring audio contour to AMAX specifications. Since the output is an emitter follower, the output impedance is low, and a series R should be used with the de–emphasis network as shown on the application circuit.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
8
13
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
L Filt In R Filt In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
8
L Filter In
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Input to Notch Filter
DC bias is supplied through the external filter components.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
9
12
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
L Filt Ctr R Filt Ctr
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
9
L Filter Ctr
Op Amp
20 k 20 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Left Filter and Right Filter Center
Drives the center leg of a twin–T filter, varying the Q. At strong signal, positive feedback narrows the notch, and there is little HF roll–off. At weak signal, negative feedback produces a broad notch and HF roll–off.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
10 11
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
L Matrix Out R Matrix Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
10
L Matix Out
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Track and Hold Output
This is a unity gain operational amplifier output. The current is turned off by the blanking pulse. The capacitor holds output voltage constant until unblanked. Internal feedback causes the output impedance to be low.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
15
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
AF Blank In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
15
4.7 k
Audio Blank
4.7 k
R
L
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Audio Blank Control
The current to the output drivers is turned off.
MC13027 MC13122
15
MOTOROLA ANALOG IC DEVICE DATA
MC13122 PIN FUNCTION DESCRIPTION (continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
16
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Pilot Q
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
16
Pilot Q
3.0 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Pilot Q
This is the output of a quadrature detector of a narrowband phase locked loop system.
It is used to control the pilot detector circuitry. The pilot Q is clamped to the 3.0 V reference when the blend voltage is pulled low. This results in faster pilot detection when a stereo station is tuned in. If the blend is not pulled low, the pilot Q will drift up approximately 0.5 V when there is no pilot, and it will take longer to detect the pilot. The capacitor to ground is the loop filter. It sets the pilot loop bandwidth: if it is too large, the loop bandwidth maybe too small, and the pilot may not be re–acquired if it is lost unless the blend pin is externally pulled low again.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
17
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Pilot I
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
17
Pilot I
3.0 V
47 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Pilot I
When the loop is locked to a 25 Hz AM stereo pilot, this is the output of a an in–phase synchronous detector. The capacitor filters the output, which is used to drive the pilot indicator driver on Pin 21. The time constant for the pilot indicator output is determined by this capacitor and the internal 47 k resistor. If the capacitor is too small, it can lead to pilot falsing due to noise. If the capacitor is too large, the acquisition time increases. The cap is charged to 3.0 V when the blend voltage is low to shorten lock time.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
18
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Pilot Det In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
18
Pilot Det In
VCC3.0 V
47 k
39 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Pilot Detector Input
The pilot detector will detect a pilot tone between
24.4 and 25.6 Hz. The pilot signal is fed from Q detector through a low pass filter on Pin 26. The audio signals from the Q detector must be filtered out, so a low–pass filter is used. The capacitor in series with Pin 18 blocks dc and prevents large low frequency transients from knocking the decoder out of stereo mode.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
19
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Osc In
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
19
Osc Input
VCC3.0 V
10 k
22 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Oscillator Input
The input impedance is 10 k, but the recommended circuit adds 3.9 k in parallel with this to control the capture range of the VCO to be around ±3.0 kHz. using the recommended ceramic resonator.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
20
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Osc Out
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
20
Osc Feedback
V
CC
100
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Oscillator Output
The internal phase shift of the VCO is 90 degrees, and the output impedance is low. It is designed to drive a resonant circuit with a 90 degree phase shift at the center frequency.
MC13027 MC13122
16
MOTOROLA ANALOG IC DEVICE DATA
MC13122 PIN FUNCTION DESCRIPTION
(continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
21
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Pilot Indicator
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
10
21
27 k
Pilot Indicator
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Pilot Indicator
The maximum current is internally limited to protect the IC, but it should be operated with a current limiting resistor.
