Thank you for selecting an MGE UPS SYSTEMS product to protect your electrical equipment.
The Upsilon STS range has been designed with the upmost care. We recommend that you take the time to read this
manual to take full advantage of the many features of your new equipment.
MGE UPS SYSTEMS pays great attention to the environmental impact of its products. Measures that have made UpsilonSTS a reference in environmental protection include:
◗ the eco-design approach used in product development,
◗ production on an industrial site certified ISO 14001,
◗ recycling of Upsilon STS at the end of its service life.
To discover the entire range of MGE UPS SYSTEMS products and the options available for the Upsilon STS range, we
invite you to visit our web site at www.mgeups.com or contact your MGE UPS SYSTEMS representative.
All products in the Upsilon STS range are protected by patents. They implement original technology not available to competitors of MGE
UPS SYSTEMS.
To take into account evolving standards and technology, equipment may be modified without notice. Indications concerning technical
characteristics and dimensions are not binding unless confirmed by MGE UPS SYSTEMS.
This document may be copied only with the written consent of MGE UPS SYSTEMS. Authorised copies must be marked "Upsilon STS
Installation and User Manual, nr 3402011300".
34020113EN/AA - Page 3
Foreword
Using this document
Information may be found primarily by consulting:
◗ the contents,
◗ the index.
Pictograms
Document
Display
Important instructions that must
be followed
Information, advice, help
Visual indication
Action
Audio indication
LED off
LED flashing
LED on green
LED on orange
LED on red
Earth cables
Other cables
88.8
8.88
E
S
C
D
E
L
VOLT
Up / down selection
Other selection
Confirm
Details
Scrolling menu
Graphic display
Graphic display
Graphic display
Digital display
Return to previous display
Delete
Access to measurements
17
mai
STOP
0101
1010
0101
Go up or down one page
Select date for event log
consultation
Increase
Reduce
Save
Enter characters
Phase-to-neutral
measurements
Phase-to-phase
measurements
Interrupt manual transfer
without break
Transfer
Alarm
Status conditions
Page 4 - 34020113EN/AA
Buzzer off
Note: LEDs and switches are represented in their rest position. Transient conditions are indicated by dotted arrows.
Settings
Maintenance
Contents
1.Presentation
1.1Upsilon STS 30 - 60 - 100 - 160 - 250 A (cabinet 1400 mm high) .............................................. 7
1 - Unclip the base panels 14 .
2 - Set the cabinet to a level position using
>350 mm
the adjustable foot pads 15 .
3 - Put the base panels 14 back in place.
Important: correct ventilation
requires at least 350 mm of free
space above the cabinet.
14
15
34020113EN/AA - Page 11
2. Installation
2.2 Power connections
See section 6.1 for information on sizing protection devices and cables (Appendix, Technical data).
Two cables maximum may be used per phase.
Upsilon STS 30 to 250 AInput:3 phases + PEN
Output:3 phases + PEN
N L1 L2 L3 N L1 L2 L3 N L1 L2 L3
N
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to threaded studs (diameter 8 mm).
The cables are tied to the earth bar.
PEN
S1S2
PENPEN
275 mm
Upsilon STS 30 to 250 AInput:3 phases + PEN
Output:3 phases + PE + Neutral
N L1 L2 L3 N L1 L2 L3 N L1 L2 L3
N
PEN
S1S2
PEPEN
275 mm
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to threaded studs (diameter 8 mm).
The cables are tied to the earth bar.
Page 12 - 34020113EN/AA
Upsilon STS 30 to 250 AInput:3 phases + PEN
Output:3 phases + PE
N L1 L2 L3 N L1 L2 L3 N L1 L2 L3
N
2. Installation
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to threaded studs (diameter 8 mm).
The cables are tied to the earth bar.
PEN
S1S2
PEPEN
275 mm
Upsilon STS 30 to 250 AInput:3 phases + PE + Neutral
Output:3 phases + PE + Neutral
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to threaded studs (diameter 8 mm).
The cables are tied to the earth bar.
N L1 L2 L3 N L1 L2 L3 N L1 L2 L3
N
PE
NN
PEPE
275 mm
S1S2
Upsilon STS 30 to 250 AInput:3 phases + PE
Output:3 phases + PE
N L1 L2 L3 N L1 L2 L3 N L1 L2 L3
PEPEPE
275 mm
S1S2
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to threaded studs (diameter 8 mm).
