Program capacity1-year programmable timer/8 programs
ACCESSORIES
Provided accessoriesRF cable, Infrared remote control unit, "AA" battery
× H × D)435 mm x 93 mm x 272 mm
Weight
FormatVHS NTSC standard
(SP)210 min. with T-210 video cassette
(EP)630 min. with T-210 video cassette
Signal systemNTSC color signal and EIA monochrome signal, 525 lines/60 fields
Frequency range70 Hz to 10,000 Hz (Normal audio) 20 Hz to 20,000 Hz (Hi-Fi audio)
Input/OutputRCA connectors: IN
Signal systemNTSC
Applicable discDVD (12 cm, 8 cm), CD (12 cm, 8 cm)
S/N Ratio90 dB
Wow and flutterBelow Measurable Level
Dynamic range90 dB
Component-Y(RCA) 1.0 Vp-p/75 Ω
Audio(RCA) 2 Vrms, 1 KΩ
Digital Audio(COAXIAL) 0.5 Vp-p/75 Ω
Tuning systemFrequency synthesized tuner
RF outputChannel 3 or 4 (switchable; preset to Channel 3 when shipped) 75 Ω, unbalanced
Clock referenceQuartz
°C to 40°C (41°F to 104°F)
°C to 60°C (-4°F to140°F)
• Specifications shown are for SP mode unless otherwise specified.
• E.& O.E. Design and specifications subject to change without notice.
• Manufactured under license from Dolby Laboratories. "Dolby" and the double-D symbol are trademarks of Dolby Laboratories.
• "DTS" and "DTS 2.0 + Digital Out" are trademarks of Digital Theater Systems, Inc.
2.0 W
4.1 kg (9.1Ibs)
× 1, OUT × 1
× 2
1-2 (No.YD052)
Page 3
SECTION 1
r
PRECAUTION
1.1SAFTY PRECAUTIONS
Prior to shipment from the factory, JVC products are strictly inspected to conform with the recognized product safety and electrical codes of the countries in which they are to be
sold.However,in order to maintain such compliance, it is equally
important to implement the following precautions when a set is
being serviced.
1.1.1 Precautions during Servicing
(1) Locations requiring special caution are denoted by labels
and inscriptions on the cabinet, chassis and certain parts of
the product.When performing service, be sure to read and
comply with these and other cautionary notices appearing
in the operation and service manuals.
(2) Parts identified by the symbol and shaded ( ) parts
are critical for safety.
Replace only with specified part numbers.
NOTE :
Parts in this category also include those specified to
comply with X-ray emission standards for products
using cathode ray tubes and those specified for
compliance with various regulations regarding spurious radiation emission.
(3) Fuse replacement caution notice.
Caution for continued protection against fire hazard.
Replace only with same type and rated fuse(s) as specified.
(4) Use specified internal wiring. Note especially:
• Wires covered with PVC tubing
• Double insulated wires
• High voltage leads
(5) Use specified insulating materials for hazardous live parts.
Note especially:
• Insulation Tape
• PVC tubing
•Spacers
• Insulation sheets for transistors
•Barrier
(6) When replacing AC primary side components (transformers,
power cords, noise blocking capacitors, etc.) wrap ends of
wires securely about the terminals before soldering.
Consequently, when servicing these products, replace the
cathode ray tubes and other parts with only the specified
parts. Under no circumstances attempt to modify these circuits.Unauthorized modification can increase the high voltage value and cause X-ray emission from the cathode ray
tube.
(12) Crimp type wire connectorIn such cases as when replacing
the power transformer in sets where the connections between the power cord and power trans former primary lead
wires are performed using crimp type connectors, if replacing the connectors is unavoidable, in order to prevent safety hazards, perform carefully and precisely according to the
following steps.
• Connector part number :E03830-001
• Required tool : Connector crimping tool of the proper
type which will not damage insulated parts.
• Replacement procedure
a) Remove the old connector by cutting the wires at a
point close to the connector.Important : Do not reuse a connector (discard it).
cut close to connector
Fig.1-1-3
b) Strip about 15 mm of the insulation from the ends
of the wires. If the wires are stranded, twist the
strands to avoid frayed conductors.
15 mm
Fig.1-1-4
c) Align the lengths of the wires to be connected. In-
sert the wires fully into the connector.
Metal sleeve
Fig.1-1-1
(7) Observe that wires do not contact heat producing parts
(heatsinks, oxide metal film resistors, fusible resistors, etc.)
(8) Check that replaced wires do not contact sharp edged or
pointed parts.
(9) When a power cord has been replaced, check that 10-15
kg of force in any direction will not loosen it.
Power cord
Fig.1-1-2
(10) Also check areas surrounding repaired locations.
(11) Products using cathode ray tubes (CRTs)In regard to such
products, the cathode ray tubes themselves, the high voltage circuits, and related circuits are specified for compliance with recognized codes pertaining to X-ray emission.
Connector
Fig.1-1-5
d) As shown in Fig.1-1-6, use the crimping tool to crimp
the metal sleeve at the center position. Be sure to
crimp fully to the complete closure of the tool.
1.25
2.0
5.5
Crimping tool
Fig.1-1-6
e) Check the four points noted in Fig.1-1-7.
Not easily pulled free
Wire insulation recessed
more than 4 mm
Crimped at approx. cente
of metal sleeve
Conductors extended
Fig.1-1-7
(No.YD052)1-3
Page 4
1.1.2 Safety Check after Servicing
Examine the area surrounding the repaired location for damage
or deterioration. Observe that screws, parts and wires have been
returned to original positions, Afterwards, perform the following
tests and confirm the specified values in order to verify compliance with safety standards.
(1) Insulation resistance test
Confirm the specified insulation resistance or greater between power cord plug prongs and externally exposed
parts of the set (RF terminals, antenna terminals, video and
audio input and output terminals, microphone jacks, earphone jacks, etc.).See table 1 below.
(2) Dielectric strength test
Confirm specified dielectric strength or greater between
power cord plug prongs and exposed accessible parts of
the set (RF terminals, antenna terminals, video and audio
input and output terminals, microphone jacks, earphone
jacks, etc.). See Fig.1-1-11 below.
(3) Clearance distance
When replacing primary circuit components, confirm specified clearance distance (d), (d') between soldered terminals, and between terminals and surrounding metallic
parts. See Fig.1-1-11 below.
d
Chassis
d'
Power cord
primary wire
Fig.1-1-8
(4) Leakage current test
Confirm specified or lower leakage current between earth
ground/power cord plug prongs and externally exposed accessible parts (RF terminals, antenna terminals, video and
audio input and output terminals, microphone jacks, earphone jacks, etc.).
Measuring Method : (Power ON)Insert load Z between
earth ground/power cord plug prongs and externally exposed accessible parts. Use an AC voltmeter to measure
across both terminals of load Z. See Fig.1-1-9 and following Fig.1-1-12.
ab
Externally
exposed
accessible part
Z
V
c
A
Fig.1-1-9
(5) Grounding (Class 1 model only)
Confirm specified or lower grounding impedance between
earth pin in AC inlet and externally exposed accessible
parts (Video in, Video out, Audio in, Audio out or Fixing
screw etc.).Measuring Method:
Connect milli ohm meter between earth pin in AC inlet and
exposed accessible parts. See Fig.1-1-10 and grounding
specifications.