ÁÁ
Á
ÁÁ
Á
22
ÁÁÁ
Á
ÁÁÁ
Á
Gnd
БББББББББББББ
Á
БББББББББББББ
Á
22
Gnd
БББББББББББ
Á
БББББББББББ
Á
Ground
Use good practices to keep oscillator returns and RF bypasses to good copper near this point
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
23
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Blend Cont
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
23
Blend
330
3.0 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Blend Control
There are pull–up and pull–down currents provided to this pin. The external capacitor controls the rate of change of this voltage and 22 µF is recommended. This is an important voltage affecting many functions in the IC.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
24
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Loop Filt
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
24
Loop Filter
3.0 V
330
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Loop Filter
The phase detector is a current source, so only a single RC loop filter is needed for a second order loop. The internal 330 resistor together with a 47 µF gives the correct corner frequency and damping for the proper operation on the decoder loop. The cap should be low leakage to avoid static phase error.
ÁÁ
Á
ÁÁ
Á
25
ÁÁÁ
Á
ÁÁÁ
Á
V
CC
БББББББББББББ
Á
БББББББББББББ
Á
25
V
CC
V
CC
БББББББББББ
Á
БББББББББББ
Á
V
CC
The operating voltage is normally 8.0 to 10 V in car radios. The MC13122 will work from 6.0 to 10 V .
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
26
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
Q Detector
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
26
Q Det Out
11 k
3.0 V
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
Q Detector Output
This is a synchronous detector in quadrature with the 450 kHz IF signal. The output impedance is 11 k. This signal is normally used for input to the pilot detector and internally for the fast lock.
MC13027 MC13122
17
MOTOROLA ANALOG IC DEVICE DATA
MC13122 PIN FUNCTION DESCRIPTION (continued)
Description
Pin Internal Equivalent CircuitName
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
27
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
L–R Detector
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
27
L–R Det
V
CC
6.2 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
L–R Detector
This is similar to the Q detector output but its level is controlled by the blend circuit. When the blend is active, the L–R output is reduced in level by reducing the dc current until mono operation is reached. It operates in the same way as the blend circuit in FM stereo decoders. The bypass capacitor should be 1.0 nF as on Pin 1 for optimum channel separation.
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
ÁÁ
Á
28
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
ÁÁÁ
Á
I Detector
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
БББББББББББББ
Á
28
I Det
V
CC
6.2 k
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
БББББББББББ
Á
I Detector
This is a synchronous detector in phase with the 450 kHz IF signal. It is used internally to generate the cosθ signal and as an input to the signal quality detector. The bypass capacitor should be the same as the one on Pin 1 for best separation and lowest stereo distortion.
MC13027 MC13122
18
MOTOROLA ANALOG IC DEVICE DATA
CAR RADIO APPLICATION
Figure 6 shows a car radio circuit using a TOKO pre–tuned RF module. The RF module includes a 4 diode tracking circuit to eliminate mistracking between the oscillator and RF circuits over the 530 to 1700 kHz AM band. This is important for stereo performance because mistracking will cause mono distortion and will significantly reduce the stereo separation. The THB122 module contains the variable 10 kHz notch filter. This module can be replaced with discrete components as shown in Figure 8, using 1% resistors and 5% capacitors.
Some manufacturers add a PIN diode attenuator at the antenna input. An example is shown in Figure 7.
The WB AGC sensitivity can be adjusted by changing R4 in series with the WB AGC input, Pin 1. The internal input resistance is 15 k.
R15, R17 and R19 are the blanker timing resistors. They were setup for this circuit and can be changed if desired.
FL1 is a linear phase IF filter . We recommend a Gaussian (rounded) filter, such as SFG or SFH for lower distortion and better separation than one with a flatter amplitude response. The SFG types of filters have poorer selectivity than the ones with flat GDT (group delay time) so some compromise has been made on adjacent channel selectivity.
The blanker can be disabled for testing by grounding the blanker AGC on Pin 2 in the MC13027.
