Kawasaki VN2000 Service Manual

VULCAN 2000
VN2000
Quick R eference Guide
General Information 1 j
Periodic Maintenance 2 j
Fuel System (DFI) 3 j
Cooling System 4 j
Engine Top End 5 j
Clutch 6 j
Engine Lubrication System 7 j
Engine Removal/Installation 8 j
This quick reference guide will assist you in locating a desired topic or pro­cedure.
•Bend the pages back to match the black tab of the desired chapter num­ber with the black tab on the edge at each table of contents page.
•Refer to the sectional table of contents for the exact pages to locate the spe­cific topic required.
Crankshaft/Transmission 9 j
Wheels/Tires 10 j
Final Drive 11 j
Brakes 12 j
Suspension 13 j
Steering 14 j
Frame 15 j
Electrical System 16 j
Appendix 17 j
VULCAN 2000
VN2000
All r ights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic mechanical photocopying, recording or otherwise, without the prior written permission of Quality Assurance Department/Consumer Products & Machinery Company/Kawasaki Heavy Industries, Ltd., Japan.
No liability can be accepted for any inaccuracies or omissions in this publication, although every possible care has been taken to make it as complete and accurate as possible.
The right is reserved to make changes at any time without prior notice and without incurring an obligation to make such changes to products manufactured previously. See your Motorcycle dealer for the latest information on product improvements incorporated after this publication.
All information contained in this publication is based on the latest product information available at the time of publication. Illustrations and photographs in this publication are intended for reference use only and may not depict actual model component parts.
© 2003 Kawasaki Heavy Industries, Ltd. Second Edition (1) : Jan. 8, 2003 (K)

LIST OF ABBREVIATIONS

A
ABDC after bottom dead center m meter(s)
AC
ATDC after top dead center N newton(s)
BBDC before bottom dead center
BDC bottom dead center PS horsepower
BTDC before top dead center
°C degree(s) Celsius r revolution
DC
F farad(s) TDC top dead center
°F degree(s) Fahrenheit
ft foot, feet V volt(s)
g
h hour(s) ohm(s)
kg
kgf (force)
L
ampere(s)
alternating current min
direct current
gram(s) (mass)
(mass)
liter(s)
lb
Pa
psi
r/min, rpm revolution(s) per minute
TIR total indicator reading
W
pound(s)
minute(s)
pascal(s)
pound(s) per square inch
watt(s)
Read OWNER’S MANUAL before operating.

EMISSION CONTROL INFORMATION

To protect the environment in which we all live, Kawasaki has incorporated crankcase emis­sion (1) and exhaust emission (2) control systems in compliance with applicable regulations of the United States Environmental Protection Agency and California Air Resources Board. Addi­tionally, Kawasaki has incorporated an evaporative emission control system (3) in compliance with applicable regulations of the California Air Resources Board on vehicles sold in California only.
1. Crankcase Emission Control System This system eliminates the release of crankcase vapors into the atmosphere. Instead, the vapors
are routed through an oil separator to the inlet side of the engine. While the engine is operating, the vapors are drawn into combustion chamber, where they are burned along with the fuel and air supplied by the fuel injection system.
2. Exhaust Emission Control System This system reduces the amount of pollutants discharged into the atmosphere by the exhaust
of this motorcycle. The fuel, ignition, and exhaust systems of this motorcycle have been carefully designed and constructed to ensure an efficient engine with low exhaust pollutant levels.
The exhaust system of this model motorcycle manufactured primarily for sale in California in-
cludes a catalytic converter system.
3. Evaporative Emission Control System Vapors caused by fuel evaporation in the fuel system are not vented into the atmosphere. In-
stead, fuel vapors are routed into the running engine to be burned, or stored in a canister when the engine is stopped. Liquid fuel is caught by a vapor separator and returned to the fuel tank.
The Clean Air Act, which is the Federal law covering motor vehicle pollution, contains what is commonly referred to as the Act’s " tampering provisions."
"Sec. 203(a) The following acts and the causing thereof are prohibited... (3)(A) for any person to remove or render inoperative any device or element of design installed
on or in a motor vehicle or motor vehicle engine in compliance with regulations under this title prior to its sale and delivery to the ultimate purchaser, or for any manufacturer or dealer knowingly to remove or render inoperative any such device or element of design after such sale and delivery to the ultimate purchaser.
(3)(B) for any person engaged in the business of repairing, servicing, selling, leasing, or trading
motor vehicles or motor vehicle engines, or who operates a f leet of m otor vehicles know­ingly to remove or render inoperative any device or element of design installed on or in a motor vehicle or motor vehicle engine in compliance with regulations under this title follow­ing its sale and delivery to the ultimate purchaser..."
NOTE
The phrase "remove or render inoperative any device or element of design" has been generally
interpreted a s follows :
1. Tampering does not include the temporary removal or rendering inoperative of de­vices or elements of design in o rder to perform maintenance.
2. Tampering could include:
a.Maladjustment of vehicle components such that the emission standards are ex-
ceeded.
b.Use of replacement parts or accessories which adversely affect the performance
or durability of the motorcycle.
c.Addition of components or accessories that result in the vehicle exceeding the stan-
dards.
d.Permanently removing, disconnecting, or rendering inoperative any component or
element of design of the emission control systems.
WE RECOMMEND THAT ALL DEALERS OBSERVE THESE PROVISIONS OF FEDERAL LAW,
THEVIOLATIONOFWHICHISPUNISHABLEBYCIVILPENALTIESNOTEXCEEDING $10,000 PER VIOLATION.