The cables are tied to the earth bar.
34020113EN/AA - Page 13
2. Installation
See section 6.1 for information on sizing protection devices and cables (Appendix, Technical data).
A maximum of four cables may be used per phase.
Upsilon STS 400 to 600 AInput:3 phases + PEN
Output:3 phases + PEN
N L1 L2 L3 N L1 L2 L3N L1 L2 L3
463
N
S1S2
PEN
PENPEN
mm
403
mm
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to two threaded studs per phase (diameter
10 mm).
The cables are tied to the earth bar.
Upsilon STS 400 to 600 AInput:3 phases + PEN
Output:3 phases + PE + Neutral
N L1 L2 L3 N L1 L2 L3N L1 L2 L3
463
N
S1S2
PEN
N
PEPEN
mm
403
mm
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to two threaded studs per phase (diameter
10 mm).
The cables are tied to the earth bar.
Page 14 - 34020113EN/AA
Upsilon STS 400 to 600 AInput:3 phases + PEN
Output:3 phases + PE
N L1 L2 L3 N L1 L2 L3N L1 L2 L3
463
mm
N
S1S2
PEN
PEPEN
403
mm
2. Installation
See section 1.3 for information on
accessing the connections.
Connections are made using lugs
connected to two threaded studs per phase
(diameter 10 mm).
The cables are tied to the earth bar.
Upsilon STS 400 to 600 AInput:3 phases + PE + Neutral
Output:3 phases + PE + Neutral
See section 1.3 for information on accessing
the connections.
Connections are made using lugs connected
to two threaded studs per phase (diameter
N L1 L2 L3 N L1 L2 L3N L1 L2 L3
NN N
S1S2
PEPEPE
463
mm
403
mm
10 mm).
The cables are tied to the earth bar.
Upsilon STS 400 to 600 AInput:3 phases + PE
Output:3 phases + PE
See section 1.3 for information on
accessing the connections.
Connections are made using lugs
N L1 L2 L3 N L1 L2 L3N L1 L2 L3
connected to two threaded studs per phase
(diameter 10 mm).
The cables are tied to the earth bar.
S1S2
PEPEPE
463
mm
403
mm
34020113EN/AA - Page 15
2. Installation
Cable running for cables entering through the top of the Upsilon STS 30 to 250 A
cabinet
Cable-running zone for cables entering
16
through the top
Cable gland plate that must be drilled to
17
cable size
2.3 Connection of the emergency power off terminal block
1 - Remove the jumper from terminal block
16 .
2 - Connect the emergency power off NC
contact to terminals 1 and 2.
3 - Tie the cable down as illustrated in
section 2.4.
Page 16 - 34020113EN/AA
2
1
16
2.4 Connection of the communication cards
2. Installation
Tie the cables to the cable way on the door.
Do not run the control wires with
the power cables.
Two slots are available in the card
cage 5 for additional cards.
For information on using the
communication card, see the
JBUS communication card
manual.
Only one communication port
(the RS232 OR the RS485) may
be used at a time.
34020113EN/AA - Page 17
2. Installation
2.6 Connection of the relay communication card
Before proceeding, disconnect all power sources connected to the card.
Do not mix very low safety voltage (VLSV) and non-VLSV circuits on the card outputs.
1 - Remove the screws 41 and the
protection cover 43 .
2 - Run the communication cables through
the openings 44 .
3 - Connect the cables to the input terminal
block 46 and the output terminal block 45 .
46
41
45
44
43
4 - Put the cover back in place and secure it
with the screws 41 .
5 - Secure the cables using the screws 47 .
6 - Note the position of the power sources
on the labels.
7 - Insert the card in its slot.
8 - Secure the card using the two screws
42 .
42
6
5
4
3
2
1
B
A
Page 18 - 34020113EN/AA
42
47
Source S2 status condition (active or inactive)
Source S1 status condition (active or inactive)
Overload status condition
STS fault
(fault on one of the sources or on the STS)
Load-supplied status condition
(presence or absence of power to the load)
General alarm
Characteristics of the output contacts:
6
Permissible voltage: 250 V AC, 30 V DC
Permissible current: 2 A
Cable: 4 x 0.93 mm2, Ø 6.6 mm ± 0.3 mm.