The blanker and mixer inputs must be biased from the
4.0 V regulator through a low dc resistance like the secondary winding of the RF coil.
The receiver VCO operates at 4 times the local oscillator frequency and is divided internally in the MC13027 so that both the mixer input and the LO out is the same as in other receivers. This receiver can be connected to an existing synthesizer. For AM stereo, the synthesizer must have low phase noise. The Motorola MC145173 is recommended. For bench testing of this receiver, the Motorola MC145151 parallel input synthesizer may be useful. It will operate on
9.0 V and the phase detector can provide tuning voltage without a buffer amplifier.
The SS (stop–sense) output can be used for station searching and scanning. The best way to use it is to connect the SS signal to a comparator or A–D converter in the control microprocessor. If Pin 23 is grounded during searching by turning on Q3, the SS voltage changes from less than 0.5 V to around 2.2 V when an RF threshold is exceeded, as is shown in the graph in Figure 15. This system results in very reliable stopping on usable signals and fast detection of AM stereo signals. After a station is detected, Q3 should be turned off.
This receiver is very easy to set up because the TOKO module is pre–aligned. The only adjustments are to tune T1 and T2 for maximum voltage of the SS out line or maximum audio with a weak signal. If desired, they can be changed slightly to maximize stereo separation.
If different components are used, the blanker resistors can be setup as follows:
Ground Pin 2 of the MC13027. Apply a 1.0 µs pulse or 50 Hz square wave of about 10 mV through a dummy antenna and synchronize an oscilloscope to the pulse generator. Observe the signal at the mixer collector (Pin 11). It should be a sine wave burst. Remove the ground on Pin 2 and adjust R15 so the burst is just suppressed. Check the performance at the ends and middle of the band because the width might change due to RF circuit bandwidth.
Mix the pulse signal with a CW signal of about 300 µV with a power combiner and connect the oscilloscope to Pin 7 or Pin 14 of the MC13122. Adjust R17 so the blanking starts at the beginning of the audio pulse and R19 so the audio blanking is just long enough to suppress the audio pulse. The audio blanking time should not be made longer than necessary because it will be more noticeable in the normal program. The effectiveness of the blanker can be determined in field testing by connecting a switch from Pin 2 of the MC13027 to ground and bringing it outside the radio.
Figures 10 to 19 refer to the performance of the Application Circuit of Figure 6.
MC13027 MC13122
19
MOTOROLA ANALOG IC DEVICE DATA
Figure 6.
A7NRES–T1370Y
T2
450 kHz
V
CC
WH8
Gnd
WH9
C27C1
R18
C26
R16
C25
C33
R26
R12
C29
Gnd
R AF OutL AF Out
LO Out
R6
R18
R9
C19
R3
Q2
R2
R21
C13
C11
C18
1234567
8
VT
R22
201918171615141312
11
123456789
10
65432
1
28272625242322212019181716
15
123456789
1011121314
I Det
L–R Det
Q Det
V
Loop Filt
Blend
Gnd
Pil Ind
Osc Out
Osc In
Pil Det I
Pil I
Pil Q
A Blk
E Det
Det In
3.0 V Reg
AGC
IF InSSL Out
L Filt In
L Filt Ctr
L Mat Out
R Mat Out