TAMPERING WITH NOISE CONTROL SYSTEM PROHIBITED

Federal law prohibits the following acts or the causing thereof: (1) The removal or rendering inoperative by any person other than for purposes of maintenance, repair, or replacement, of any device or element of design incorporated into any new vehicle for the purpose of noise control prior to its sale or delivery to the ultimate purchaser or while it is in use, or (2) the use of the vehicle after such device or element of design has been removed or rendered inoperative by any person.
Among those acts presumed to constitute tampering are the acts listed below:
Replacement of the original exhaust system or muffler with a component not in compliance
with Federal regulations.
Removal of the muffler(s) or any internal portion of the muffler(s).
Removal of the air box or air box cover.
Modifications to the muffler(s) or air inlet system by cutting, drilling, or other means if such
modifications result in increased noise levels.

Foreword

This manual is designed primarily for use by trained mechanics in a properly equipped shop. However, it contains enough detail and basic in­formation to make it useful to the owner who de­sires to perform his own basic maintenance and repair work. A basic knowledge of mechanics, the proper use of tools, and workshop proce­dures must be understood in order to carry out maintenance and repair satisfactorily. When­ever the owner has insufficient experience or doubts his ability to do the work, all adjust­ments, maintenance, and repair should be car­ried out only by qualified mechanics.
In order to perform the work efficiently and to avoid costly mistakes, read the text, thor­oughly familiarize yourself with the procedures before starting work, and then do the work care­fully in a clean area. Whenever special tools or equipment are specified, do not use makeshift tools or equipment. Precision measurements can only be made if the proper instruments are used, and the use of substitute tools may ad­versely affect safe operation.
For the duration of the warranty period,
we recommend that all repairs and scheduled maintenance be performed in accordance with this service manual. Any owner maintenance or repair procedure not performed in accordance with this manual may void the warranty.
To get the longest life out of your vehicle:
Follow the Periodic M aintenance Chart in the
Service Manual.
Be alert for problems and non-scheduled
maintenance.
Use proper tools and genuine Kawasaki Mo-
torcycle parts. Special tools, gauges, and
testers that are necessary when servicing
Kawasaki motorcycles are introduced by the
Special Tool Catalog or Manual. Genuine
parts provided as spare parts are listed in the
Parts Catalog.
Follow the procedures in this manual care-
fully. Don’t take shortcuts.
Remember to keep complete records of main-
tenance and repair with dates and any new
parts installed.
How to Use This Manual
In preparing this manual, we divided the prod­uct into its major systems. These systems be­came the manual’s chapters. All information for a particular system from adjustment through disassembly and inspection is located in a sin­gle chapter.
The Quick Reference Guide shows you all of the product’s system and assists in locating their chapters. Each chapter in turn has its own comprehensive Table of Contents.
The Periodic Maintenance Chart is located in the Periodic Maintenance chapter. The chart gives a time schedule for required maintenance operations.
If you want spark plug information, for exam­ple, go to the Periodic Maintenance Chart first. The chart tells you how frequently to clean and gap the plug. Next, use the Quick Reference Guide to locate the Periodic Maintenance chap­ter. Then, use the Table of Contents on the first page of the chapter to find the Spark Plug sec­tion.
Whenever you see these WARNING and CAUTION symbols, heed their instructions! Always follow safe operating and maintenance practices.
WARNING
This warning symbol identifies special
instructions or procedures which, if not
correctly followed, could result in per-
sonal injury, or loss of life.
CAUTION
This caution sym bol identifies special
instructions or procedures which, if not
strictly observed, could result in dam-
age to or destruction of equipment.
This m anual contains four more symbols (in addition to WARNING and CAUTION) which will help you distinguish different types of informa­tion.
NOTE
This note symbol indicates points of par-
ticular interest for more efficient and con­venient operation.
Indicates a procedural step or work to be
done. Indicates a procedural sub-step or how to do
the work of the procedural step it follows. It also precedes the text of a NOTE. Indicates a conditional step or what action to take based on the results of the test or inspec­tion in the procedural step or sub-step it fol-
lows. In most chapters an exploded view illustration of the system components follows the Table of Contents. In these illustrations you will find the instructions indicating which parts require spec­ified tightening torque, oil, grease or a locking agent during assembly.
GENERAL INFORMATION 1-1

