MOTOROLA M68000 User Guide

µ MOTOROLA
Microprocessors User’s Manual
M68000
8-/16-/32-Bit
Ninth Edition
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
©MOTOROLA INC., 1993
µ

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1 Overview
1.1 MC68000..................................................................................................... 1-1
1.2 MC68008..................................................................................................... 1-2
1.3 MC68010..................................................................................................... 1-2
1.4 MC68HC000................................................................................................ 1-2
1.5 MC68HC001................................................................................................ 1-3
1.6 MC68EC000................................................................................................ 1-3
Section 2
Introduction
2.1 Programmer's Model ................................................................................... 2-1
2.1.1 User's Programmer's Model .................................................................... 2-1
2.1.2 Supervisor Programmer's Model ............................................................. 2-2
2.1.3 Status Register........................................................................................ 2-3
2.2 Data Types and Addressing Modes ............................................................ 2-3
2.3 Data Organization In Registers................................................................... 2-5
2.3.1 Data Registers......................................................................................... 2-5
2.3.2 Address Registers ................................................................................... 2-6
2.4 Data Organization In Memory ..................................................................... 2-6
2.5 Instruction Set Summary............................................................................. 2-8
Section 3
Signal Description
3.1 Address Bus................................................................................................ 3-3
3.2 Data Bus...................................................................................................... 3-4
3.3 Asynchronous Bus Control.......................................................................... 3-4
3.4 Bus Arbitration Control ................................................................................ 3-5
3.5 Interrupt Control .......................................................................................... 3-6
3.6 System Control............................................................................................ 3-7
3.7 M6800 Peripheral Control ........................................................................... 3-8
3.8 Processor Function Codes.......................................................................... 3-8
3.9 Clock ........................................................................................................... 3-9
3.10 Power Supply.............................................................................................. 3-9
3.11 Signal Summary......................................................................................... 3-10
MOTOROLA M68000 USER’S MANUAL vii
TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number
Section 4
8-Bit Bus Operations
4.1 Data Transfer Operations............................................................................. 4-1
4.1.1 Read Operations ...................................................................................... 4-1
4.1.2 Write Cycle ............................................................................................... 4-3
4.1.3 Read-Modify-Write Cycle.......................................................................... 4-5
4.2 Other Bus Operations............................................................................... 4-8
Section 5
16-Bit Bus Operations
5.1 Data Transfer Operations............................................................................ 5-1
5.1.1 Read Operations ..................................................................................... 5-1
5.1.2 Write Cycle .............................................................................................. 5-4
5.1.3 Read-Modify-Write Cycle......................................................................... 5-7
5.1.4 CPU Space Cycle.................................................................................... 5-9
5.2 Bus Arbitration .......................................................................................... 5-11
5.2.1 Requesting The Bus.............................................................................. 5-14
5.2.2 Receiving The Bus Grant ...................................................................... 5-15
5.2.3 Acknowledgment of Mastership (3-Wire Arbitration Only)..................... 5-15
5.3 Bus Arbitration Control.............................................................................. 5-15
5.4 Bus Error and Halt Operation.................................................................... 5-23
5.4.1 Bus Error Operation .............................................................................. 5-24
5.4.2 Retrying The Bus Cycle......................................................................... 5-26
5.4.3 Halt Operation ....................................................................................... 5-27
5.4.4 Double Bus Fault................................................................................... 5-28
5.5 Reset Operation........................................................................................ 5-29
5.6 The Relationship of DTACK, BERR, and HALT ......................................... 5-30
5.7 Asynchronous Operation .......................................................................... 5-32
5.8 Synchronous Operation ............................................................................ 5-35
Section 6
Exception Processing
6.1 Privilege Modes............................................................................................ 6-1
6.1.1 Supervisor Mode ...................................................................................... 6-2
6.1.2 User Mode................................................................................................ 6-2
6.1.3 Privilege Mode Changes .......................................................................... 6-2
6.1.4 Reference Classification........................................................................... 6-3
6.2 Exception Processing................................................................................... 6-4
6.2.1 Exception Vectors .................................................................................... 6-4
6.2.2 Kinds Of Exceptions................................................................................. 6-5
6.2.3 Multiple Exceptions................................................................................... 6-8
viii M68000 USER’S MANUAL MOTOROLA
TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number
Section 6
Exception Processing
6.2.4 Exception Stack Frames.......................................................................... 6-9
6.2.5 Exception Processing Sequence............................................................ 6-11
6.3 Processing of Specific Exceptions ............................................................. 6-11