R Filt Ctr
R Filt In
R Out
WB AGC I
Blk AGC
Blk FB
4.0 V Reg
RF Gnd
Mix/Blk In
4.0 V FiltVLO
LO Out
WB AGC O
AFT
AF Blk
Delt
IF Out
R Filt
IF In
IF Gnd
RF Blk
Mix Out
Ch2 Out
Ch2 Cont
Ch2 In
Ch1 In
Ch1 Cont
Ch1 Out
RF Col
RF V
Gnd
Mixer In
Mixer Bias
VT
Osc
Osc Bias
Ant Gnd
Ant
C6
R19
R17
R15
C12
FL1
R4
Q1
L1
MPS6515
C
E
B
22 F
µ
C8
1.0 F
µ
470
3309
D
S
G
0.01
100 k
3.0 mH
R1
100
C7
1.0 F
µ
CC
FL2
TMG522E
120
15 k
0.01
CC
MC13122
IC2
MC13027
IC1
FL3
THB122
R7
22 k
C22
47 F
µ
C35
100 F
µ
R8
12 k
1.0 n
C28
1.0 n 1.0 n
0.01
3.3 k C9
0.1
150 k
33 k
680 k
0.01
1.8 k
SFG450F
O
GI
C2
10 F
µ
C3 0.1
1.0 n
C5
47 F
µ
C14
10 F
µ
WH11 WH3
C15
0.1
A7NRES–11148N
T1
450 kHz
132
SS Out
WH5
2.2 k 2.2 k
R13
5.6 k
R14
5.6 k
.015 .015
WH4 WH6
1.0 n
C32
1.0 n
C21
0.1
100 k
C28 47 F
µ
C4 10 F
µ
R5
4.7 k
2.2 k
3.9 k
51
R20 1.0 k
C30
1.0 n
Stereo
CA
D1
X1
3.6 MHz
C18 22 F
µ
C34 1.0 n
C24 47 F
µ
C23 22 F
µ
C16
47 F
µ
C17
10 F
µ
C31
1.0 F
µ
R11
33 k
Search
WH7
WH10
Q3
MPS6515
C
E
G
WH12
AF Blk
CC
Figure 6. AMAX Chipset Application Circuit
10
AF Blk
WH13
WH2
WH1
MC13027 MC13122
20
MOTOROLA ANALOG IC DEVICE DATA
Figure 7. RF Pin Diode
Figure 8. MC13027/MC13122
Discrete RF and Notch Filters
Figure 9. Overall Selectivity of a Typical Receiver
versus Filter Control Voltage
C57
0.01
C7
0.01
R51 820
R5
2.7 k
R6
27 k
Q25
MMBT3906L
Q2
MMBT3904L
R8
220
C18
0.1
C6
0.47
C5
68
µ
F
R13 13 k
C14
0.01
RF In
AGC
BA585
D1 PIN
C56
0.047
R52 390
R4
82
R3 100 k
C8
0.047
Q1 MMBFJ309L
R7
3.3 k
1
WB AGC In
MC13027
2
AGC
L1 126ANS 7594HM
1
3
–60
OVERALL RESPONSE (dB)
AUDIO FREQUENCY (kHz)
0 –10 –20
–30 –40 –50
–70 –80
1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 15 20 30
V at Pin 6 = 3.5 Vdc
2.5 Vdc
1.5 Vdc
–– Response at –– Pins 10 and 11 Due –– to IF Selectivity –– Total Response at –– Output Pins 7 and 14
8 (13)
9 (12)
10 (11)
720
44.2 k
44.2 k
22.1 k
360
360
MC13122 Pins
Filt In
Filt Ctr
Filt Out
IF/Audio Response at Filter Input
+
WB AGC Out
20
MC13027 MC13122
21
MOTOROLA ANALOG IC DEVICE DATA
60
4.0
SS, STOP–SENSE, PIN 6 (V)
RF INPUT LEVEL (dBµV)
3.0
2.0
1.0
0
70 80 90 100 110
20
500
AF OUTPUT (mV)
ANTENNA INPUT (dBµV)
400
300
200
100
0
30 40 50 60 70 80
20
0
5.0 kHz ATTENUATION (dB)
ANTENNA INPUT (dBµV)
–5.0
–10
–15
–20
–25
30 40 50 60 70 80
20
50
400 Hz S/N (dB)
ANTENNA INPUT (dBµV)
42
34
26
18
10
30 40 50 60 70 80
20
40
SEPARATION (dB)
ANTENNA INPUT (dBµV)
30 40 50 60 70 80
32
24
16
8.0
0
20
4.0
BLEND VOLTAGE, PIN 23 (V)
ANTENNA INPUT (dBµV)
30 40 50 60 70 80
3.0
2.0
1.0
0
Figure 10. Blend Voltage versus RF Input Level Figure 11. Separation versus RF Input Level
Figure 12. Signal to Noise versus RF Input Level
Figure 13. 5.0 kHz Attentuation
versus RF Input Level
Figure 14. Audio Output Level
versus RF Input Level
Figure 15. Stop–Sense Voltage
versus RF Input Level
NOTE: The graphs on this page were made using the 15/60 pF
dummy antenna and the Application Circuit of Figure 6.
NOTE: The radio stays in mono until the stereo signal is
sufficiently large and then makes a smooth transition to stereo. This is similar to FM receivers with variable blend.
NOTE: The slightly abrupt change at around 25 dBµV is due
to the decoder switching into stereo.