General Information

Table of Contents
Before Servicing ..................................................................................................................... 1-2
Model Identification................................................................................................................. 1-7
General Specifications............................................................................................................ 1-9
Technical Information – Oxygen Sensor................................................................................. 1-11
Technical Information – Electric Solenoid Operated Decompressor ...................................... 1-16
Technical Information – Dual Balancer Shaft System............................................................. 1-17
Unit Conversion Table ............................................................................................................ 1-19
1
1-2 GENERAL INFORMATION
Before Servicing
Before starting to perform an inspection service or carry out a disassembly and reassembly opera­tion on a motorcycle, read the precautions given below. To facilitate actual operations, notes, illustra­tions, photographs, cautions, and detailed descriptions have been included in each chapter wherever necessary. This section explains the items that require particular attention during the removal and reinstallation or disassembly and reassembly of general parts.
Especially note the following:
Battery Ground
Before completing any service on the motorcycle, discon­nect the battery wires from the battery to prevent the engine from accidentally turning over. Disconnect the ground wire () first and then the positive (+). When completed with the service, first connect the positive (+) wire to the positive (+) terminal of the battery then the negative () wire to the neg­ative terminal.
Edges of Parts
Lift large or heavy parts wearing gloves to prevent injury from possible sharp edges on the parts.
Solvent
Use a high flush point solvent w hen cleaning parts. High flush point solvent should be used according to directions of the solvent manufacturer.
Cleaning vehicle before disassembly
Clean the vehicle thoroughly before disassembly. Dirt or other foreign materials entering into sealed areas during ve­hicle disassembly can cause excessive wear and decrease performance of the vehicle.
Before Servicing
Arrangement and Cleaning of Removed Parts
Disassembled parts are easy to confuse. Arrange the parts according to the order the parts were disassembled and clean the parts in order prior to assembly.
Storage of Removed Parts
After all the parts including subassembly parts have been cleaned, store the parts in a clean area. Put a clean cloth or plastic sheet over the parts to protect from any foreign materials that may collect before re-assembly.
GENERAL INFORMATION 1-3
Inspection
Reuse of worn or damaged parts may lead to serious ac­cident. Visually inspect removed parts for corrosion, discol­oration, or other damage. Refer to the appropriate sections of this manual for service limits on individual parts. Replace the parts if any damage has been found or if the part is be­yond its service limit.
Replacement Parts
Replacement Parts must be KAWASAKI genuine or rec­ommended by K AWASAKI. Gaskets, O rings, Oil seals, Grease seals, circlips or cotter pins must be replaced with new ones whenever disassembled.
Assembly Order
In most cases assembly order is the reverse of disassem­bly, however, if assembly order is provided in this Service Manual, follow the procedures given.
1-4 GENERAL INFORMATION
Before Servicing
Tightening Sequence
Bolts, nuts, or screws must be tightened according to the specified sequence to prevent case warpage or deformation which can lead to malfunction. If the specified tightening sequence is not indicated, tighten the fasteners alternating diagonally.
Tightening Torque
Incorrect torque applied to a bolt, nut, or screw may lead to serious damage. Tighten fasteners to the specified torque using a good quality torque wrench. Often, the tightening sequence is followed twice-initial tightening and final tightening with torque wrench.
Force
Use common sense during disassembly and assembly, excessive force can cause expensive or hard to repair dam­age. When necessary, remove screws that have a non
-permanent locking agent applied using an impact driver. Use a plastic-faced mallet whenever tapping is necessary.
Gasket, Or ing
Hardening, shrinkage, or damage of both gaskets and O-rings after disassembly can reduce sealing per­formance. Remove old gaskets and clean the sealing surfaces thoroughly so that no gasket material or other material remains. Install new gaskets and replace used O-rings when re-assembling
Liquid Gasket, Locking Agent
For applications that require Liquid Gasket or a Locking agent, clean the surfaces so that no oil residue remains be­fore applying liquid gasket or locking agent. Do not apply them excessively. Excessive application can clog oil pas­sages and cause serious damage.
Before Servicing
Press
For items such as bearings or oil seals that must be pressed into place, apply small amount of oil to the con­tact area. Be sure to maintain proper alignment and use smooth movements when installing.
Ball Bearing and Needle Bearing
Do not remove pressed ball or needle unless removal is absolutely necessary. Replace with new ones whenever removed. Press bearings with the manufacturer and size marks facing out. Press the bearing into place by putting pressure on the correct bearing race as shown.
Pressing the incorrect race can cause pressure between the inner and outer race and result in bearing damage.
GENERAL INFORMATION 1-5
Oil Seal, Grease Seal
Do not remove pressed oil or grease seals unless r emoval is necessary. Replace with new ones whenever removed. Press new oil seals with manufacture and size marks facing out. Make sure the seal is aligned properly when installing.
Circlips, Cotter Pins
Replace circlips or cotter pins that were removed with new ones. Install the circlip with its sharp edge facing outward and its chamfered side facing inward to prevent the clip from being pushed out of its groove when loaded. Take care not to open the clip excessively when installing to prevent deformation.
Lubrication
It is important to lubricate rotating or sliding parts during assembly to minimize wear during initial operation. Lubri­cation points are called out throughout this manual, apply the specific oil or grease as specified.
1-6 GENERAL INFORMATION
Before Servicing
Direction of Engine Rotation
When rotating the crankshaft by hand, the free play amount of rotating direction will affect the adjustment. Ro­tate the crankshaft to positive direction (clockwise viewed from right side).
Electrical Wires
A two-color wire is identified first by the primary color and then the stripe color. Unless instructed otherwise, electrical wires must be connected to those of the same color.
Model Identification