6.3.1 Reset ...................................................................................................... 6-11
6.3.2 Interrupts ................................................................................................ 6-12
6.3.3 Uninitialized Interrupt.............................................................................. 6-13
6.3.4 Spurious Interrupt ................................................................................... 6-13
6.3.5 Instruction Traps..................................................................................... 6-13
6.3.6 Illegal and Unimplemented Instructions.................................................. 6-14
6.3.7 Privilege Violations ................................................................................. 6-15
6.3.8 Tracing.................................................................................................... 6-15
6.3.9 Bus Errors............................................................................................... 6-16
6.3.9.1 Bus Error............................................................................................. 6-16
6.3.9.2 Bus Error (MC68010) .......................................................................... 6-17
6.3.10 Address Error ......................................................................................... 6-19
6.4 Return From Exception (MC68010) ........................................................... 6-20
Section 7
8-Bit Instruction Timing
7.1 Operand Effective Address Calculation Times............................................ 7-1
7.2 Move Instruction Execution Times .............................................................. 7-2
7.3 Standard Instruction Execution Times......................................................... 7-3
7.4 Immediate Instruction Execution Times ...................................................... 7-4
7.5 Single Operand Instruction Execution Times.............................................. 7-5
7.6 Shift/Rotate Instruction Execution Times .................................................... 7-6
7.7 Bit Manipulation Instruction Execution Times ............................................. 7-7
7.8 Conditional Instruction Execution Times ..................................................... 7-7
7.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times............... 7-8
7.10 Multiprecision Instruction Execution Times................................................. 7-8
7.11 Miscellaneous Instruction Execution Times ................................................ 7-9
7.12 Exception Processing Instruction Execution Times ................................... 7-10
MOTOROLA M68000 USER’S MANUAL ix
TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number
Section 8
16-Bit Instruction Timing
8.1 Operand Effective Address Calculation Times ........................................... 8-1
8.2 Move Instruction Execution Times.............................................................. 8-2
8.3 Standard Instruction Execution Times ........................................................ 8-3
8.4 Immediate Instruction Execution Times ...................................................... 8-4
8.5 Single Operand Instruction Execution Times.............................................. 8-5
8.6 Shift/Rotate Instruction Execution Times .................................................... 8-6
8.7 Bit Manipulation Instruction Execution Times ............................................. 8-7
8.8 Conditional Instruction Execution Times..................................................... 8-7
8.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times .............. 8-8
8.10 Multiprecision Instruction Execution Times................................................. 8-8
8.11 Miscellaneous Instruction Execution Times ................................................ 8-9
8.12 Exception Processing Instruction Execution Times .................................. 8-10
Section 9
MC68010 Instruction Timing
9.1 Operand Effective Address Calculation Times ........................................... 9-2
9.2 Move Instruction Execution Times.............................................................. 9-2
9.3 Standard Instruction Execution Times ........................................................ 9-4
9.4 Immediate Instruction Execution Times ...................................................... 9-6
9.5 Single Operand Instruction Execution Times.............................................. 9-6
9.6 Shift/Rotate Instruction Execution Times .................................................... 9-8
9.7 Bit Manipulation Instruction Execution Times ............................................. 9-9
9.8 Conditional Instruction Execution Times..................................................... 9-9
9.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times ............ 9-10
9.10 Multiprecision Instruction Execution Times............................................... 9-11
9.11 Miscellaneous Instruction Execution Times .............................................. 9-11
9.12 Exception Processing Instruction Execution Times .................................. 9-13
Section 10
Electrical and Thermal Characteristics
10.1 Maximum Ratings ..................................................................................... 10-1
10.2 Thermal Characteristics ............................................................................ 10-1
10.3 Power Considerations............................................................................... 10-2
10.4 CMOS Considerations .............................................................................. 10-4
10.5 AC Electrical Specifications Definitions..................................................... 10-5
10.6 MC68000/68008/68010 DC Electrical Characteristics.............................. 10-7
10.7 DC Electrical Characteristics .................................................................... 10-8
10.8 AC Electrical Specifications—Clock Timing.............................................. 10-8
x M68000 USER’S MANUAL MOTOROLA
TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number
Section 10
Electrical and Thermal Characteristics
10.9 MC68008 AC Electrical Specifications—Clock Timing ............................. 10-9
10.10 AC Electrical Specifications—Read and Write Cycles ............................ 10-10
10.11 AC Electrical Specifications—MC68000 To M6800 Peripheral............... 10-15
10.12 AC Electrical Specifications—Bus Arbitration ......................................... 10-17
10.13 MC68EC000 DC Electrical Spec ifications.............................................. 10-23
10.14 MC68EC000 AC Electrical Specifications—Read and Write .................. 10-24
10.15 MC68EC000 AC Electrical Specifications—Bus Arbitration.................... 10-28
Section 11
Ordering Information and Mechanical Data
11.1 Pin Assignments........................................................................................ 11-1
11.2 Package Dimensions ................................................................................ 11-7
Appendix A
MC68010 Loop Mode Operation
Appendix B
M6800 Peripheral Interface
B.1 Data Transfer Operation............................................................................. B-1
B.2 Interrupt Interface Operation ...................................................................... B-4
MOTOROLA M68000 USER’S MANUAL xi