5
4
3
2
1
Characteristics of the input contacts:
Switched voltage: 5 V DC
Current drawn: 10 mA
Cable: 4 x 0.34 mm2, Ø 5 mm ± 0.5 mm.
Command to disable transfer (transfer to alternate
source inhibited)
Memorised faults reset command
BA
3.1 Start-up
3. Operation
Make sure that the voltages and frequencies of the two sources S1 and S2 are identical.
Make sure that the voltages of the two sources S1 and S2 are the same as the rated voltage (400 V) of Upsilon STS,
otherwise see section 3.5 (Customization).
1 - Check that the two sources are
energised (voltage present).
2 - Set circuit breakers Q5 2 and Q6 3
to the ON position (position 1).
3 - Turn switch Q1BP 6 to the ON position
(position 1). LEDs 37 and 38 go on.
The load is supplied by Source 1 via the
bypass.
4 - Set switches Q1 1 and Q3 7 to the
ON position (position 1). LEDs 29 , 31 ,
and 36 go on.
5 - Turn switch Q1BP 6 back to the OFF
position (position 0). LED 37 goes off.
6 - Set switch Q2 4 to the ON position
(position 1). LEDs 30 and 32 go on.
The load is supplied by Source 1.
If LED 33 is red or off, if LEDs
31 and/or 32 are orange or
red: see section "Maintenance".
Q1Q5 Q6Q2
1
0
1
0
Q1BPQ2BPQ3
111
000
S1S2
Q1Q2
Q1BP
Q3
Q2BP
1
2
3
4
6
7
29
30
31
32
33
36
37
38
3.2 Shutdown
000
Q1Q5 Q6Q2
1
0
Q1BPQ2BPQ3
S1S2
Q1Q2
Q1BP
1
2
3
1
0
4
7
1 - Set switches Q1 1 , Q2 4 and Q3 7
to the OFF position (position 0).
2 - Set circuit breakers Q5 2 and Q6 3
to the OFF position (position 0).
All LEDs should go off.
The load is not supplied with power.
Dangerous voltage levels are
still present inside the Upsilon
111
STS cabinet, in the connection
zone.
Q2BPQ3
34020113EN/AA - Page 19
3. Operation
3.3 Normal mode. Operation on preferred source S1
Operation on the preferred source
S1S2
Q1Q2
Q1BP
Q3
Q2BP
Automatic transfer to the alternate source
S1S2
Q1Q2
24
29
30
31
32
33
36
38
24
29
30
31
32
During normal operation on the preferred
source S1, LEDs 24 , 29 , 30 , 31 , 32 ,
33 , 36 and 38 are on in green.
If LED 38 is orange, there is an
overload.
If LED 38 is red, the load is no
more supplied.
The load is automatically transferred to the
source offering the highest level of power
quality.
For example, if the preferred source S1
goes outside tolerances, LED 31 goes
orange or red. The buzzer beeps.
Upsilon STS automatically transfers the
load to the alternate source S2. LEDs 24 ,
29 , 30 , 32 , 34 , 36 and 38 are on.
Q1BP
Q3
Q2BP
Manual transfer to the alternate source
S1S2
Q1Q2
Q1BP
Q3
Q2BP
34
36
38
25
27
Upsilon STS transfers the load
back to the preferred source S1 as
soon as it returns to within
tolerances.
To stop the buzzer, press the
function button marked .
1 - Press the manual transfer button 25 :
2 - Confirm the order by pressing the grey
function button 23 marked on the
screen.
LEDs 24 and 27 flash.
After the transfer, the green LED 27 goes
on.
The load is supplied by alternate Source 2.
Transfer is authorised only if the
two sources are within tolerances
(voltage, frequency) and their
phase displacement is within the
set limits. If these two conditions
are not met, the transfer order is
stored in memory and executed
when the voltages cross zero.
If transfer does not take place
within thirty minutes, the order is
cancelled.
Page 20 - 34020113EN/AA
Manual transfer to an out-of-phase alternate source
3. Operation
S1S2
Q1Q2
Q1BP
When the two sources are not in phase, it is
possible to force manual transfer using the
commands on the screen, after entering a
password.
1 - Enter the password (see section 3.5,
Customization).