VN2000-A1 (US, and Canada) Left Side View:

GENERAL INFORMATION 1-7

VN2000-A1 (US, and Canada) Right Side View:

1-8 GENERAL INFORMATION
Model Identification

VN2000-A1 (Europe) Left Side View:

VN2000-A1 (Europe) Right Side View:

GENERAL INFORMATION 1-9
General Specifications
Items VN2000-A1
Dimensions:
Overall length 2 535 mm (99.80 in.) Overall width 1 025 mm (40.35 in.), (AU) 985 mm (38.8 in.) Overall height 1 155 mm (45.47 in.) Wheelbase 1 735 mm (68.31 in.) Road clearance Seat height 680 mm (26.8 in.) Dry mass Curb mass: Front 176 kg (388 lb)
Rear 195 kg (429 lb) Fuel tank capacity 21 L (5.5 US gal) Fuel Unleaded and high-octane gasoline
Performance:
Minimum turning radius 3.2 m (10.5 ft)
Engine:
Type 4-stroke, OHV, V2-cylinder Cooling system Liquid-cooled Bore and stroke 103 × 123.2 mm (4.06 × 4.850 in.) Displacement Compression ratio 9.5 : 1 Maximum horsepower 76 kW (103 PS) @4 800 r/min (rpm), (CA) (CAL) (US) – Maximum torque 177 N·m (18.05 kgf·m, 130.6 ft·lb) @3 200 r/min (rpm),
Carburetion system DFI (Digital Fuel Injection) System Starting system Electric starter Ignition system Timing advance Electronically advanced (digital) Ignition timing Front From 13° BTDC @900 r/min (rpm) ~ 51° BTDC
Rear From 15° BTDC @900 r/min (rpm) ~ 51° BTDC
Spark plugs NGK IZFR6F-11 Cylinder numbering method Front to Rear, 1-2 Firing order 1-2 V alve timing:
Inlet
Exhaust Open 69° BBDC
Lubrication system Forced lubrication (semi-dry sump) Engine oil: Type
Open
Close 69° ABDC
Duration
Close 39° ATDC
Duration 288°
Viscosity SAE10W-40
Capacity
135 mm (5.32 in.)
340 kg (750 lb)
(see VN2000-A1 Owner’s Manual)
2 053 mL (125.3 cu in.)
(CA) (CAL) (US) –
Battery and coil (transistorized)
@4 000 r/min (rpm)
@4 000 r/min (rpm)
39° BTDC
288°
API SE, SF or SG class API SH or SJ class with JASO MA
5.5 L (5.8 US qt, when engine is completely disassembled and dry)
1-10 GENERAL INFORMATION
General Specifications
Items VN2000-A1
Drive Train:
Primary reduction system:
Type Chain
Reduction ratio Clutch type Wet multi disc Transmission:
Type 5-speed, constant mesh, return shift
Gear ratios: 1st 2.550 (51/20)
2nd 3rd 1.218 (39/32) 4th 5th 0.729 (27/37)
Final drive system:
Type Belt
Reduction ratio 2.744 (50/40 × 72/32), (EU) 2.455 (48/44 × 72/32)
Overall drive ratio 3.003 @ Top gear, (EU) 2.687 @ Top gear
Frame:
Type Tubular, double cradle Caster (rake angel) 32° Trail 182 mm (7.17 in.) Front tire: Type Tubeless
Size 150/80 - R16MC 71V
Rear tire: Type Tubeless
Size 200/60 - R16MC 79V
Front suspension: Type Telescopic fork
Wheel travel 150 mm (5.91 in.)
Rear suspension: Type Swingarm with mono-shock (non-link type)
Wheel travel
Brake Type: Front Dual disc
Rear
Electrical Equipment:
Battery Capacity 12 V 18 Ah Headlight: Type Semi-sealed beam
Bulb 12 V 65 W (quartz-halogen)
Tail/brake light 12 V 5/21 W Alternator: Type
Rated output 38A × 14 V @5 000 r/min (rpm)
Specifications are subject to change without notice, and may not apply to every country.
AU: Australia
CAL: California
CA: Canada US: United States of America EU: Europe
1.500 (48/32)
1.629 (44/27)
0.939 (31/33)
100 mm (3.94 in.)
Single disc
12 V 55 W (quartz-halogen)
Three-phase AC
Technical Information – Oxygen Sensor