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
2-1 User Programmer's Model ................................................................................... 2-2
2-2 Supervisor Programmer's Model Supplement ..................................................... 2-2
2-3 Supervisor Programmer's Model Supplement (MC68010) .................................. 2-3
2-4 Status Register .................................................................................................... 2-3
2-5 Word Organization In Memory............................................................................. 2-6
2-6 Data Organization In Memory .............................................................................. 2-7
2-7 Memory Data Organization (MC68008) ............................................................... 2-3
3-1 Input and Output Signals (MC68000, MC68HC000, MC68010).......................... 3-1
3-2 Input and Output Signals ( MC68HC001) ............................................................ 3-2
3-3 Input and Output Signals (MC68EC000) ............................................................. 3-2
3-4 Input and Output Signals (MC68008 48-Pin Version).......................................... 3-3
3-5 Input and Output Signals (MC68008 52-Pin Version).......................................... 3-3
4-1 Byte Read-Cycle Flowchart.................................................................................. 4-2
4-2 Read and Write-Cycle Timing Diagram................................................................ 4-2
4-3 Byte Write-Cycle Flowchart.................................................................................. 4-4
4-4 Write-Cycle Timing Diagram ................................................................................ 4-4
4-5 Read-Modify-Write Cycle Flowchart .................................................................... 4-6
4-6 Read-Modify-Write Cycle Timing Diagram........................................................... 4-7
5-1 Word Read-Cycle Flowchart ................................................................................ 5-2
5-2 Byte Read-Cycle Flowchart.................................................................................. 5-2
5-3 Read and Write-Cycle Timing Diagram................................................................ 5-3
5-4 Word and Byte Read-Cycle Timing Diagram ....................................................... 5-3
5-5 Word Write-Cycle Flowchart ................................................................................ 5-5
5-6 Byte Write-Cycle Flowchart.................................................................................. 5-5
5-7 Word and Byte Write-Cycle Timing Diagram ....................................................... 5-6
5-8 Read-Modify-Write Cycle Flowchart .................................................................... 5-7
5-9 Read-Modify-Write Cycle Timing Diagram........................................................... 5-8
5-10 CPU Space Address Encoding ............................................................................ 5-9
5-11 Interrupt Acknowledge Cycle Timing Diagram................................................... 5-10
5-12 Breakpoint Acknowledge Cycle Timing Diagram ............................................... 5-11
5-13 3-Wire Bus Arbitration Flowchart
(NA to 48-Pin MC68008 and MC68EC000 ........................................................ 5-12
5-14 2-Wire Bus Arbitration Cycle Flowchart ............................................................. 5-13
xii M68000 USER’S MANUAL MOTOROLA
LIST OF ILLUSTRATIONS (Continued)
Figure Page
Number Title Number
5-15 3-Wire Bus Arbitration Timing Diagram
(NA to 48-Pin MC68008 and MC68EC000 ........................................................ 5-13
5-16 2-Wire Bus Arbitration Timing Diagram.............................................................. 5-14
5-17 External Asynchronous Signal Synchronization................................................. 5-16
5-18 Bus Arbitration Unit State Diagrams................................................................... 5-17
5-19 3-Wire Bus Arbitration Timing Diagram—Processor Active ............................... 5-18
5-20 3-Wire Bus Arbitration Timing Diagram—Bus Active ......................................... 5-19
5-21 3-Wire Bus Arbitration Timing Diagram—Special Case ..................................... 5-20
5-22 2-Wire Bus Arbitration Timing Diagram—Processor Active ............................... 5-21
5-23 2-Wire Bus Arbitration Timing Diagram—Bus Active ......................................... 5-22
5-24 2-Wire Bus Arbitration Timing Diagram—Special Case ..................................... 5-23
5-25 Bus Error Timing Diagram.................................................................................. 5-24
5-26 Delayed Bus Error Timing Diagram (MC68010)................................................. 5-25
5-27 Retry Bus Cycle Timing Diagram ....................................................................... 5-26
5-28 Delayed Retry Bus Cycle Timing Diagram......................................................... 5-27
5-29 Halt Operation Timing Diagram.......................................................................... 5-28
5-30 Reset Operation Timing Diagram....................................................................... 5-29
5-31 Fully Asynchronous Read Cycle ........................................................................ 5-32
5-32 Fully Asynchronous Write Cycle......................................................................... 5-33
5-33 Pseudo-Asynchronous Read Cycle ................................................................... 5-34
5-34 Pseudo-Asynchronous Write Cycle.................................................................... 5-35
5-35 Synchronous Read Cycle................................................................................... 5-37
5-36 Synchronous Write Cycle................................................................................... 5-38
5-37 Input Synchronizers ........................................................................................... 5-38
6-1 Exception Vector Format...................................................................................... 6-4
6-2 Peripheral Vector Number Format ....................................................................... 6-5
6-3 Address Translated from 8-Bit Vector Number ................................................... 6-5
6-4 Exception Vector Address Calculation (MC68010).............................................. 6-5
6-5 Group 1 and 2 Exception Stack Frame.............................................................. 6-10
6-6 MC68010 Stack Frame ...................................................................................... 6-10
6-7 Supervisor Stack Order for Bus or Address Error Exception ............................. 6-17
6-8 Exception Stack Order (Bus and Address Error) ............................................... 6-18
6-9 Special Status Word Format .............................................................................. 6-19
10-1 MC68000 Power Dissipation (PD) vs Ambient Temperature (TA) ..................... 10-3
10-2 Drive Levels and Test Points for AC Specifications ........................................... 10-6
10-3 Clock Input Timing Diagram ............................................................................... 10-9
10-4 Read Cycle Timing Diagram ............................................................................ 10-13
10-5 Write Cycle Timing Diagram............................................................................. 10-14
10-6 MC68000 to M6800 Peripheral Timing Diagram (Best Case).......................... 10-16
MOTOROLA M68000 USER’S MANUAL xiii
LIST OF ILLUSTRATIONS (Concluded)
Figure Page
Number Title Number
10-7 Bus Arbitration Timing...................................................................................... 10-18
10-8 Bus Arbitration Timing...................................................................................... 10-19
10-9 Bus Arbitration Timing—Idle Bus Case............................................................ 10-20
10-10 Bus Arbitration Timing—Active Bus Case........................................................ 10-21
10-11 Bus Arbitration Timing—Multiple Bus Request ................................................ 10-22
10-12 MC68EC000 Read Cycle Timing Diagram ...................................................... 10-26
10-13 MC68EC000 Write Cycle Timing Diagram....................................................... 10-27
10-14 MC68EC000 Bus Arbitration Timing Diagram ................................................. 10-29
11-1 64-Pin Dual In Line ............................................................................................ 11-2
11-2 68-Lead Pin Grid Array ...................................................................................... 11-3
11-3 68-Lead Quad Pack ........................................................................................... 11-4
11-4 52-Lead Quad Pack ........................................................................................... 11-5
11-5 48-Pin Dual In Line ............................................................................................ 11-6
11-6 64-Lead Quad Flat Pack.................................................................................... 11-7
11-7 Case 740-03—L Suffix....................................................................................... 11-8
11-8 Case 767-02—P Suffix ...................................................................................... 11-9
11-9 Case 746-01—LC Suffix .................................................................................. 11-10
11-10 Case — Suffix ...................................................................................................... 11-
11-11 Case 765A-05—RC Suffix ............................................................................... 11-12
11-12 Case 778-02—FN Suffix.................................................................................. 11-13
11-13 Case 779-02—FN Suffix.................................................................................. 11-14
11-14 Case 847-01—FC Suffix.................................................................................. 11-15
11-15 Case 840B-01—FU Suffix................................................................................ 11-16
A-1 DBcc Loop Mode Program Example................................................................... A-1
B-1 M6800 Data Transfer Flowchart ......................................................................... B-1
B-2 Example External VMA Circuit............................................................................ B-2
B-3 External VMA Timing .......................................................................................... B-2
B-4 M6800 Peripheral Timing—Best Case................................................................ B-3
B-5 M6800 Peripheral Timing—Worst Case ............................................................. B-3
B-6 Autovector Operation Timing Diagram................................................................ B-5
xiv M68000 USER’S MANUAL MOTOROLA