AC inlet
Earth pin
Exposed accessible part
MIlli ohm meter
Grounding Specifications
Region
USA & Canada
Europe & Australia
Grounding Impedance (Z
Z0.1 ohm
Z0.5 ohm
)
Fig.1-1-10
AC Line Voltage
100 V
100 to 240 V
110 to 130 V
110 to 130 V
200 to 240 V
Region
Japan
USA & Canada
Europe & Australia
Insulation Resistance (R
R 1 M /500 V DC
1 M R 12 M /500 V DC
R 10 M /500 V DC
)
Dielectric Strength
AC 1 kV 1 minute
AC 1.5 kV 1 minute
AC 1 kV 1 minute
AC 3 kV 1 minute
AC 1.5 kV 1 minute
(
Class
(
Class
Clearance Distance (d), (d'
d, d' 3 mm
d, d' 4 mm
d, d' 3.2 mm
d 4 m m
)
d' 8 m m (Power cord
d' 6 m m (Primary wire
)
Fig.1-1-11
AC Line Voltage
100 V
110 to 130 V
110 to 130 V
220 to 240 V
Region
Japan
USA & Canada
Europe & Australia
Load ZLeakage Current (i)
1
0.15
1.5
2
50
i 1 mA rms
i 0.5 mA rms
i 0.7 mA peak
i 2 mA dc
i 0.7 mA peak
i 2 mA dc
a, b, c
Exposed accessible parts
Exposed accessible parts
Antenna earth terminals
Other terminals
Fig.1-1-12
NOTE :
These tables are unofficial and for reference only. Be sure to confirm the precise values for your particular country and locality.
)
)
)
1-4 (No.YD052)
Page 5
1.2Preventing static electricity
Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser
diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.
1.2.1 Grounding to prevent damage by static electricity
Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as DVD players.
Be careful to use proper grounding in the area where repairs are being performed.
(1) Ground the workbench
Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the
traverse unit (optical pickup) on it.
(2) Ground yourself
Use an anti-static wrist strap to release any static electricity built up in your body.
(3) Handling the optical pickup
• In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical
pickup are shorted. After replacement, return the shorted parts to their original condition.
(Refer to the text.)
• Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily
destroy the laser diode.
(No.YD052)1-5
Page 6
1.3Precautions for Service
1.3.1 Handling of Traverse Unit and Laser Pickup
(1) Do not touch any peripheral element of the pickup or the actuator.
(2) The traverse unit and the pickup are precision devices and therefore must not be subjected to strong shock.
(3) Do not use a tester to examine the laser diode. (The diode can easily be destroyed by the internal power supply of the tester.)
(4) To replace the traverse unit, pull out the metal short pin for protection from charging.
(5) When replacing the pickup, after mounting a new pickup, remove the solder on the short land which is provided at the center of
the flexible wire to open the circuit.
(6) Half-fixed resistors for laser power adjustment are adjusted in pairs at shipment to match the characteristics of the optical block.
Do not change the setting of these half-fixed resistors for laser power adjustment.
1.3.2 Destruction of Traverse Unit and Laser Pickup by Static Electricity
Laser diodes are easily destroyed by static electricity charged on clothingor the human body. Before repairing peripheral elements of
the traverse unit or pickup, be sure to take the following electrostatic protection:
(1) Wear an antistatic wrist wrap.
(2) With a conductive sheet or a steel plate on the workbench on which the traverse unit or the pick up is to be repaired, ground the
sheet or the plate.
(3) It solders to two short circuit sections on the substrate of a pick-up.
(4) After removing the flexible wire from the connector (CN101
(5) Short-circuit the laser diode by soldering the land which is provided at the center of the flexible wire for the pickup.
After completing the repair, remove the solder to open the circuit.
), short-circuit the flexible wire by the metal clip.
Pick-up
Short circuit
* Please refer to the SECTION3 DISASSEMBLY method for details.
CN101
DVD SERVO CONTROL BOARD
1-6 (No.YD052)
Page 7
SECTION 2
SPECIFIC SERVICE INSTRUCTIONS
2.1Different table of feature
The following table indicates main different points between models HR-XVC28BUC, HR-XVC28BUS, HR-XVC29SUC and HRXVC29SUS.
HR-XVC28BUCHR-XVC28BUSHR-XVC29SUCHR-XVC29SUS
BODY COLORBLACK←PURE SILVER←
MP3 PLAYBACKUSEDNOT USEDUSEDNOT USED
NOTE :
Mark ← is same as left.
2.2 Service position
This unit has been designed so that the Mechanism and Main
board assemblies can be removed together from the bottom
chassis. Before diagnosing or servicing the circuit boards, take
out the major parts from the bottom chassis.
2.2.1 How to set the "Service position"
(1) Refer to the disassembly procedure and perform the disas-
sembly of the major parts before removing the Mechanism
assembly.
(2) Remove the screws that fix the Mechanism, Main board as-
sembly to the bottom chassis. If any other screws are used
to fix the boards, remove them also.
(3) Remove the combined Mechanism and Main board assem-
blies.
(4) If any other major parts are used, remove them also.
(5) Connect the wires and connectors of the major parts that
have been removed in steps (1) to (4). (Refer to Fig. 2-2a.)
(6) Place the combined Mechanism, Main board and other
board assemblies upside down.
(7) Insert the power cord plug into the power outlet and then
proceed with the diagnostics and servicing of the board as-
sembly.
Notes:
• Before inserting the power cord plug into the power out-
let, make sure that none of the electrical parts are able
to short-circuit between the workbench and the board
assembly.
• For the disassembly procedure of the major parts and
details of the precautions to be taken, see "Removing
the major parts".
• If there are wire connections from the Main board and
Mechanism assemblies to the other major parts, be sure
to remove them (including wires connected to the major
parts) first before performing step (2).
• When carrying out diagnosis and repair of the Main
board assembly in the "Service position", be sure to
ground both the Main board and Mechanism assemblies. If they are improperly grounded, there may be
noise on the playback picture or FDP counter display
may move even when the mechanism is kept in an inoperative status.
• In order to diagnose the playback or recording of the
cassette tape, set the Mechanism assembly to the required mode before placing it upside down. If the mechanism mode is changed (including ejection) while it is in
an upside down position the tape inside may be damaged.
• For some models, the mechanism and board assem-
blies are attached by connectors only. When carrying
out a diagnosis or repair of the boards in the "Service
position", make sure that the connectors are not disconnected.
TP111 D.FF
TP4001 CTL.P
TP106 PB FM
TP2253 A.PB FM
Display board assembly
Fig.2-2a
2.3Jig RCU mode
This unit uses the following two modes for receiving remote control codes.
(1) User RCU mode:Ordinary mode for use by the user.
(2) Jig RCU mode: Mode for use in production and servicing.
When using the Jig RCU, it is required to set the VCR to the Jig
RCU mode (the mode in which codes from the Jig RCU can be
received). As both of the above two modes are stored in the EEPROM, it is required to set the VCR back to the User RCU mode
each time that an adjustment is made or to check that the necessary operations have been completed.These modes can be set
by the operations described below.
Note:
• Confirm the RCU mode when exchanged parts. Since
some SERVICE PARTS sets the VCR to the Jig RCU
mode as initial setting. Therefore please set the VCR to
the user RCU mode after replacing the EEPROM.
Main board assembly
Switch/jack board assembly
(No.YD052)1-7
Page 8
User RCU mode
Jig RCU mode
(3) After cleaning, make sure that the cleaned parts are com-
pletely dry before using the cassette tape.