Overview

Kawasaki has adopted an oxygen sensor [A] for the Euro­pean and California models in addition to the secondary air injection system and honeycomb catalyst. This helps Ka­sawaki keep the motorcycle with cleaner exhaust gas and cope with the emission regulations.
The oxygen sensor [A] is mounted above the exhaust manifold [B], w hereas the honeycomb catalyst is located inside the silencer in the downstream of the exhaust gas.
GENERAL INFORMATION 1-11
The oxygen sensor uses the substance called zirconia (ZrO
2). The electromotive force varies depending on the
density of the oxygen. The sensor measures the oxygen density of the exhaust gas to detect whether the air/fuel mixture is lean or rich in relation to the optimum air/fuel mixture.
When the ECU is in the oxygen sensor feedback mode, it controls combustion by making the fuel injection amount of the injector rich or lean through the signal from the sensor.
1-12 GENERAL INFORMATION
Technical Information – Oxygen Sensor
Construction and Operation
The oxygen sensor uses, a solid electrolyte called zirco-
nia.
An electrolyte is a substance that has positive (+) and
negative () ions and can move freely i n a liquid.
For explanation purposes, picture a solid electrolyte plate as a wall and chambers A and B are divided by this wall. If both sides of the wall have platinum electrodes with holes, the difference in oxygen density (weight) between cham­bers A and B will move the oxygen from the chamber of higher oxygen density to the chamber of lower oxygen den­sity until the two chambers are about equal in density. What actually moves are the oxygen ions () through the wall of the solid electrolyte.
The higher-density-side chamber will receive the “Pt” electrode surface with holes on the solid electrolyte wall and will become minus the oxygen ions (O the O
2ions reach the “Pt” electrode of the opposite side.
Since the result of this O “e
” (just like “cells” w ork in a battery), voltage will be built
2move also brings movement of
within the sensor.
2). At this point,
The (conceptual) sectional view of the actual element in the oxygen sensor is shown. The sensor is exposed to ex­haust gas. The shape of the sensor is tubular since the at­mospheric side and exhaust gas side are parted by the wall. That means that the inside of this tubular solid electrolyte is the atmosphere side (higher oxygen density), and the out­side of the tube faces the exhaust gas. The outside surface, which is in the stream of exhaust gases, has a coated layer of porous ceramic. Voltage is generated and can be mea­sured because of the difference in oxygen density (positive and negative ions).
Technical Information – Oxygen Sensor
The sensor, uses the fresh air as the oxygen reference, and consists of a passageway to lead the fresh air inside the tubular element. Installed in this passageway is, a air permeable filter that allows the fresh air to pass through, but won’t allow moisture through. This keeps the sensor in touch with the atmosphere.
At a normal temperature, Zirconia (solid electrolyte) is an insulator and not able to sense the gases. Since the exhaust gas temperature does not become hot instantly, it takes sometime before the sensor starts to work. To solve the problem of the slow temperature increase of ex­haust gases (which warms the electrolyte element), a built
-in heater located i nside the tubular element increases the temperature of the sensor so it can operate at a low ex­haust gas temperature. Furthermore this built-in heater helps keep the sensor at a constant temperature.
GENERAL INFORMATION 1-13
Air/Fuel Ratio Control By Oxygen Sensor
λ=1” indicates the optimum air/fuel ratio point, meaning the air/fuel ratio at which optimum (complete) combustion can be obtained. In the proximity of this mixture, the purifi­cation efficiency of the catalyst will be maximized.
The purification ratio of the three kinds of gas, HC (hy­drocarbons), CO (carbon monoxide), Nox (nitrogen oxides) using the ternary (three) catalyst is shown in Fig. 4.
The best purification rate is at the zone where the oxy­gen sensor ’s signal shows the sharp changes. This zone is called the “window” and if the oxygen sensor signal moves back and forth between the rich side (fuel rich) and lean side (fuel lean) from the oprimum mix ratio (but still within the width of the window), it indicates that the exhaust gas is in a good purification rate zone.
1-14 GENERAL INFORMATION
Technical Information – Oxygen Sensor
Figure 5 shows how the sensor operates the controlling
factors.
There is a sharp voltage drop of about 1V (in reality, about