LIST OF TABLES

Table Page
Number Title Number
2-1 Data Addressing Modes....................................................................................... 2-4
2-2 Instruction Set Summary.................................................................................... 2-11
3-1 Data Strobe Control of Data Bus.......................................................................... 3-5
3-2 Data Strobe Control of Data Bus (MC68008)....................................................... 3-5
3-3 Function Code Output .......................................................................................... 3-9
3-4 Signal Summary................................................................................................. 3-10
5-1 DTACK, BERR, and HALT Assertion Results ..................................................... 5-31
6-1 Reference Classification....................................................................................... 6-3
6-2 Exception Vector Assignment .............................................................................. 6-7
6-3 Exception Grouping and Priority........................................................................... 6-9
6-4 MC68010 Format Code...................................................................................... 6-11
7-1 Effective Address Calculation Times.................................................................... 7-2
7-2 Move Byte Instruction Execution Times ............................................................... 7-2
7-3 Move Word Instruction Execution Times.............................................................. 7-3
7-4 Move Long Instruction Execution Times .............................................................. 7-3
7-5 Standard Instruction Execution Times.................................................................. 7-4
7-6 Immediate Instruction Execution Times ............................................................... 7-5
7-7 Single Operand Instruction Execution Times....................................................... 7-6
7-8 Shift/Rotate Instruction Execution Times ............................................................. 7-6
7-9 Bit Manipulation Instruction Execution Times ...................................................... 7-7
7-10 Conditional Instruction Execution Times .............................................................. 7-7
7-11 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times........................ 7-8
7-12 Multiprecision Instruction Execution Times.......................................................... 7-9
7-13 Miscellaneous Instruction Execution Times ....................................................... 7-10
7-14 Move Peripheral Instruction Execution Times.................................................... 7-10
7-15 Exception Processing Instruction Execution Times ........................................... 7-11
8-1 Effective Address Calculation Times.................................................................... 8-2
8-2 Move Byte Instruction Execution Times ............................................................... 8-2
8-3 Move Word Instruction Execution Times.............................................................. 8-3
8-4 Move Long Instruction Execution Times .............................................................. 8-3
MOTOROLA M68000 USER’S MANUAL xv
LIST OF TABLES (Concluded)
Table Page Number Title Number
8-5 Standard Instruction Execution Times ................................................................. 8-4
8-6 Immediate Instruction Execution Times ............................................................... 8-5
8-7 Single Operand Instruction Execution Times....................................................... 8-6
8-8 Shift/Rotate Instruction Execution Times ............................................................. 8-6
8-9 Bit Manipulation Instruction Execution Times ...................................................... 8-7
8-10 Conditional Instruction Execution Times.............................................................. 8-7
8-11 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times ....................... 8-8
8-12 Multiprecision Instruction Execution Times.......................................................... 8-9
8-13 Miscellaneous Instruction Execution Times ....................................................... 8-10
8-14 Move Peripheral Instruction Execution Times.................................................... 8-10
8-15 Exception Processing Instruction Execution Times ........................................... 8-11
9-1 Effective Address Calculation Times ................................................................... 9-2
9-2 Move Byte and Word Instruction Execution Times .............................................. 9-3
9-3 Move Byte and Word Instruction Loop Mode Execution Times ........................... 9-3
9-4 Move Long Instruction Execution Times.............................................................. 9-4
9-5 Move Long Instruction Loop Mode Execution Times ........................................... 9-4
9-6 Standard Instruction Execution Times ................................................................. 9-5
9-7 Standard Instruction Loop Mode Execution Times .............................................. 9-5
9-8 Immediate Instruction Execution Times ............................................................... 9-6
9-9 Single Operand Instruction Execution Times....................................................... 9-7
9-10 Clear Instruction Execution Times ....................................................................... 9-7
9-11 Single Operand Instruction Loop Mode Execution Times.................................... 9-8
9-12 Shift/Rotate Instruction Execution Times ............................................................. 9-8
9-13 Shift/Rotate Instruction Loop Mode Execution Times .......................................... 9-9
9-14 Bit Manipulation Instruction Execution Times ...................................................... 9-9
9-15 Conditional Instruction Execution Times............................................................ 9-10
9-16 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times ..................... 9-10
9-17 Multiprecision Instruction Execution Times........................................................ 9-11
9-18 Miscellaneous Instruction Execution Times ....................................................... 9-12
9-19 Exception Processing Instruction Execution Times ........................................... 9-13
10-1 Power Dissipation and Junction Temperature vs Temperature
(θJC = θJA) ........................................................................................................ 10-4
10-2 Power Dissipation and Junction Temperature vs Temperature
(θJC = θJC)........................................................................................................ 10-4
A-1 MC68010 Loop Mode Instructions...................................................................... A-3
xvi M68000 USER’S MANUAL MOTOROLA
SECTION 1 OVERVIEW
This manual includes hardware details and programming information for the MC68000, the MC68HC000, the MC68HC001, the MC68008, the MC68010, and the MC68EC000. For ease of reading, the name M68000 MPUs will be used when referring to all processors. Refer to M68000PM/AD, detailed information on the MC68000 instruction set.
The six microprocessors are very similar. They all contain the following features
• 16 32-Bit Data and Address Registers
• 16-Mbyte Direct Addressing Range
• Program Counter
• 6 Powerful Instruction Types
• Operations on Five Main Data Types
• Memory-Mapped Input/Output (I/O)
• 14 Addressing Modes
The following processors contain additional features:
M68000 Programmer's Reference Manual
, for
• MC68010 —Virtual Memory/Machine Support —High-Performance Looping Instructions
• MC68HC001/MC68EC000 —Statically Selectable 8- or 16-Bit Data Bus
• MC68HC000/MC68EC000/MC68HC001 —Low-Power
All the processors are basically the same with the exception of the MC68008. The MC68008 differs from the others in that the data bus size is eight bits, and the address range is smaller. The MC68010 has a few additional instructions and instructions that operate differently than the corresponding instructions of the other devices.
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSORS USER’S MANUAL 1-1

1.1 MC68000

The MC68000 is the first implementation of the M68000 16/-32 bit microprocessor architecture. The MC68000 has a 16-bit data bus and 24-bit address bus while the full architecture provides for 32-bit address and data buses. It is completely code-compatible with the MC68008 8-bit data bus implementation of the M68000 and is upward code compatible with the MC68010 virtual extensions and the MC68020 32-bit implementation of the architecture. Any user-mode programs using the MC68000 instruction set will run unchanged on the MC68008, MC68010, MC68020, MC68030, and MC68040. This is possible because the user programming model is identical for all processors and the instruction sets are proper subsets of the complete architecture.

1.2 MC68008

The MC68008 is a member of the M68000 family of advanced microprocessors. This device allows the design of cost-effective systems using 8-bit data buses while providing the benefits of a 32-bit microprocessor architecture. The performance of the MC68008 is greater than any 8-bit microprocessor and superior to several 16-bit microprocessors.
The MC68008 is available as a 48-pin dual-in-line package (plastic or ceramic) and 52-pin plastic leaded chip carrier. The additional four pins of the 52-pin package allow for additional signals: A20, A21, BGACK, and IPL2. The 48-pin version supports a 20-bit address that provides a 1-Mbyte address space; the 52-pin version supports a 22-bit address that extends the address space to 4 Mbytes. The 48-pin MC68008 contains a simple two-wire arbitration circuit; the 52-pin MC68008 contains a full three-wire MC68000 bus arbitration control. Both versions are designed to work with daisy-chained networks, priority encoded networks, or a combination of these techniques.
A system implementation based on an 8-bit data bus reduces system cost in comparison to 16-bit systems due to a more effective use of components and byte-wide memories and peripherals. In addition, the nonmultiplexed address and data buses eliminate the need for external demultiplexers, further simplifying the system.
The large nonsegmented linear address space of the MC68008 allows large modular programs to be developed and executed efficiently. A large linear address space allows program segment sizes to be determined by the application rather than forcing the designer to adopt an arbitrary segment size without regard to the application's individual requirements.