( not displayed)
Fig.2-3a User/Jig RCU mode
2.3.1 Setting the Jig RCU mode
(1) Turn on the power.
(2) Press the following remocon keys continuously within 2
seconds " SET UP " → " 2 " → " 8 " → " ENTER ".
When the VCR is set to the Jig RCU mode, the symbols
( " : " ) in the time display of the FDP are turned off.
(Refer to Fig.2-3a)
2.3.2 Setting the User RCU mode
(1) Turn off the power.
(2) Press the "REC" and "PAUSE" buttons of the VCR simul-
taneously. Alternatively, transmit the code "43-80" from the
Jig RCU.
2.4Mechanism service mode
This model has a unique function to enter the mechanism into every operation mode without loading of any cassette tape. This
function is called the "Mechanism service mode".
2.4.1 How to set the "Mechanism service mode"
(1) Set the VCR to the Jig RCU mode (the mode in which
codes from the Jig RCU can be received)
(2) Transmit the code "43-E5" from the Jig RCU.
(3) Release the lug of the Cassette holder and then slide the
Cassette holder toward the direction where the Cassette
holder is loaded by manually.
(4) The cassette holder lowers and, when the loading has
completed, the mechanism enters the desired mode.
When the VCR is set to the Mechanism service mode, the
symbols ("Timer") in the FDP (LED) are blinked.
2.4.2 How to exit from the "Mechanism service mode"
(1) Unplug the power cord plug from the power outlet.
2.5Maintenance and inspection
2.5.1 Cleaning
Regular cleaning of the transport system parts is desirable but
practically impossible. So make it a rule to carry out cleaning of
the tape transport system whenever the machine is serviced.
When the video head, tape guide and/or brush get soiled, the
playback picture may appear inferior or at worst disappear, resulting in possible tape damage.
Note:
• Absolutely avoid sweeping the upper drum vertically as
this will cause damage to the video head.
(1) When cleaning the upper drum (especially the video head),
soak a piece of closely woven cloth with alcohol and while
holding the cloth onto the upper drum by the fingers, turn
the upper drum counterclockwise.
(2) To clean the parts of the tape transport system other than
the upper drum, use a piece of closely woven cloth or a cot-
ton swab soaked with alcohol.
A/C head
Fig.2-5a
2.5.2 Lubrication
With no need for periodical lubrication, you have only to lubricate
new parts after replacement. If any oil or grease on contact parts
is soiled, wipe it off and newly lubricate the parts.
Note:
• See the "mechanism assembly" diagram of the "parts
list" for the lubricating or greasing spots, and for the
types of oil or grease to be used.
2.5.3 Suggested servicing schedule for main components
The following table indicates the suggested period for such service measures as cleaning, lubrication and replacement. In practice, the indicated periods will vary widely according to
environmental and usage conditions. However, the indicated
components should be inspected when a set is brought for service and the maintenance work performed if necessary. Also
note that rubber parts may deform in time, even if the set is not
used.
SystemParts name
Drum assemblyC,XX
A/C headC,XC,X
Tape
transport
Drive
OtherRotary encoderX
C : Cleaning
X : Inspection or Replacement if necessary
Pinch roller arm assemblyCC
Full erase headCC
Tension arm assemblyCC
Capstan motor (Shaft)CC
Guide arm assemblyCC
Capstan motorX
Capstan brake assemblyX
Main brake assemblyX
Belt (Capstan)XX
Loading motorX
Clutch unitX
Worm gearX
Control plateX
Video heads
Operation hours
1000H2000H
1-8 (No.YD052)
Page 9
SECTION 3
DISASSEMBLY
3.1Removing the major parts
3.1.1 Destination of connectors
Two kinds of double-arrows in connection tables respectively
show kinds of connector/wires.
: The connector of the side to remove
CONN. No.PIN No.CONNECTOR
WR2a
WR2b
Main CN101
Main CN103
Destination of connectors
CONN. No.PIN No.CONNECTOR
WR2a
WR2b
WR3a
WR3b
WR4a
WR4b
WR4c
Main
Main
Main
Drum
assembly
Main
Main
Main
3.1.2 How to read the procedure table
This table shows the steps for disassembly of the externally furnished parts and board assemblies. Reverse these steps when
re-assembling them.
Step/
Loc No.
[1] Top cover3-1a
(1)(2)(3)(4)(5)
Part Name
Bracket2(S1c)
(1) Order of steps in Procedure
When reassembling, perform the step(s) in the reverse order.
These numbers are also used as the identification (loca-
tion) No. of parts Figures.
(2) Part name to be removed or installed.
(3) Fig. No. showing procedure or part location.
(4) Identification of part to be removed, unhooked, unlocked,
• Be careful not to damage the connector and wire etc. during
connection and disconnection.
• When connecting the flat wire to the connector, be careful with
the flat wire direction.
<Note 2b>
• When reattaching the Front panel assembly, make sure that
the door opener of the Side frame (R) is lowered in position prior to the reinstallation.
• When reattaching the Front panel assembly, pay careful attention
to the switch lever of the Front panel assembly not to make it
touch the switch knob of the Main board assembly from the side.
• When reattaching the Front panel assembly, lift the Cassette
door slightly.
Door
opener
Side
frame(R)
Switch
knob
Switch
lever
Fig.3-1a
<Note 3a>
• When reattaching the Mechanism assembly, secure the
screws (S3a to S3b) in the order of 1,2,3.
<Note 3b>
• When reattaching the Mechanism assembly, be sure to align
the phase of the Rotary encoder on the Main board assembly.
• When reattaching the Mechanism assembly, set the "Mechanism assembling mode". [See "MECHANISM ASSEMBLY
SERVICE MANUAL (No. 86700)".]
• When reattaching the Mechanism assembly to the Main board
assembly, take care not to damage the sensors and switch on
the Main board assembly.
(No.YD052)1-9
Page 10
<Note 3c>
• When reattaching the Drum assembly, secure the screws (S3c
to S3e) in the order of c, d, e.
(S3d)
Mechanism
assembly
(S3c)
(S3e)
(S3d)
(S3e)
Drum
assembly
<Note 3c>
<NOTE>
Attach the Drum assembly appropriately,
since the installation state of the Drum assembly
influences the FM WAVEFORM LINEARITY
greatly.
(S3c)
HOOK
Fig.3-1b
• When handling the drum assembly alone, hold it by the motor
or shaft. Be careful not to touch other parts, especially the video heads. Also take care not to damage the connectors.
Shaft
Motor
Video heads
Fig.3-1c
1-10 (No.YD052)
Page 11
(WR3a)
<Note 2b>
NOTE
1. Insert direction of FFC WIRE as follows.
right side
electrode side
back side
supporting side
(S1a)
(S1a)
(S1a)
[1]Top cover
(S1a)
2. FFC WIRE and DRUM FPC WIRE
should be insert as follows.
OK
NG
90
CN
CN
CN
3.Insert the wire to even the root of connector completely
at the same time as inserting each wire.
4.Check to see that outside parts.
TOP COVER,BOTTOM COVER,FRONT PANEL, etc
are fixed certainly to the BOTTOM CHASSIS
5.Pay attention NOT to make any scratches
on FRONT PANEL.
6.Pay close attention not to cut any
3
(S3a)
Sheath of WIRE by sharp edge
of CHASSIS while Wireing Process.