2 - Follow the instructions provided on the
screen.
Q3
Q2BP
34020113EN/AA - Page 21
3. Operation
3.4 Display screens
Initial screen
DOWNGRADED MODE
I1 17 A I2 9 A I3 2 A
UPS 1
V1 244 V
V2 230 V
V3 232 V
50.0 Hz
1 KW 6 KVA
PF 0.3
preferred
synchro
= 64°
UPS 2
V1 232 V
V2 229 V
V3 230 V
50.0 Hz
MANUAL TRANSFERT
Transfer without break
Transfer with break
MAIN MENU
Transfer
Alarms
0101
1010
Status
0101
Measurements
VOLT
Setup
Maintenance
Transfer
Status
Main screen
E
S
C
Alarms
ALARMS
Measurements
STATUS
EVENT LOG
STATISTICS
SETUP
LANGUAGE
ADJUST DATE AND TIME
CONTRAST
BUZZER VOLUME
SOURCE NAMES
NEW PASSWORD
PERSONALIZATION
DRY CONTACT SETTINGS
CURRENT MEASUREMENTS
VOLTAGE MEASUREMENTS
FREQUENCY MEASUREMENTS
POWER MEASUREMENTS
LOAD MEASUREMENTS
Setup
Maintenance
MAINTENANCE
DISPLAY TEST
UNIT ON BYPASS
Page 22 - 34020113EN/AA
3.5 Upsilon STS customization
1 - Press the menu button 26 .
2 - Select "Setup", then "Customization" using the function buttons 23 marked or .
3 - Confirm the order by pressing the function button 23 marked .
4 - Enter the password.
3. Operation
The password
ØØØ
is set in the factory.
Select "Setup", then "Password" to personalise the password.
The monitoring parameters must
be identical for the two sources.
These parameters depend on the
tolerances of the connected loads.
Customization
Manual / Automatic
380 / 400 / 415 V
Un +5% to Un +20%
in 1% steps
Un -5% to Un -20%
in 1% steps
Nominal source frequency
Frequency tolerances
Phase error tolerance between the two sources
50 Hz
±5%
±15°
50 / 60 Hz
+1% to +10%
-1% to -10%
in 0.5% steps
±1° to ±45° in 1° steps
34020113EN/AA - Page 23
3. Operation
3.6 Customization of the relay communication card
1.A
1.B
1.1
1.2
1.3
1.4
1.5
1.6
Inputs
Outputs
Factory setting
- Memorised faults reset command.
- Command to disable transfer.
Factory setting
- Load-supplied status condition (presence or
absence of power to the load).
- General alarm (fault on one of the sources or
on the Upsilon STS).
- Upsilon STS fault.
- Overload status condition.
- Source S1 status condition (active or inactive).
- Source S2 status condition (active or inactive).
Signals available on each contact
- Memorised faults reset command.
- Selection command for source S1.
- Selection command for source S2.
- Selection command for the authorised
automatic retransfer mode.
- Selection command for the inhibited automatic
retransfer mode.
- Command to authorise transfer.
- Command to disable transfer.
- EPO command (enables the opening
command for switches Q1 and Q2).
Signals available on each contact
- Load-supplied status condition (presence or
absence of power to the load).
- General alarm (fault on one of the sources or
on the Upsilon STS).
- Upsilon STS fault.
- Source S1 status condition (within or outside
tolerances).
- Source S2 status condition (within or outside
tolerances).
- Phase-error condition between the two
sources (within or outside tolerances).
- Source S1 status condition (active or inactive).
- Source S2 status condition (active or inactive).
- Preferred-source status condition (S1 inactive
and S2 active).
- Automatic-transfer status condition
(authorised or not).
- Overload status condition.
Page 24 - 34020113EN/AA
4.1 Identification of anomalies
4. Maintenance
General-alarm
LED 21
-
-
-
-
-
S1 31 or S2 32
LED
-
-
-
-
Static-switch
LED 33 or 34
-
-
-
-
-
Buzzer
Beeps
Beeps
Beeps
Beeps
-
-
System output
LED 38
-
-
-
-
Meaning
Internal STS fault.
Source outside
tolerances, load still
supplied.
Source outside
tolerances, no voltage.
The load cannot be
supplied by this source.
Static-switch fault.