1.3 MC68010

The MC68010 utilizes VLSI technology and is a fully implemented 16-bit microprocessor with 32-bit registers, a rich basic instruction set, and versatile addressing modes. The vector base register (VBR) allows the vector table to be dynamically relocated
1-2 M68000 8-/16-/32-BIT MICROPROCESSORS USER’S MANUAL MOTOROLA

1.4 MC68HC000

The primary benefit of the MC68HC000 is reduced power consumption. The device dissipates an order of magnitude less power than the HMOS MC68000.
The MC68HC000 is an implementation of the M68000 16/-32 bit microprocessor architecture. The MC68HC000 has a 16-bit data bus implementation of the MC68000 and is upward code-compatible with the MC68010 virtual extensions and the MC68020 32-bit implementation of the architecture.

1.5 MC68HC001

The MC68HC001 provides a functional extension to the MC68HC000 HCMOS 16-/32-bit microprocessor with the addition of statically selectable 8- or 16-bit data bus operation. The MC68HC001 is object-code compatible with the MC68HC000, and code written for the MC68HC001 can be migrated without modification to any member of the M68000 Family.

1.6 MC68EC000

The MC68EC000 is an economical high-performance embedded controller designed to suit the needs of the cost-sensitive embedded controller market. The HCMOS MC68EC000 has an internal 32-bit architecture that is supported by a statically selectable 8- or 16-bit data bus. This architecture provides a fast and efficient processing device that can satisfy the requirements of sophisticated applications based on high-level languages.
The MC68EC000 is object-code compatible with the MC68000, and code written for the MC68EC000 can be migrated without modification to any member of the M68000 Family.
The MC68EC000 brings the performance level of the M68000 Family to cost levels previously associated with 8-bit microprocessors. The MC68EC000 benefits from the rich M68000 instruction set and its related high code density with low memory bandwidth requirements.
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSORS USER’S MANUAL 1-3
SECTION 2 INTRODUCTION
The section provide a brief introduction to the M68000 microprocessors (MPUs). Detailed information on the programming model, data types, addressing modes, data organization and instruction set can be found in M68000PM/AD,
Reference Manual
except that the MC68000 can directly access 16 Mbytes (24-bit address) and the MC68008 can directly access 1 Mbyte (20-bit address on 48-pin version or 22-bit address on 52-pin version). The MC68010, which also uses a 24-bit address, has much in common with the other devices; however, it supports additional instructions and registers and provides full virtual machine/memory capability. Unless noted, all information pertains to all the M68000 MPUs.
. All the processors are identical from the programmer's viewpoint,

2.1 PROGRAMMER'S MODEL

All the microprocessors executes instructions in one of two modes—user mode or supervisor mode. The user mode provides the execution environment for the majority of application programs. The supervisor mode, which allows some additional instructions and privileges, is used by the operating system and other system software.
M68000 Programmer's
2.1.1 User' Programmer's Model
The user programmer's model (see Figure 2-1) is common to all M68000 MPUs. The user programmer's model, contains 16, 32-bit, general-purpose registers (D0–D7, A0– A7), a 32-bit program counter, and an 8-bit condition code register. The first eight registers (D0–D7) are used as data registers for byte (8-bit), word (16-bit), and long-word (32-bit) operations. The second set of seven registers (A0–A6) and the user stack pointer (USP) can be used as software stack pointers and base address registers. In addition, the address registers can be used for word and long-word operations. All of the 16 registers can be used as index registers.
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-1
31 16 15 8 7 0
D0 D1
D2 D3
D4 D5 D6 D7
EIGHT DATA REGISTERS
31 16 15
31
70
0
A0 A1 A2
SEVEN
A3
ADDRESS REGISTERS
A4 A5
A6
A7
USER STACK
(USP) POINTER
0
PROGRAM
PC
COUNTER
STATUS
CCR
REGISTER
Figure 2-1. User Programmer's Model
(MC68000/MC68HC000/MC68008/MC68010)

2.1.2 Supervisor Programmer's Model

The supervisor programmer's model consists of supplementary registers used in the supervisor mode. The M68000 MPUs contain identical supervisor mode register resources, which are shown in Figure 2-2, including the status register (high-order byte) and the supervisor stack pointer (SSP/A7').
31 16 15 0
15 8 7 0
CCR
A7'
SUPERVISOR STACK
(SSP)
POINTER
STATUS REGISTER
SR
Figure 2-2. Supervisor Programmer's Model Supplement
The supervisor programmer's model supplement of the MC68010 is shown in Figure 2-
3. In addition to the supervisor stack pointer and status register, it includes the vector base register (VRB) and the alternate function code registers (AFC).The VBR is used to determine the location of the exception vector table in memory to support multiple vector
2-2 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
tables. The SFC and DFC registers allow the supervisor to access user data space or emulate CPU space cycles.
31 16 15 0
15 8 7 0
CCR
31 0
20
A7'
SUPERVISOR STACK
(SSP)
POINTER
SR STATUS REGISTER
VBR VECTOR BASE REGISTER
SFC
ALTERNATE FUNCTION CODE REGISTERS
DFC
Figure 2-3. Supervisor Programmer's Model Supplement
(MC68010)

2.1.3 Status Register

The status register (SR),contains the interrupt mask (eight levels available) and the following condition codes: overflow (V), zero (Z), negative (N), carry (C), and extend (X). Additional status bits indicate that the processor is in the trace (T) mode and/or in the supervisor (S) state (see Figure 2-4). Bits 5, 6, 7, 11, 12, and 14 are undefined and reserved for future expansion
SYSTEM BYTE USER BYTE
15 13 10 8 4 0
III
210
XNZVC
TRACE MODE
SUPERVISOR
STATE
INTERRUPT
MASK
S
T
Figure 2-4. Status Register