0.9 V) the sensor uses for control (a standard reference). By utilizing this voltage and using 0.45 V as the reference line, an output larger than the line indicates that exhaust gas is in the lean zone. So, when the system senses a “rich” condition through the sensor’s output voltage, it controls the fuel injection amount to make the fuel gradually leaner. When it reaches a leaner point, the sensor voltage signal drops sharply at the proximity λ=1 and goes below 0.45V. The system, at this level, senses that it has changed to “lean” and reverse the voltage signal to make the fuel richer. It then controls the fuel injection amount to make the fuel gradually richer. When it drops to a richer point, the signal drops sharply at the proximity λ=1 and goes over 0.45V. The system, at this level, senses that it has changed to “rich” and reverse the signal to make the fuel leaner. By having the signal repeat back and forth between the rich and lean sides, it can constantly stay within the window of the good purification rates. Thereby the oxygen sensor, works as a combustion control sensor for the optimum air/fuel ratio.
Technical Information – Oxygen Sensor
Maintenance
1) Periodic Inspections
Periodic inspections or special maintenance is not re­quired for the sensor.
2) Oxygen Sensor Removal and Installation
Handle the oxygen sensor with care. Be careful not to damage sensor wires. Do not service the oxygen sensor while it is hot and not use an inpact wrench while removing or installing the oxygen sensor. Avoid the fouling (damaging) of the sensing part of the sensor with foreign substances such as coolant, battery fluid, anti-corrosion fluid, and brake fluid. Stop using the sensor if it is fouled with these sub­stances. Also stop using the sensor if the head part of the sensor (exposed to the atmosphere) is fouled. Since the sen­sor has a filter that allows air to escape but stop water, fouling of the sensor head may clog this filter. Being subjected to a flame is also unacceptable for the sensor with the same reason as above.
3) Condition of the Sensor
Perform resistance measurements and visually check for scars, bends, and clogging of the sensor filter.
4) If trouble with the sensor occurs, one of the following
service codes will be displayed. Accordingly, follow the related procedures in the Service Manual for necessary maintenance.
GENERAL INFORMATION 1-15
Service Code Outline of trouble
33 Oxygen sensor is not activated
67 Heater trouble due to wiring short or open
94
Oxygen sensor output voltage is incorrect
1-16 GENERAL INFORMATION
Technical Information – Electric Solenoid Operated Decompressor
An automatic decompressor (Automatic Compression Reliese) system is installed to the right side of the engine. This decompressor is activated by an electric solenoid to make starting engine easy. When the ignition is switched on and the starter button depressed, the solenoid pulls a fulcrum-mounted link that depresses push rods in each camshaft.
The push rods activate the decompression mechanism to partially open the exhaust valves as the piston nears top dead center, releasing some of compression that can cause resistance during starting.
Releasing the starter button de-activates the solenoid and a spring returns the push rods to their normal operating po­sition.
1. Decompression Solenoid
2. Decompression Lever
3. Decompression Push Rod
4. Holder
5. Decompression Shaft
6. Spring
7. Exhaust Cam
8. Push Rod
GENERAL INFORMATION 1-17
Technical Information – Dual Balancer Shaft System
Dual balancers harmonize primary balance and reduce
vibration.
The VN2000-A1 engine applied two balancer shafts, one [1] is located in front of the front cylinder and another one [2] is behind the rear cylinder.
Each balancer shaft is driven by the chain which driven to the counterclockwise by crankshaft sprocket that rotate to the clockwise viewed from the righr side.
The hydraulically operated chain tensioner is located be­tween crankshaft and rear balancer shaft.
The hydraulic chain tensioner is supplied the oil pressure from lubrication feed pump.
Two chain guides applied, one is between the crankshaft and front balancer shaft and another is under the crankshaft sprocket.
1. Front Balancer Shaft
2. Rear Balancer Shaft
3. Front and Rear Balancer Sprocket
4. Balancer Drive Chain
5. Crankshaft
6. Balancer Drive Sprocket
7. Hydraulic Chain Ten­sioner
8. Chain Guide (under Crankshaft)
9. Chain Guide (between Crankshaft and Front Balancer Shaft)
1-18 GENERAL INFORMATION
Technical Information – Dual Balancer Shaft System
1. Front Balancer Shaft
2. Rear Balancer Shaft
3. Front and Rear Balancer Sprocket
4. Balancer Drive Chain
5. Crankshaft
6. Balancer Drive Sprocket
7. Hydraulic Chain Ten­sioner
8. Chain Guide (between Crankshaft and Front Balancer Shaft)
9. Chain Guide (under Crankshaft)
10. Front
11. Le f t
Unit Conversion Table
GENERAL INFORMATION 1-19