[3]Mechanism
assembly
(S6a)
JS3001
[6]Main board assembly
<Phase alignment>
.
Accord the position of V gap on R.ENCORDER and PWB silk
.
Accord the position of Boss on R.ENCORDER and PWB silk
(L2a)
j
(S2a)
j
(L2b)
j
(L2a)
j
(L2b)
(S3a)
1
j
j
f
(S3c)
TU6001
Bottom chassis
[3]Drum assembly
2
(S3b)
e
(S3e)
(S3d)
(S6a)
(S6a)
JS3001
c
c
i
i
b
a
a
DVD bracket
board assembly
(S3a)
(L5a)
i
i
i
(L5a)
m
[4]Bracket
(S1a)
(S1a)
(S5a)
(S5a)
(S5a)
[5]Rear cover
i
(L5a)
(L5a)
i
i
(L5a)
[4]DVD unit
(S4a)
LP*****
d
(S4a)
(S4b)
e
f
j
d
c
(S4b)
j
(S4a)
d
b
d
c
(S4b)
i
i
NOTE) FFC WIRE SHOULD BE POSITIONED
BELLOW CASSETTE DOOR.
(FOR AVOID FFC WIRE
DISTURB CASSETTE IN AND OUT.)
d
Cassette door
<Note 2b>
CN7191
3
(WR2b)
<Note 2a>
4
2
(WR2a)
<Note 2a>
1
Switch/jack board assembly
BOTTOM SIDE
CN7003
5
TOP SIDE
(L2b)
[2]Front panel
assembly
4
(L2b)
Display board assembly
3
1
2
Fig.3-1d
CN3102
Insert the bushing of POWER CORD so as not to twist the cord.
(WR3b)
<Note 2b>
A/C HEAD
CN7103
CN3102
from FRONT PANEL
(JACK CN7191)
CN2001
(WR3a)
(WR3a)
<Note 2b>
<Note 2b>
(WR4a)
<Note 2b>
(WR4c)
<Note 2b>
CN7302
CN1
CN503
back side
CN7301
Make a crease.
CN3301
right side
(WR4b)
<Note 2b>
CN501
(No.YD052)1-11
Page 12
3.2Loading mechanism assembly
Projection of the tray
3.2.1 Removing the tray (See Figure 3-2a, Figure 3-2b, Figure 3-2c, Figure 3-2d, Figure 3-2e, Figure 3-2f)
(1) Push a of the slide cam on the hole in the right side of the
loading base by using a driver until it stops. (See Figure 32a.)
(2) The tray comes out. Pull the tray in a front direction until it
stops.
(3) Remove the two screws A attaching the slide bracket. (See
Figure 3-2b.)
(4) Tilt the tray in a direction of the arrow around the point in
the left rear part of the tray. (See Figure 3-2c.)
(5) The rail of the tray is removed from b of the loading base.
Then, remove the tray upward. (See Figure 3-2d.)
Attaching the tray:
Engage c of the loading base to the projection of the tray while
tilting the tray to the left. Turn the tray in a direction of the arrow, and attach the slide bracket. (See Figure 3-2e.)
Note:
Prior to the procedure above, move the slide cam in a direction
of the arrow so that d of the slide cam can be inserted in e of
the tray. (See Figure 3-2f.)
Tray
The point in the left rear part
Fig.3-2c
Tray
Push
Slide cam part a
Slide bracket
A
Fig.3-2a
Fig.3-2b
A
Loading base
Tray
Loading base part b
Rail of the tray
Fig.3-2d
Projection of the tray
Loading base part c
Fig.3-2e
Part e
1-12 (No.YD052)
Part d
Slide cam
Fig.3-2f
Page 13
3.2.2 Removing the traverse mechanism assembly (See Figure 3-2g)
f
Shaft
Reverse the loading mechanism assembly. Remove the four
screws B attaching the traverse mechanism assembly. Remove
the traverse mechanism assembly upward.
Loading mechanism assembly
3.2.3 Removing the elevator (See Figure 3-2h and Figure 3-2j)
• Prior to the following procedure, remove the traverse mechanism assembly.
(1) Remove the two arms of the elevator from the two parts f
by moving the arms in a direction of the arrow.
(2) Pull out the elevator in a rear direction.
Attaching the elevator:
Engage the two holes g to the two shafts on the front part of
the elevator. And then, attach the elevator.
B
B
B
B
Traverse mechanism assembly
Fig.3-2g
Elevator
Part f
Fig.3-2h
g
Slide cam
Elevator
Shaft
Fig.3-2j
(No.YD052)1-13
Part
g
Page 14
3.2.4 Removing the loading motor (See Figure 3-2k and Figure 3-2l)
• Prior to the following procedure, remove the tray, the traverse
mechanism assembly, and the elevator.
(1) Remove the belt from the pulley.
(2) Remove two screws C attaching the loading motor.
(3) Remove two solders h on the switch board.
Switch board
Pulley
Part h
Belt
Pulley
C
Fig.3-2k
Loading base
Slide cam
C
Loading motor
3.3Traverse mechanism assembly
3.3.1 Removing the pickup (See Figure 3-3a, Figure 3-3b)
• Prior to the following procedure, remove the traverse mechanism assembly.
(1) Remove one screw D attaching the plate.
(2) Remove the plate and the leaf spring.
(3) Lift i of the shaft 1, and pull out the shaft 1 from j.
(4) Remove k of the pickup from the shaft 2.
Attaching the pickup:
(1) Engage k of the pickup to the shaft 2.
(2) Insert the shaft 1 in j, and attach the shaft 1 to i.
(3) Attach the leaf spring, and then attach the plate. Fix the
leaf spring and the plate by using the screw D.
Fig.3-2l
D
Leaf spring
Plate
Fig.3-3a
Shaft 2
Part k
Part j
1-14 (No.YD052)
Shaft 1
Part i
Fig.3-3b
Page 15
SECTION 4
ADJUSTMENT
4.1Before adjustment
4.1.1 Precaution
• The adjustments of this unit include the mechanism com-
patibility and electrical adjustments. During the performance of this work, be sure to observe the precautions for
each type of adjustment.
• If there is a reference to a signal input method in the signal
column of the adjustment chart, "Ext. S-input" means the
Y/C separated video signal and "Ext. input" means the
composite video signal input.
• Unless otherwise specified, all measuring points and
• Signal generator: stairstep, color (colour) bar [NTSC]
• Recording tape
• Digit-key remote controller(provided)
4.1.3 Required adjustment tools
--- : Not used
z
: Used
Mechanism
compatibility
adjustment
Roller driver
z---
Jig RCU ---z
Back tension cassette gaugez---
Alignment tape(MHP)z---
Alignment tape(MHP-L) zz
Roller driver
PTU94002
Alignment tape
(SP, stairstep, NTSC)
MHP
CD-DA test disc
CTS-1000
Jig RCU
PTU94023B
Alignment tape
(EP, stairstep, NTSC)
MHP-L
Back tension cassette gauge
Electrical
adjustment
PUJ48076-2
DVD test disc
VT-501
4.1.4 Color (colour) bar signal,Color (colour) bar pattern
Color(colour) bar signal [NTSC]
White(100%)
White(75%)
100 IRE
1V
40 IRE
Horizontal sync
Yellow
Cyan
Green
Magenta
Red
QI
Blue
Color(colour) bar pattern [NTSC]
(75%)
Burst
40 IRE
White
Yellow
White
QIBlack
100%
Cyan
Green
Magenta
Red
Blue
4.1.5 Switch settings
When adjusting this unit, set the VCR mode and switches
as described below.