2.2 DATA TYPES AND ADDRESSING MODES

The five basic data types supported are as follows:
1. Bits
2. Binary-Coded-Decimal (BCD) Digits (4 Bits)
3. Bytes (8 Bits)
4. Words (16 Bits)
EXTEND NEGATIVE ZERO
OVERFLOW CARRY
CONDITION CODES
5. Long Words (32 Bits)
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-3
In addition, operations on other data types, such as memory addresses, status word data, etc., are provided in the instruction set.
The 14 flexible addressing modes, shown in Table 2-1, include six basic types:
1. Register Direct
2. Register Indirect
3. Absolute
4. Immediate
5. Program Counter Relative
6. Implied
The register indirect addressing modes provide postincrementing, predecrementing, offsetting, and indexing capabilities. The program counter relative mode also supports indexing and offsetting. For detail information on addressing modes refer to M68000PM/AD,
M68000 Programmer Reference Manual
.
2-4 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
Table 2-1. Data Addressing Modes
Mode Generation Syntax
Register Direct Addressing
Data Register Direct Address Register Direct
Absolute Data Addressing
Absolute Short Absolute Long
Program Counter Relative Addressing
Relative with Offset Relative with Index and Offset
Register Indirect Addressing
Register Indirect Postincrement Register Indirect Predecrement Register Indirect Register Indirect with Offset Indexed Register Indirect with Offset
Immediate Data Addressing
Immediate Quick Immediate
Implied Addressing
Implied Register EA = SR, USP, SSP, PC,
NOTES: 1. The VBR, SFC, and DFC apply to the MC68010 only
EA = Effective Address Dn = Data Register An = Address Register ( ) = Contents of PC = Program Counter d8= 8-Bit Offset (Displacement) d16= 16-Bit Offset (Displacement) N = 1 for byte, 2 for word, and 4 for long word. If An is the stack pointer and
1
the operand size is byte, N = 2 to keep the stack pointer on a word boundary.
¯ = Replaces
Xn = Address or Data Register used as Index Register SR = Status Register USP = User Stack Pointer SSP = Supervisor Stack Pointer CP = Program Counter VBR = Vector Base Register
EA=Dn EA=An
EA = (Next Word) EA = (Next Two Words)
EA = (PC)+d EA = (PC)+d
EA = (An) EA = (An), An An+N An
¯ An–N, EA=(An)
EA = (An)+d EA = (An)+(Xn)+d
DATA = Next Word(s) Inherent Data
16 8
16
VBR, SFC, DFC
Dn An
(xxx).W (xxx).L
(d16,PC) (d8,PC,Xn)
(An) (An)+
-(An) (d16,An)
8
(d8,An,Xn)
#<data>
SR,USP,SSP,PC, VBR, SFC,DFC

2.3 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers and the active stack pointer support address operands of 32 bits.

2.3.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits, word operands the low-order 16 bits, and long-word operands, the entire 32 bits. The least significant bit is addressed as bit zero; the most significant bit is addressed as bit 31.
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-5
When a data register is used as either a source or a destination operand, only the appropriate low-order portion is changed; the remaining high-order portion is neither used nor changed.

2.3.2 Address Registers

Each address register (and the stack pointer) is 32 bits wide and holds a full, 32-bit address. Address registers do not support byte-sized operands. Therefore, when an address register is used as a source operand, either the low-order word or the entire long-word operand is used, depending upon the operation size. When an address register is used as the destination operand, the entire register is affected, regardless of the operation size. If the operation size is word, operands are sign-extended to 32 bits before the operation is performed.

2.4 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable. As shown in Figure 2-5, the high-order byte of a word has the same address as the word. The low-order byte has an odd address, one count higher. Instructions and multibyte data are accessed only on word (even byte) boundaries. If a long-word operand is located at address n (n even), then the second word of that operand is located at address n+2.
1514131211109876543210
ADDRESS
$000000
$000002
$FFFFFE
BYTE 000000 BYTE 000001
BYTE 000002
BYTE FFFFFE
WORD 0
WORD 1
BYTE 000003
WORD 7FFFFF
BYTE FFFFFE
Figure 2-5. Word Organization in Memory
The data types supported by the M68000 MPUs are bit data, integer data of 8, 16, and 32 bits, 32-bit addresses, and binary-coded-decimal data. Each data type is stored in memory as shown in Figure 2-6. The numbers indicate the order of accessing the data from the processor. For the MC68008 with its 8-bit bus, the appearance of data in memory is identical to the all the M68000 MPUs. The organization of data in the memory of the MC68008 is shown in Figure 2-7.
2-6 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
BIT DATA
1 BYTE = 8 BITS
76543210
INTEGER DATA 1 BYTE = 8 BITS
1514131211109876543210
MSB
1514131211109876543210
BYTE 0
BYTE 2
LSB
1 WORD = 16 BITS
BYTE 1
BYTE 3
WORD 0
WORD 1
WORD 2
EVEN BYTE ODD BYTE
76 543210
1 LONG WORD = 32 BITS
1514131211109876543210
MSB
LONG WORD 0
LONG WORD 1
LONG WORD 2
1 ADDRESS = 32 BITS
1514131211109876543210
MSB
ADDRESS 0
76 543210
HIGH ORDER LOW ORDER
ADDRESSES
HIGH ORDER LOW ORDER
LSBMSB
LSB
LSB
ADDRESS 1
ADDRESS 2
MSB = MOST SIGNIFICANT BIT LSB = LEAST SIGNIFICANT BIT
2 BINARY-CODED-DECIMAL DIGITS = 1 BYTE
1514131211109876543210
MSD
MSD = MOST SIGNIFICANT DIGIT LSD = LEAST SIGNIFICANT DIGIT
BCD 0
BCD 4
BCD 1
BCD 5
DECIMAL DATA
LSD
BCD 2
BCD 6
BCD 3
BCD 7
Figure 2-6. Data Organization in Memory
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-7
BIT DATA 1 BYTE = 8 BITS
76543210
INTEGER DATA 1 BYTE = 8 BITS
76543210
BYTE 0
BYTE 1
BYTE 2
LOWER ADDRESSES
BYTE 3
1 WORD = 2 BYTES = 16 BITS
(MS BYTE)
WORD 0
BYTE 1
(LS BYTE)
(MS BYTE)
BYTE 0
WORD 1
BYTE 1
(LS BYTE)
1 LONG WORD = 2 WORDS = 4 BYTES = 32 BITS BYTE 0
BYTE 1
LONG WORD 0
BYTE 2
BYTE 3
BYTE 0
BYTE 1
LONG WORD 1
BYTE 2
BYTE 3
HIGH-ORDER
WORD
LOW-ORDER
WORD
HIGH-ORDER
WORD
LOW-ORDER
WORD
HIGHER ADDRESSES
LOWER ADDRESSESBYTE 0
HIGHER ADDRESSES
LOWER ADDRESSES
HIGHER ADDRESSES
Figure 2-7. Memory Data Organization of the MC68008