Prefixes for Units:

Prefix Symbol Power
mega M × 1 000 000
kilo k × 1 000 centi c ×0.01
milli m × 0.001 micro µ × 0.000001

Units of Mass:

kg ×2.205=lb g × 0.03527 = oz

Units of Volume:

L × 0.2642 = gal (US) L × 0.2200 = gal (imp) L×1.057= L × 0.8799 = qt ( imp) L×2.113= L × 1.816 = pint (imp) mL × 0.03381 = oz (US) mL × 0.02816 = oz (imp) mL × 0.06102 = cu in.
qt (US)
pint (US)

Units of Length:

km × 0.6214 = mile m × 3.281 = ft mm × 0.03937 = in.

Units of Torque:

N·m × 0.1020 = kgf·m N·m × 0.7376 = ft·lb N·m × 8.851 = in·lb kgf·m × 9.807 = N·m kgf·m kgf·m × 86.80 = in·lb
× 7.233 =
ft·lb

Units of Pressure:

kPa × 0.01020 = kPa × 0.1450 = psi kPa × 0.7501 = cm Hg kgf/cm² × 98.07 = kPa kgf/cm² × 14.22 = psi cm Hg × 1.333 = kPa
kgf/cm²

Units of Speed:

km/h × 0.6214 = mph

Units of Force:

N × 0.1020 = N × 0.2248 = lb kg ×9.807=N kg ×2.205=lb

Units of Temperature:

kgf

Units of Power:

kW × 1.360 = PS kW × 1.341 = HP PS × 0.7355 = kW PS
× 0.9863 = HP
Loading...
+ 603 hidden pages