NOTE: This curve shows the effect of the variable audio
bandwidth control of the MC13122. It is due to the variable loading of the IF coil and the variable 10 kHz notch filter in the output.
NOTE: All the curves of performance versus RF input level
were generated using the car radio receiver circuit shown in Figure 6. Using a 15/60 pF dummy antenna input and a 50% L only stereo signal.
NOTE: This measurement was made on the MC13122 alone
with a 10 k series input resistor. It will enable the designer to determine the stop–sense level if the gain of receiver RF section is known. Note that if Pin 23 is held low, the SS voltage on Pin 6 rises from about 0.3 to 2.2 V over a small change in RF level. This can be used to generate a very reliable stop signal. If Pin 23 is not held low, the SS voltage starts out at 2.2 V and rises slowly to a maximum of around 4.0 V.
Pin 23 = Open
Pin 23 = Grounded
MC13027 MC13122
22
MOTOROLA ANALOG IC DEVICE DATA
0
9.0
AGC VOLTAGE (V)
RF LEVEL INTO PIN 1 (mV)
8.0
6.0
4.0
2.0
0
1.0 2.0 3.0 4.0 5.0 6.0
7.0
5.0
3.0
1.0
10
1000
R19 (k
)
100
10
1.0 33 100 330 1000
10
1000
AF BLANKING TIME (
R15 (kΩ)
100
10
1.0 33 100 330 1000
10
1000
AF BLANKING DELAY (
R17 (kΩ)
100
10
1.0 33 100 330 1000
Figure 16. Audio Blanking Delay versus R17 Figure 17. RF Blanking Time versus R15
Figure 18. Audio Blanking Time versus R19
Figure 19. WB AGC Output Voltage (Pin 20)
versus RF Input Level
NOTE: This was measured by applying an RF signal through
a capacitor directly to Pin 1. The input resistance is 15 k, so the desired threshold can be increased by adding a resistor in series with the input.
µ
s)
µ
s)AF BLANKING TIME (
µ
s)
MC13027 MC13122
23
MOTOROLA ANALOG IC DEVICE DATA
AMAX STEREO CHIPSET
The RF Module
In the early development phase of this AMAX Stereo Chipset, Motorola worked with TOKO America Inc. to develop an RF tuning module. Part number TMG522E was assigned and is available from TOKO now. This module provides the “tracked” tuning elements for the RF (T1 and T2 and associated capacitors and varicaps) and the VCO (T3 et al). Some radio designers may prefer to develop their own tuning system using discrete coils and components, but the TOKO approach offers good performance, compactness and ease of application. Motorola recommends that every designer use this approach at least for initial system development and evaluation.
As refinement of the application progressed, it was found that a modification of the TMG522E was needed which would reduce the amount of VCO leakage into the Mixer through the
power supply connections. This modification is described below. Motorola will work with TOKO to develop a new part number incorporating this change. In the meantime, it is necessary that the user perform these simple changes, because the radio circuits throughout this data sheet assume this modified design.
Modifying the TMG522E
Referring to Figures 20 and 21, there are three simple
steps to the modification:
1. Cut the thin copper trace from Pin 2 to Pin 5 as shown.
2. Cut the thin copper trace from Pin 8 to the bottom of the 120 resistor. Removal of the resistor is optional.
3. Connect a wire from Pin 5 to the top of the 120 resistor (or the upper pad for the resistor).
Figure 20. TMG522E Schematic
Figure 21. TMG522E Physical Modifications
Add Wire (3)
Cut (1)Cut (2)
1
2
487
536
47 k
47 k
10 k
T1
T2
T3
1203.9 k
Cut Trace (1)
X
X
Cut Trace (2)
Add
Wire (3)
+B Gnd VT
RF Out Osc
Low
Osc High
5
3.0 V
RF In
TMG522E
87654321
TMG522E
Add Wire (3)
Cut (1)
Cut (2)
87654321
MC13027 MC13122
24
MOTOROLA ANALOG IC DEVICE DATA
Figure 22. AMAX Chipset Printed Circuit Board
(Top View)
WH6
VT
Osc
+
+
+
+
+
+
+
+
+
+
+
+
C14
C5
C2
C11
C22 C35
WH11 WH3
FL2
L1
WH1 WH2
Gnd Ant
Q1
Q2
Q3
WH7
Search
C24
C23
C4
Gnd
T2
T1
FL1
WH4
L
FL3
WH5
WH12
X1
C18
C31
WH10
Gnd
C16
C20
C17
RSS
WH13
V
CC
+
C30
R12
R20
C29
R26
C34
IC2
R11
C28
C27
C1
R10
R8
R7
C8R3R1C7R2
C6
C13
IC1
R19
R17
C19
R5
C32
C33
R16
R13
C25
C12
C9R9
R15
R21
C10
R22
C15
C3
R4
C26
R14
R18
C21
R6
Figure 23. AMAX Chipset Printed Circuit Board
(Bottom View)
WH9 WH8
D1
MC13027 MC13122
25
MOTOROLA ANALOG IC DEVICE DATA
Figure 24. AMAX Chipset Printed Circuit Board
(Copper View)
MC13027 MC13122
26
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 738–03
ISSUE E
OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC PACKAGE
CASE 751D–04
(SO–20L)
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
20
11
10
S
A
M
0.010 (0.25) B
S
T
D20X
M
B
M
0.010 (0.25)
P10X
J
F
G
18X
K
C
–T–
SEATING PLANE
M
R
X 45
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 12.65 12.95 0.499 0.510 B 7.40 7.60 0.292 0.299 C 2.35 2.65 0.093 0.104 D 0.35 0.49 0.014 0.019 F 0.50 0.90 0.020 0.035 G 1.27 BSC 0.050 BSC J 0.25 0.32 0.010 0.012 K 0.10 0.25 0.004 0.009 M 0 7 0 7 P 10.05 10.55 0.395 0.415 R 0.25 0.75 0.010 0.029
__
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
M
L
J 20 PL
M
B
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 25.66 27.171.010 1.070 B 6.10 6.600.240 0.260 C 3.81 4.570.150 0.180 D 0.39 0.550.015 0.022
G 2.54 BSC0.100 BSC J 0.21 0.380.008 0.015 K 2.80 3.550.110 0.140 L 7.62 BSC0.300 BSC M 0 15 0 15 N 0.51 1.010.020 0.040
____
E
1.27 1.770.050 0.070
11
10
20
–A–
SEATING PLANE
K
N
FG
D
20 PL
–T–
M
A
M
0.25 (0.010) T
E
B
C
F
1.27 BSC0.050 BSC
MC13027 MC13122
27
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 710–02
ISSUE B
OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC PACKAGE
CASE 751F–04
(SO–28L)
ISSUE E
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A B C D F G J K M P R
17.80
7.40
2.35
0.35
0.41
0.23
0.13 0
°
10.05
0.25
18.05
7.60
2.65
0.49
0.90
0.32
0.29 8
°
10.55
0.75
0.701
0.292
0.093
0.014
0.016
0.009
0.005 0
°
0.395
0.010
0.711
0.299
0.104
0.019
0.035
0.013
0.011 8
°
0.415
0.029
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MA TERIAL CONDITION.
-A-
-B-
114
1528
-T-
C
SEATING PLANE
0.010 (0.25)
B
M M
M
J
-T-
K
26X G
28X D
14X P
R
X 45°
F
0.010 (0.25) T A B
M
S S
NOTES:
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
SEATING PLANE
15
14
28
M
A
B
K
C
N
F
G
D
H
J
L
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 36.45 37.21 1.435 1.465 B 13.72 14.22 0.540 0.560 C 3.94 5.08 0.155 0.200 D 0.36 0.56 0.014 0.022 F 1.02 1.52 0.040 0.060 G 2.54 BSC 0.100 BSC H 1.65 2.16 0.065 0.085 J 0.20 0.38 0.008 0.015 K 2.92 3.43 0.115 0.135 L 15.24 BSC 0.600 BSC M 0 15 0 15 N 0.51 1.02 0.020 0.040
____
MC13027 MC13122
28
MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us: USA/EUROPE /Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Ko k Road, Tai Po, N.T., Hong Kong. 852–26629298
MC13027/D
*MC13027/D*
Loading...