• When using the Jig RCU, it is required to set the VCR to the
Jig RCU mode (the mode in which codes from the Jig RCU can
be received). (See "section 2 SPECIFIC SERVICE INSTRUCTIONS".)
Jig RCU
[Data transmitting method]
Depress the " "( 3 ) button
after the data code is set.
CUSTOM CODE
43: A CODE
DATA CODE
INITIAL MODE
Fig.4-1 Jig RCU [PTU94023B]
• Set the switches as shown below unless otherwise specified
on the relevant adjustment chart. The switches that are not listed below can be set as desired.
If the VCR is not equipped with the functions detailed below,
setup is not required.
AUTO PICTURE/VIDEO CALIBRATION/
B.E.S.T./D.S.P.C.
PICTURE CONTROL/SMART PICTURENORMAL/NATURAL
VIDEO STABILIZEROFF
TBCON
Digital 3RON
VIDEO NAVIGATION/TAPE MANAGEROFF
BLUE BACK OFF
• Although compatibility adjustment is very important, it
is not necessary to perform this as part of the normal
servicing work. It will be required when you have replaced the A/C head, drum assembly or any part of the
tape transport system.
• To prevent damaging the alignment tape in the compat-
ibility adjustment, prepare a cassette tape (for self-recording/playback), perform a test on it by transporting it
and making sure that the tape is not bent by the tape
transport mechanisms such as in the guide rollers.(See
Fig.4-2b.)
4.2.1 Tension pole position
Notes:
• This adjustment must be performed every time the ten-
sion band is replaced.
Signal(A) • Back tension cassette gauge [PUJ48076-2]
Mode(B1)
Adjustment part (F)• Adjust pin [Mechansim assembly]
Specified value (G)
•PB
(B2)
• Eject end
• 25 - 51 gf•cm (2.45 - 5 x 10
-3
Nm)
(1) Play back the back tension cassette gauge (A).
(2) Check that the indicated value on the left side gauge is
within the specified value (G).
(3) If the indicated value is not within the specified value (G),
perform the adjustment in a following procedure.(See
Fig.4-2a.)
a) Remove the top frame, cassette holder and side
frames (L/R) all together. (Refer to the SERVICE
MANUAL No.86700 [MECHANISM ASSEMBLY].)
b) Rotate the loading motor gear to move the control
plate so that the triangular stamping to the left of the
“P”stamping is aligned with the stamping (a) on the
main deck. This positioning is mode (B1).
c) Adjust by turning the adjustment pin so that the tip of
the tension arm is aligned with the stamping (b) on
the main deck.
d) Rotate the reel disk (S) by about one turn clockwise
and make sure that the round hole of the adjustment
pin is located in the "OK" range. If it is outside this
range, restart the adjustment from the beginning.
After completion of the adjustment, rotate the loading gear
motor to return it to the mode (B2) position.
(1) Play back the alignment tape (A1).
(2) Apply the external trigger signal to D.FF (E), to observe
the V.PB FM waveform at the measuring point (D).
(3) Set the VCR to the manual tracking mode.
(4) Make sure that there is no significant level drop of the V.PB
FM waveform caused by the tracking operation, with its
generally parallel and linear variation ensured. Perform the
following adjustments when required. (See Fig. 4-2c.)
(5) Reduce the V.PB FM waveform by the tracking operation.
If a drop in level is found on the left side, turn the guide roll-
er of the pole base assembly (supply side) with the roller
driver to make the V.PB FM waveform linear.
If a drop in level is on the right side, likewise turn the guide
roller of the pole base assembly (take-up side) with the
roller driver to make it linear. (See Fig. 4-2c.)
(6) Make sure that the V.PB FM waveform varies in parallel
and linearly with the tracking operation again. When re-
quired, perform fine-adjustment of the guide roller of the
pole base assembly (supply or take-up side).
(7) Unload the cassette tape once, play back the alignment
tape (A1) again and confirm the V.PB FM waveform.
(8) After adjustment, confirm that the tape wrinkling does not
occur at the roller upper or lower limits. (See Fig. 4-2b.)
[Perform adjustment step (9) only for the models equipped
with SP mode and EP (or LP) mode.]
[Perform adjustment step (9) only for the models
equipped with SP mode and EP (or LP) mode.]
(9) Repeat steps (1) to (8) by using the alignment tape (A2).
Improper
(a)
GUIDE ROLLER
Proper
TENSION ARM
Stamping(b)
OK
ADJUST PIN
1-16 (No.YD052)
NG
Fig.4-2a
CONTROL PLATE
Stamping(a)
(b)
GUIDE POLE
Fig.4-2b
Page 17
Proper waveform variation
Improper waveform variation
A
C
UpDown
B
D
Roller driver
Guide roller
(supply side)
Fig.4-2c
4.2.3 Height and tilt of the A/C head
Note:
• Set a temporary level of the height of the A/C head in ad-
vance to make the adjustment easier after the A/C head
has been replaced. (Refer to the SERVICE MANUAL
No.86700 [MECHANISM ASSEMBLY].)
External trigger (E)• TP111 (D.FF)
Adjustment part (F)• A/C head [Mechanism assembly]
Specified value (G) • Maximum waveform
• TP106 (PB. FM)
(D2)
• TP4001 (CTL. P)
(1) Play back the alignment tape (A).
(2) Apply the external trigger signal to D.FF (E), to observe the
AUDIO OUT waveform and Control pulse waveform at the
measuring points (D1) and (D2) in the ALT mode.
(3) Set the VCR to the manual tracking mode.
(4) Adjust the AUDIO OUT waveform and Control pulse wave-
form by turning the screws (1), (2) and (3) little by little until
both waveforms reach maximum. The screw (1)
and (3) are for adjustment of tilt and the screw (2) for azi-
muth.
Head base
(2)
(1)
AUDIO OUT
4.2.4 A/C head phase (X-value)
Signal(A1)
Mode(B) • PB
Equipment(C) • Oscilloscope
Measuring point (D) • TP106 (PB. FM)
External trigger (E)• TP111 (D.FF)
Adjustment part (F)• A/C head base [Mechanism assembly]
Specified value (G) • Flat V.PB FM waveform
Adjustment tool (H) • Roller driver [PTU94002]
• Alignment tape(SP, stairstep, NTSC) [MHP]
(A2)
• Alignment tape(EP,stairstep,NTSC) [MHP-L]
(1) Play back the alignment tape (A1).
(2) Apply the external trigger signal to D.FF (E), to observe the
V.PB FM waveform at the measuring point (D).
(3) Set the VCR to the manual tracking mode.
(4) Loosen the screws (4) and (5), then set the Roller driver to
the innermost projected part of the A/C head. (See Fig. 4-
2e.)
(5) Rotate the roller driver so that the A/C head comes closest
to the capstan. From there, move the A/C head back grad-
ually toward the drum until the point where the FM wave-
form is maximized for the second time, and then
tighten the screws (4) and (5) temporarily.
(6) Play an alignment tape (A2) and set to the manual-tracking
mode.
(7) Fine-adjust A/C head base position to maximize the FM
waveform, and then tighten the screws (4) and (5) firmly.
(8) Play alignment tapes (A1) and (A2) and confirm that the FM
waveforms are maximized when the tracking is at the cen-
ter position.