Overload.
Load not supplied.
The meaning of all these anomalies are detailed on the display:
Select the alarm: the corresponding informations are displayed.
4.2 Transfer to the manual bypass
Q1Q5 Q6Q2
1
0
Q1BPQ2BPQ3
000
Q1Q5 Q6Q2
1
0
Q1BPQ2BPQ3
000
Q1Q5 Q6Q2
1
0
Q1BPQ2BPQ3
000
1
0
111
1
0
111
1
0
111
Transfer to the manual bypass for source
S1:
4
6
1
7
1 - Manually transfer the load to source S1.
2 - Set switch Q2 4 to the OFF position
(position 0).
3 - Set switch Q1BP 6 to the ON position
(position 1).
The load is supplied by source S1 via the
bypass.
4 - Set switches Q1 1 and Q3 7 to the
OFF position (position 0).
The operation for source S2 is
identical, using switches Q2 and
Q2BP.
Interlocking of the bypass lines is
ensured by use of a single key that
must be inserted on the bypass
switch to be operated.
34020113EN/AA - Page 25
5. Environment
This product has been designed to respect the environment
It does not contain CFCs or HCFCs.
It is manufactured on a production site certified ISO 14001.
UPS recycling at the end of service life
MGE UPS SYSTEMS undertakes to recycle, by certified companies and in compliance with all applicable regulations, all
products recovered at the end of their service life (contact your MGE UPS SYSTEMS branch office).
Packing
Packing materials must be recycled in compliance with all applicable regulations.
(1) These characteristics are calculated for a voltage of 400 V and a power factor of 0.8.
(1)
Noise level
Noise in dB (ISO 3746):
Cable sizes
Cross-sectional area in mm2 :
30 A
:
195 W
150 W
350 m3/h
55555559595959
505050120120240240
60 A 100 A160 A250 A400 A600 A
380 V / 400 V / 415 V
498 V (415 V +20%)
247 V (380 V -35%)
50 or 60 Hz (45 Hz minimum, 66 Hz maximum)
295 W
195 W
350 m3/h
430 W
260 W
350 m3/h
615 W
350 W
1600 m3/h
920 W
495 W
1600 m3/h
1420 W
735 W
2300 m3/h
2150 W
1070 W
2300 m3/h
Recommended protection devices upstream of Upsilon STS
Type of circuit breaker:
◗ TNS system:
◗ TNC system:
Trip unit:
Thermal setting:
Magnetic setting:
C60L 32A
curve C
1.05 In
10xIn
NS100H 4P 4D
NS100H 3P
STR22SE
≤1.05 In
≤10xIn
Permissible-overload curve
32 In
16 In
8 In
4 In
NS160H
4P 4D
NS160H
3P
STR22SE
≤1.05 In
≤10xIn
NS250H
4P 4D
NS250H
3P
STR22SE
≤1.05 In
≤10xIn
NS400H
4P 4D
NS400H
3P
STR23SE
≤1,05 In
≤10xIn
NS630H
4P 4D
NS630H
3P
STR23SE
≤1.05 In
≤10xIn
2 In
In
0.01 s0.1 s1 s10 s100 s1000 s
◗ During an overload, transfer between sources is disabled.
◗ Overloads higher than 1.5 In are stored in memory. The alarm must be reset to return to normal operation.
t(s)
34020113EN/AA - Page 27
6. Appendix
6.2 Simplified diagrams
Upsilon STS simplified diagram
S1S2
Simplified diagram of an installation
Preferred sources
Source 1
Q1
Source 2
Upsilon STS
Static-switch
control/monitoring
Q2
Q3Q2BPQ1BP
To the load
Alternate sources
Page 28 - 34020113EN/AA
Upsilon STSUpsilon STS
To the load
Upsilon STS
6.3 Glossary
Alternate sourceBackup source that steps in if the preferred source fails.
JBUS communication cardInternal card implementing the JBus protocol on a serial link to supply the user with
LoadDevice(s) or system(s) connected the Upsilon STS output.
Manual bypassQ1BP, Q3 and Q2BP switches, accessible to the user, that may be used to directly
Normal modeOperating mode during which the load is supplied by the preferred source.
Preferred sourceSource selected as the normal source of power.
Relay communication cardInternal card implementing contacts to supply the user with system information.