2.5 INSTRUCTION SET SUMMARY

Table 2-2 provides an alphabetized listing of the M68000 instruction set listed by opcode, operation, and syntax. In the syntax descriptions, the left operand is the source operand, and the right operand is the destination operand. The following list contains the notations used in Table 2-2.
2-8 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
Notation for operands:
PC — Program counter SR — Status register
V — Overflow condition code
Immediate Data — Immediate data from the instruction
Source — Source contents
Destination — Destination contents
Vector — Location of exception vector
+inf — Positive infinity –inf — Negative infinity
<fmt> — Operand data format: byte (B), word (W), long (L), single
(S), double (D), extended (X), or packed (P).
FPm — One of eight floating-point data registers (always
specifies the source register)
FPn — One of eight floating-point data registers (always
specifies the destination register)
Notation for subfields and qualifiers:
<bit> of <operand> — Selects a single bit of the operand
<ea>{offset:width} — Selects a bit field
(<ope ra nd >) — The contents of the referenced location
<operand>10 — The operand is binary-coded decimal, operations are
performed in decimal
(<address register>) — The register indirect operator –(<address register>) — Indicates that the operand register points to the memory (<address register>)+ — Location of the instruction operand—the optional mode
qualifiers are –, +, (d), and (d, ix)
#xxx or #<data> — Immediate data that follows the instruction word(s)
Notations for operations that have two operands, written <operand> <op> <operand>, where <op> is one of the following:
— The source operand is moved to the destination operand
— The two operands are exchanged
+ — The operands are added – — The destination operand is subtracted from the source
operand
× — The operands are multiplied ÷ — The source operand is divided by the destination
operand
< — Relational test, true if source operand is less than
destination operand
> — Relational test, true if source operand is greater than
destination operand
V — Logical OR
— Logical exclusive OR
Λ — Logical AND
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-9
shifted by, rotated by — The source operand is shifted or rotated by the number of
positions specified by the second operand
Notation for single-operand operations:
~<operand> — The operand is logically complemented
<operand>sign-extended — The operand is sign-extended, all bits of the upper
portion are made equal to the high-order bit of the lower portion
<operand>tested — The operand is compared to zero and the condition
codes are set appropriately
Notation for other operations:
TRAP — Equivalent to Format/Offset Word (SSP); SSP–2
SSP; PC (SSP); SSP–4 SSP; SR (SSP); SSP–2 SSP; (vector) PC
STOP — Enter the stopped state, waiting for interrupts
If <condition> then — The condition is tested. If true, the operations after "then"
<operations> else are performed. If the condition is false and the optional
<operations> "else" clause is present, the operations after "else" are
performed. If the condition is false and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description as an example.
2-10 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
Table 2-2. Instruction Set Summary (Sheet 1 of 4)
Opcode Operation Syntax
ABCD Source10 + Destination10 + X Destination ABCD Dy,Dx
ABCD –(Ay), –(Ax)
ADD Source + Destination Destination ADD <ea>,Dn
ADD Dn,<ea>
ADDA Source + Destination Destination ADDA <ea>,An
ADDI Immediate Data + Destination Destination ADDI # <data>,<ea>
ADDQ Immediate Data + Destination Destination ADDQ # <data>,<ea>
ADDX Source + Destination + X Destination ADDX Dy, Dx
ADDX –(Ay), –(Ax)
AND Source Λ Destination Destination AND <ea>,Dn
AND Dn,<ea>
ANDI Immediate Data Λ Destination Destination ANDI # <data>, <ea>
ANDI to CCR Source Λ CCR CC R ANDI # <data>, CCR
ANDI to SR If supervisor state
then Source Λ SR SR
else TRAP
ASL, ASR Destination Shifted by <count> Destination ASd Dx,Dy
Bcc If (condition true) then PC + d PC Bcc <label>
BCHG ~ (<number> of Destination) Z;
~ (<number> of Destination) <bit number> of Destination
BCLR ~ (<bit number> of Destination) Z;
0 <bit number> of Destination
BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction
BRA PC + d P C BRA <label>
BSET ~ (<bit number> of Destination) Z;
1 <bit number> of Destination
BSR SP – 4 SP; PC (SP); PC + d PC BSR <label>
BTST – (<bit number> of Destination) Z; BTST Dn,<ea>
CHK If Dn < 0 or Dn > Source then TRAP CHK <ea>,Dn CLR 0 Destination CLR <ea>
CMP Destination—Source cc CMP <ea>,Dn
CMPA Destination—Source CMPA <ea>,An
CMPI Destination —Immediate Data CMPI # <data>,<ea>
CMPM Destination—Source cc CMPM (Ay)+, (Ax)+
DBcc If condition false then (Dn – 1 Dn;
If Dn –1 then PC + d PC)
ANDI # <data>, SR
ASd # <data>,Dy ASd <ea>
BCHG Dn,<ea> BCHG # <data>,<ea>
BCLR Dn,<ea> BCLR # <data>,<ea>
BKPT # <data>
BSET Dn,<ea> BSET # <data>,<ea>
BTST # <data>,<ea>
DBcc Dn,<label>
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-11
Table 2-2. Instruction Set Summary (Sheet 2 of 4)
Opcode Operation Syntax
DIVS Destination/Source Destination DIVS.W <ea>,Dn 32/16 16r:16q DIVU Destination/Source Destination DIVU.W <ea>,Dn 32/16 16r:16q
EOR Source Destination Destination EOR Dn,<ea>
EORI Immediate Data Destination Destination EORI # <data>,<ea>
EORI to CCR Source CCR CCR EORI # <data>,CCR
EORI to SR If supervisor state
then Source SR SR
else TRAP
EXG Rx Ry EXG Dx,Dy
EXT Destination Sign-Extended Destination EXT.W Dn extend byte to word
ILLEGAL SSP – 2 SSP; Vector Offset (SSP);
SSP – 4 SSP; PC (SSP); SSP – 2 SSP; SR (SSP);