To the drum
Toward the capstan
Toward the drum
A/C head
Screw (5)
Roller driver
Screw (4)
Head base
To the capstan
Fig.4-2e
Alignment tape
[SP, stairstep]
played with the
SP head
Waveform output
X-value adjustment point
Drum sideControl head positionCapstan side
Alignment tape
[EP(LP), stairstep]
played with the
EP(LP) head
A/C head
(3)
Fig.4-2d
CTL. P
Maximum
Fig.4-2f
(No.YD052)1-17
Page 18
4.3 Electrical adjustment (VHS SECTION)
Note:
The following adjustment procedures are not only necessary
after replacement of consumable mechanical parts or board
assemblies, but are also provided as references to be referred
to when servicing the electrical circuitry.
In case of trouble with the electrical circuitry, always begin a
service by identifying the defective points by using the measuring instruments as described in the following electrical adjustment procedures. After this, proceed to the repair,
replacement and/or adjustment. If the required measuring instruments are not available in the field, do not change the adjustment parts (variable resistor, etc.) carelessly.
4.3.1 Servo circuit
4.3.1.1Switching point
Signal(A1)
Mode(B) • PB
Equipment(C) • Oscilloscope
Measuring point (D) • VIDEO OUT terminal (75 ohm terminated)
(1) Play back the signal (A1) of the alignment tape (A2).
(2) Apply the external trigger signal to D.FF (E) to observe the
VIDEO OUT waveform and V.PB FM waveform at the
measuring points (D1) and (D2).
(3) Set the VCR to the manual tracking mode.
(4) Adjust tracking so that the V.PB FM waveform becomes
maximum.
(5) Set the VCR to the Auto adjust mode by transmitting the
code (F) from the Jig RCU. When the VCR enters the stop
mode, the adjustment is completed.
(6) If the VCR enters the eject mode, repeat steps (1) to (5)
again.
(7) Play back the alignment tape (A2) again, confirm that the
switching point is the specified value (G).
4.3.1.2Slow tracking preset
Signal(A1)
Mode(B1)
Measuring point (D) • TV-Monitor
Adjustment part (F)• Jig RCU: Code “43-71”or “43-72”
Specified value (G) • minimum noise
Adjustment tool (H) • Jig RCU [PTU94023B]
• Ext. input
(A2)
• Color (colour) bar signal [NTSC]
• VHS SP
(B2)
•VHS EP
(1) Record the signal (A2) in the mode (B1), and play back
the recorded signal.
(2) Set the VCR to the manual tracking mode.
(3) Set the VCR to the FWD slow (+1/6x) mode.
(4) Transmit the code (F) from the Jig RCU to adjust so that the
noise bar becomes the specified value (G) on the TV
monitor in the slow mode.
(5) Set the VCR to the Stop mode.
(6) Confirm that the noise bar is (G) on the TV monitor in the
slow mode.
(7) Repeat steps (3) to (6) in the REV slow (+1/6x) mode.
(8) Repeat steps (1) to (7) in the mode (B2).
Note:
• For FWD slow (+1/6x) playback, transmit the code "43-
08" from the Jig RCU to enter the slow playback mode,
and transmit the code "43-D0" for REV slow (-1/6x)
mode.
Trigger point
1-18 (No.YD052)
Switching point
V.sync
V. rate
Fig.4-3a Switching point
Page 19
4.4Electrical adjustment (DVD SECTION)
r
4.4.1 Test mode setting method
(1) Press POWER button to turn off the unit.
(2) Press the following remocon keys continuously within 2seconds " SET UP " → " 2 " → " 8 " → " ENTER ".
(3) The unit becomes JIG RCU mode.
(4) Press POWER button then press VCR/DVD repeatedly so that the DVD indicator lights up on the front display panel.
(5) Press the POWER button again to turn off the unit.
(6) Transmit the code " 43-FA " from the Jig RCU.
(7) The power supply of the unit turns on automatically then the FDP shows the region number.
(8) Each pressing of DISPLAY button of the remote controller in test mode as follows.
(9) To release test mode, press POWER key of the front panel.
FDP(Example)
Becames test mode
VCR
(Region number)
Optimize Front End paramete
4.4.2 Method of displayed version of firmware
(1) Set the unit to the test mode.
(2) The version number is displayed in the monitor screen.
OPENING DISPLAY
**_Ver.****_HS/HR_XVC29/*******
Version of firmware
Destination
CD Laser
DVD Laser
Others
Model name
(No.YD052)1-19
Page 20
4.4.3 Initialization method
Please initialize according to the following procedures in the following case:
• Just after you upgrade the firmware.
• After you confirm the symptoms that a customer points out. First Initialize, and then confirm whether the symptoms are improved or
not.
• After servicing, before returning the main body to a customer. (Initialized unit should be returned to a customer.)
(1) Set the unit to the test mode.
(2) Press PAUSE key of the remote controller or transmit the code "43-6F" from the Jig RCU.
(3) When initialization is completed, the PLAY (). mark is indicated in the FDP.
4.4.4 All-initialization method
Please perform all-initialization according to the following procedures in the following case:
• Just after you exchange the pick-up.
• Just after you exchange the spindle motor.
• Just after you exchange the traverse mechanism base.
NOTE:
Please perform all-initialization when you exchange the parts above and also when you remove the parts above.
(1) Set the unit to the test mode.
(2) Press the REVERSE SKIP/INDEX () key of the remote controller for more than 2 seconds.
(3) When initialization is completed, the PLAY (). mark is indicated in the FDP.
NOTE:
After all-initialization, be sure to perform optimization adjustment of Front End parameter.
4.4.5 Optimization adjustment of Front End parameter
Adjustment to optimize Front End parameter must be performed in each mechanism assembly of this model for high-speed starting.Please perform optimization according to the following procedures just after all-initialization is completed and when FDP shows
anything except "0" (For example when FDP shows "1", "2", and "3") at test mode.
(1) Set the unit to the test mode.
(2) The FDP shows the region number first.
(3) Press the DISPLAY key of the remote controller and check that FDP shows the number.
(4) Press the DISPLAY key again to return the region number.
NOTE:
Status of this adjustment can be judged by the number displayed at test mode as follows:
DVD adjustmentCD adjustmentFDP at test mode
AdjustedAdjusted0
Not adjustedAdjusted1
AdjustedNot adjusted2
Not adjustedNot adjusted3
NOTE:
As for a disc used for adjustment,
• Disc should be mounted. ("Mounting" means to display "READ" after the disc is inserted and then display the disc information.) Disc need not be played.
• If you do not have test disc either VT-501 (DVD) or CTS-1000 (CD-DA), use a commercial disc (for DVD, dual-layer software) after seeing and checking that the disc is neither curved nor foreseen that it may shake at the time of playback.If you
use a disc with bad features, starting time may be slow or disc may not be read.
1-20 (No.YD052)
Page 21
4.4.6 Upgrading of firmware
• Firmware update disc supports CD-R media.
• When firmware update is necessary, information is available from the homepage of DIGITAL VIDEO STORAGE CATEGORY, CS
group.
4.4.6.1Creating an update disc
Please check the details of the update disc creation method by JS-NET.
(1) Down load the update file from JS-NET.
(2) Write the update file into CD-R. Pay attention in the following points when writing the update disc.
• Make sure to write in "Disc at Once".
• Set the file compatibility to "ISO9660 format".
4.4.6.2Update procedure
(1) Turn the power ON. Load the update disc on the tray and close the tray.
(2) Update of the firmware starts automatically then upgrading status is displayed in the monitor screen.
(3) The tray opens automatically. Remove the upgrade disc.
(4) Close the tray then press the POWER button to turn off the unit.
(5) Confirm the version of the firmware.in the test mode.
MONITOR(Example)
VERSION UP DISC
PROGRAM&DESTINATION MODE
CURRENT VERSION 0494(or0495)
NEW VERSION 0496
READING....
SECTOR
**
NUMBER
KEYS
SET UP
REVERSE
SKIP/INDEX
ENTER
DISPLAY
PAU SE
(No.YD052)1-21
Page 22
SECTION 5
TROUBLESHOOTING
5.1Manually removing the cassette tape
If you cannot remove the cassette tape which is loaded because
of any electrical or mechanical failures, manually remove it by
taking the following steps.
(1) Unplug the power cord plug from the power outlet.
(2) Refer to the disassembly procedure of the VCR and per-
form the disassembly of the major parts before removing
the mechanism assembly. (See Fig. 5-1a)
Fig.5-1a
Tension arm assembly
Pole base assembly
Pinch roller arm assembly
(3) Unload the pole base assembly by manually turning the
gear of the loading motor until the pole base assembly is
hidden behind the cassette lid. In doing so, hold the tape by
the hand to keep the slack away from any grease. (See
Fig.5-1b )
In case of mechanical failures, while keeping the tension arm assembly free from tension, pull out the tape
on the pole base assembly. Take the spring(a) of the
pinch roller arm assembly off the hook, and detach it
from the tape.
(4) Remove the screw (a) of the side frame (L/R).
(5) Hold the slack tape and cassette cover together, lift the
cassette tape, top frame, cassette holder and side frames
(L, R) together from the rear and remove them by dis-engaging the hooks (a) and (b).
Screw(a)
Cassette tape
Hook(a)
Cassette holder
Top frame
Side frame(R)
Screw(a)
Spring(a)
Direction of unloading
Fig.5-1b
Side frame(L)
Hook(b)
Fig.5-1c
(6) Take up the slack of the tape into the cassette. This com-
pletes removal of the cassette tape.
5.2 Manually removing the disk(DVD/CD)
If you cannot remove the disk which is loaded because of any
electrical or mechanical failures, manually remove it by taking the
following steps.
(1) Unplug the power cord plug from the power outlet.
(2) Remove the top cover and front panel assembly.
(Refer to the disassembly procedure and perform the disassembly of the major parts before removing)
(3) Turn the Middle gear (a) by hand to open the disk tray.(See
Fig. 5-2a)
DVD unit
Middle gear (a)
1-22 (No.YD052)
Unloading
Fig.5-2a
Page 23
5.3 Emergency display function (VHS SECTION)
This unit saves details of the last two emergencies as the EMG
history and allows the status of the VCR and the mechanism of
each emergency to be shown both on the display and as OSD information.
When using the emergency function, it is required to set the VCR
to the Jig RCU mode.
Jig RCU
[Data transmitting method]
Depress the " " ( 3 ) button
after the data code is set.
CUSTOM CODE
43: A CODE
DATA CODE
INITIAL MODE
Fig.5-3a Jig RCU [PTU94023B]
5.3.1 Displaying the EMG information
The EMG detail of information can be displayed by transmitting
the code "43-59" from the Jig RCU.
Note:
• Press VCR/DVD repeatedly so that the VHS indicator
lights up on the front display panel.
• The EMG detail information <1><2> show the informa-
tion on the latest EMG.
It becomes “ - - : - - : - - ” when there is no latest EMG
record.
0: 00
E: **
1E: **
1: *1
2: *2
3: 34
4: *5
5: *6
6: *7
7: *8
8: *9
9: *1 0
Normal display
EMG content display (Latest) See 5.3.4
EMG content display (Previous) See 5.3.4
EMG detail information <1> See 5.3.5
[Deck operation mode]
EMG detail information <1> See 5.3.5
[Mechanism operation mode]
EMG detail information <1> See 5.3.5
[Mechanism sensor information and Mechanism mode position]
EMG detail information <2> See 5.3.6
[Type of the cassette tape in use <1>]
EMG detail information <2> See 5.3.6
[Winding position of the cassette tape in use]
EMG detail information <2> See 5.3.6
[Type of the cassette tape in use <2> (Winding area)]
EMG detail information <3> See 5.3.7
[Previous deck operation mode]
EMG detail information <3> See 5.3.7
[The deck operation mode of the one before the last]
EMG detail information <3> See 5.3.7
[The deck operation mode of the one prior to one above]
EMG display of 7 FDP display model
Fig.5-3b
EMG display of FDP display mode
(1) Transmit the code “43-59” from the Jig RCU.
The FDP shows the EMG content in the form of “E:**:**”.
<Example 1> E : 01
Latest EMG
<Example 2> E : - -
No EMG record
(2) Transmit the code “43-59” from the Jig RCU again.
The FDP shows the EMG detail information <1> in the form
of “ *1: *2 : 34 ”.
*1 : Deck operation mode at the moment of EMG
*2 : Mechanism operation mode at the moment of EMG
3- : Mechanism sensor information at the moment of EMG
-4 : Mechanism mode position at the moment of EMG
(3) Transmit the code “43-59” from the Jig RCU once again.
The FDP shows the EMG detail information <2> in the form
of “ *5 : *6 : *7 ”.
*5 : Type of the cassette tape in use <1> .
*6 : Winding position of the cassette tape in use
*7 : Type of the cassette tape in use <2> (Winding area)
(4) Transmit the code “43-59” from the Jig RCU once again.
The FDP shows the EMG detail information <3> in the form
of “*8 : *9 : *10”.
*8 : Previous deck operation mode at the moment of EMG
*9 : The deck operation mode of the one before the last at
the moment of EMG
*10: The deck operation mode of the one prior to one
above at the moment of EMG
(5) Transmit the code “43-59” from the Jig RCU once again to
reset the display.
(No.YD052)1-23
Page 24
5.3.2 Clearing the EMG history
(1) Display the EMG history.
(2) Transmit the code “43-36” from the Jig RCU.
(3) Reset the EMG display.
5.3.3 Details of the OSD display in the EMG display mode
During the EMG display, the OSD shows the data on the deck
mode, etc. The details of the display contents are as follows.
Notes:
• The display is variable depending on the part No. of the
System Control microcomputer (IC3001) built into the
VCR. In the following, refer to the figure carrying the
same two characters as the top two characters of the
part number of your IC.
• The sensor information in the OSD display contents is
partially different from the mechanism sensor information in EMG detail information <1>.
[For MN* only]
AABBCCDDEE
FFGGHHI IJ J
KKLLMMNNOO
PPQQRRSSTT
UUVVWW XXYY
AA : Deck operation mode (See EMG detail information <1>.)
BB : Mechanism operation mode
(See EMG detail of information <1>.)
CC : Mechanism transition flag
DD : Capstan motor control status
EE : Loading motor control status
FF: Sensor information (See sensor information details.)
GG : Capstan motor speed
HH : Key code (JVC code)
I I: Supply reel winding diameter data higher 8 bits.
JJ: Supply reel winding diameter data lower 8 bits.
KK : Mechanism sensor information & mechanism mode posi-
tion(See EMG detail of information <1>.)
LL: Tape speed data higher 8 bits.