Illegal Instruction Vector Address PC JMP Destination Address PC JMP <ea> JSR SP – 4 SP; PC (SP)
Destination Address PC LEA <ea> An LEA <ea>,An
LINK SP – 4 SP; An (SP)
SP An, SP + d SP
LSL,LSR Destination Shifted by <count> Destination LSd1 Dx,Dy
MOVE Source Destination MOVE <ea>,<ea>
MOVEA Source Destination MOVEA <ea>,An
MOVE from
CCR
MOVE to
CCR
MOVE fromSRSR Destination
MOVE to SR If supervisor state
CCR Destination MOVE CCR,<ea>
Source CCR MOVE <ea>,CCR
If supervisor state
then SR Destination
else TRAP (MC68010 only)
then Source SR
else TRAP
EORI # <data>,SR
EXG Ax,Ay EXG Dx,Ay EXG Ay,Dx
EXT.L Dn extend word to long word ILLEGAL
JSR <ea>
LINK An, # <displacement>
LSd1 # <data>,Dy LSd1 <ea>
MOVE SR,<ea>
MOVE <ea>,SR
2-12 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
Table 2-2. Instruction Set Summary (Sheet 3 of 4)
Opcode Operation Syntax
MOVE USP If supervisor state
then USP An or An USP
else TRAP
MOVEC If supervisor state
then Rc Rn or Rn Rc
else TRAP
MOVEM Registers Destination
Source Registers
MOVEP Source Destination MOVEP Dx,(d,Ay)
MOVEQ Immediate Data Destination MOVEQ # <data>,Dn
MOVES If supervisor state
then Rn Destination [DFC] or Source [SFC] Rn
else TRAP MULS Source × Destination Destination MULS.W <ea>,Dn 16 x 16 32 MULU Source × Destination Destination MULU.W <ea>,Dn 16 x 16 32 NBCD 0 – (Destination10) – X Destination NBCD <ea>
NEG 0 – (Destination) Destination NEG <ea>
NEGX 0 – (Destination) – X Destination NEGX <ea>
NOP None NOP
NOT ~Destination Destination NOT <ea>
OR Source V Destination Destination OR <ea>,Dn
ORI Immediate Data V Destination Destination ORI # <data>,<ea>
ORI to CCR Source V CCR CC R ORI # <data>,CCR
ORI to SR If supervisor state
then Source V SR SR
else TRAP
PEA Sp – 4 SP; <ea> (SP) PEA <ea>
RESET If supervisor state
then Assert RESET Line
else TRAP
ROL, ROR Destination Rotated by <count> Destination ROd1 Rx,Dy
ROXL,
ROXR
RTD (SP) PC; SP + 4 + d SP RTD #<displacement>
Destination Rotated with X by <count> Destination ROXd1 Dx,Dy
MOVE USP,An MOVE An,USP
MOVEC Rc,Rn MOVEC Rn,Rc
MOVEM register list,<ea> MOVEM <ea>,register list
MOVEP (d,Ay),Dx
MOVES Rn,<ea> MOVES <ea>,Rn
OR Dn,<ea>
ORI # <data>,SR
RESET
ROd1 # <data>,Dy ROd1 <ea>
1 #
ROXd ROXd1 <ea>
<data>,Dy
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL 2-13
Table 2-2. Instruction Set Summary (Sheet 4 of 4)
Opcode Operation Syntax
RTE If supervisor state
then (SP) SR; SP + 2 SP; (SP) PC; SP + 4 SP; restore state and deallocate stack according to (SP)
else TRAP
RTR (SP) CCR; SP + 2 SP;
(SP) PC; SP + 4 SP
RT S (SP) PC; SP + 4 SP RTS
SBCD Destination
Sc c If condition true
then 1s Destination
else 0s Destination
STOP If supervisor state
then Immediate Data SR; STOP
else TRAP
SUB Destination – Source Destination SUB <ea>,Dn
SUBA Destination – Source Destination SUBA <ea>,An
SUBI Destination – Immediate Data Destination SUBI # <data>,<ea>
SUBQ Destination – Immediate Data Destination SUBQ # <data>,<ea>
SUBX Destination – Source – X Destination SUBX Dx,Dy
SWAP Register [31:16] Register [15:0] SWAP Dn
TAS Destination Tested Condition Codes; 1 bit 7 of
Destination
TRAP SSP – 2 SSP; Format/Offset (SSP);
SSP – 4 SSP; PC (SSP); SSP–2 SSP; SR (SSP); Vector Address PC
TRAPV If V then TRAP TRAPV
TST Destination Tested Condition Codes TST <ea>
UNLK An SP; (SP) An; SP + 4 SP UNLK An
NOTE: d is direction, L or R.
– Source
10
– X Destination SBCD Dx,Dy
10
RTE
RTR
SBCD –(Ax),–(Ay) Scc <ea>
STOP # <data>
SUB Dn,<ea>
SUBX –(Ax),–(Ay)
TAS <ea>
TRAP # <vector>
2-14 M68000 8-/16-/32-BIT MICROPROCESSOR USER’S MANUAL MOTOROLA
SECTION 3 SIGNAL DESCRIPTION
This section contains descriptions of the input and output signals. The input and output signals can be functionally organized into the groups shown in Figure 3-1 (for the MC68000, the MC68HC000 and the MC68010), Figure 3-2 ( for the MC68HC001), Figure 3-3 (for the MC68EC000), Figure 3-4 (for the MC68008, 48-pin version), and Figure 3-5 (for the MC68008, 52-pin version). The following paragraphs provide brief descriptions of the signals and references (where applicable) to other paragraphs that contain more information about the signals.
NOTE
The terms assertion and negation are used extensively in this manual to avoid confusion when describing a mixture of "active-low" and "active-high" signals. The term assert or assertion is used to indicate that a signal is active or true, independently of whether that level is represented by a high or low voltage. The term negate or negation is used to indicate that a signal is inactive or false.
PROCESSOR
STATUS
MC6800
PERIPHERAL
CONTROL
SYSTEM
CONTROL
(2)
V
CC
GND(2)
CLK
FC0 FC1 FC2
E
VMA
VPA
BERR
RESET
HALT
ADDRESS
BUS
DATA BUS
AS R/W
UDS
LDS DTACK
BR
BG
BGACK
IPL0 IPL1
IPL2
A23–A1
D15–D0
ASYNCHRONOUS BUS CONTROL
BUS ARBITRATION CONTROL
INTERRUPT CONTROL
Figure 3-1. Input and Output Signals
(MC68000, MC68HC000 and MC68010)
MOTOROLA M68000 8-/16-/32-BIT MICROPROCESSORS USER'S MANUAL 3-1
PROCESSOR
STATUS
V
CC
GND(2)
CLK
FC0 FC1 FC2
(2)
ADDRESS
BUS
DATA BUS
AS R/W
UDS LDS DTACK
A23–A0
D15–D0
ASYNCHRONOUS BUS CONTROL
MC6800
PERIPHERAL
CONTROL
SYSTEM
CONTROL
PROCESSOR
STATUS
E
VMA
VPA
BERR
RESET
HALT
MODE
BR
BG
BGACK
IPL0 IPL1
IPL2
Figure 3-2. Input and Output Signals
(MC68HC001)
(2)
V
CC
GND(2)
CLK
FC0 FC1 FC2
MC68EC000
ADDRESS
BUS
DATA BUS
AS R/W
UDS LDS DTACK
A23–A0
D15–D0
BUS ARBITRATION CONTROL
INTERRUPT CONTROL
ASYNCHRONOUS BUS CONTROL
BR
BG
BERR
SYSTEM
CONTROL
RESET
HALT
MODE
IPL0 IPL1
IPL2
AVEC
BUS ARBITRATION CONTROL
INTERRUPT CONTROL
Figure 3-3. Input and Output Signals
(MC68EC000)
3-2 M68000 8-/16-/32-BIT MICROPROCESSORS USER'S MANUAL MOTOROLA
Loading...
+ 154 hidden pages