MM : Tape speed data lower 8 bits.
NN : Cassette tape type <2> higher 8 bits.
(See EMG detail of information <2>.)
OO : Cassette tape type <2> lower 8 bits.
(See EMG detail of information <2>.)
PP : General data display area
CC: Mechanism operation mode (See EMG detail informa-
tion <1>.)
DD: Sensor information (See sensor information details.)
EE: Capstan motor speed (Search, double speed)
FF: Tracking value
GGGG : Cassette tape type <2>, 16 bits.
(See EMG detail information <2>.)
HHHH : Supply reel winding diameter data
I I: Capstan motor speed (FF/REW, double speed)
JJJJ: Tape speed data, lower 8 bits.
KKKK : General data display area
LLLL: General data display area
MMMM : General data display area
*DD:Sensor information details
<Display>
** h
********
Encoder data
(See Mechanism mode sequence.)
Remote pause
End sensor
Start sensor
Cassette tab present = 1
Cassette tab broken = 0
[For both MN*/HD*]
Mechanism mode sequence
Mechanism mode - Encoder data
LSA
12345
1110
GND
LSA
LSB
LSC
LSD
No.PositionEncoder data
21
Encoder output = Low
or
Trerminal - GND = SHORT
1
2
3
4
5
6
7
8
9
10
11
12
EJECT0 h = 0000
EJECT11 h = 0001
EJECT22 h = 0010
ULSTOP3 h = 0011
UPPER4 h = 0100
ONSTOP(PLAY)5 h = 0101
FWD/SS6 h = 0110
REV/SS7 h = 0111
OFFSTOP8 h = 1000
FFREW-BRAKE9 h = 1001
FFREWA h = 1010
MIDDLEF h = 1111
543
Encoder output = High
or
Trerminal - GND = OPEN
LSD
9876
LSC
LSB
1-24 (No.YD052)
Page 25
5.3.4 EMG content description
Note:
EMG contents “E09” are for the model with Dynamic Drum (DD).
FDPCONTENTCAUSE
E01: Loading EMG
E02:
Unloading EMG
E03: Take Up Reel
Pulse EMG
E04: Drum FG EMG
E05: Cassette Eject
EMG
E06: Capstan FG
EMG
E07: SW Power
Short-Circuit
EMG
E08:
DVD EMG
E09: DD FG EMG
E0A: Supply Reel
Pulse EMG
EU1:
Head clog warning
history
If the mechanism mode does not change to the next mode within 4 seconds after the loading motor starts rotating in the loading direction, while
the mechanism is in the after-loading position (with the tape up against
the pole base), [E:01] is identified and the power is switched OFF.
However, if the tape loading is not completed within 4 seconds after
the loading motor starts rotating in the loading direction, the tape is
simply unloaded and ejected. No EMG data is recorded in this case.
When the mechanism mode cannot be changed to another mode
even when the loading motor has rotated for more than 4 seconds in the unloading direction, [E:02] is identified and the power
is turned off.
When the falling edje of the take-up reel pulse has not been generated for more than 4 seconds in the capstan rotating mode,
[E:03] is identified, the pinch rollers are turned off and stopped,
and the power is turned off. In this case, however, the mechanism should be in position after tape loading. Note that the reel
EMG is not detected during Slow/Frame advance operations.
When the drum FG pulse has not been input for more than 3 seconds in the drum rotating mode, [E:04] is identified, the pinch rollers are turned off and stopped, and the power is turned off.
If the cassette does not reach the eject position within about 0.7
seconds after the cassette housing has started the cassette ejection operation, [E:05] is identified, the drive direction is reversed
to load the tape, the mode is switched to STOP mode with the
pinch roller OFF, and the power is switched OFF.
During the cassette insertion process, the drive direction is reversed
and the cassette is ejected if the tape is not up against the pole
base within about 3 seconds after the start of the cassette pullingin operation. If the cassette does not reach the eject position within
about 0.7 seconds after the drive mode reversal operation, [E:05]
is identified and the power is switched OFF immediately.
When the capstan FG pulse has not been generated for more
than 1 second in the capstan rotating mode, [E:06] is identified,
the pinch rollers are turned off and stopped, and the power is
turned off.However, the capstan EMG is not detected in SLOW/
STILL modes.
Note that, if the part number of the System Control IC begins with
"MN" or "M3", the capstan EMG is not detected even during the
FF/REW operation.
When short-circuiting of the SW power supply with GND has lasted
for 0.5 second or more, [E:07] is identified, all the motors are
stopped and the power is turned off.
When communication with a system computer of VHS side is not
carried out because of the defective DVD unit, or when the DVD
unit must be reset
When the DD FG pulse is not generated within 2.5 seconds, [E:09]
is identified, the tilt motor is stopped and the power is turned off.
When the falling edge of the supply reel pulse has not been generated for more than 10 seconds in the capstan rotating mode,
[E:0A] is identified and the cassette is ejected (but the power is
not turned off). In this case, however, the mechanism should be
in the position after tape loading (with the tape up against the pole
base). Also note that the reel EMG is not detected during Slow/
Frame advance operations.
Presupposing the presence of the control pulse output in the PLAY mode, when the value obtained by mixing the two V.FM output channels (without regard
to the A.FM output) has remained below a certain threshold level for more than 10 seconds, [E:U1] is identified and recorded in the emergency history.
During the period in which the head clog is detected, the FDP shows "U:01" and the OSD repeats the "3 seconds of warning display" and the "7 seconds of
noise picture display" alternately.
EMG code : "E:C1" or "E:U1" / FDP : "U:01" / OSD : "Try cleaning tape." or "Use cleaning cassette."
The head clog warning is reset when the above-mentioned threshold has been exceeded for more than 2 seconds or the mode is changed to another mode
than PLAY.
1. The mechanism is locked in the middle of the mode transition during a tape loading operation.
The mechanism overruns during the tape loading operation because the SYSCON cannot recognize
2.
the mechanism mode normally. This problem is due to a cause such as a rotary encoder failure.
3.
Power is not supplied to the loading MDA. (M12V/Vcc/Vref/ICP are disconnected in the middle.)
1.
The mechanism is locked in the middle of mode transition.
2.
Without an eject signal being sent from the SYSCON, unloading is attempted (i.e. Ejection is attempted
while the tape is still inside the mechanism.) because the SYSCON cannot recognize the mechanism
mode normally. This is due to a cause such as a rotary encoder failure. (Mechanism position:
UPPER)
3.
Power is not supplied to the loading MDA. (M12V/Vcc/Vref/ICP are disconnected in the middle.)
1.
The take-up reel pulse is not generated in the FWD transport modes (PLAY/FWD SEARCH/FF,
etc.) because;
1) The idler gear is not meshed with the take-up reel gear because the mechanism mal-functions for
2)
3) The reel is rotating normally but an FG pulse is not generated due to the take-up reel sensor failure.
2.
The supply reel pulse is not generated in the REV transport modes (REV SEARCH/REW, etc.)
because;
1) The idler gear is not meshed with the supply reel gear because the mechanism mal-functions for
2) The idler gear is meshed with the supply reel gear, but incapable of winding due to too large a
3) The reel rotates normally but the FG pulse is not generated due to a supply reel sensor failure.
3.
Power(SW5V) is not supplied to the reel sensor on the tape winding side.
1.
The drum could not start or the drum rotation has stopped due to too large a load on the tape,
because;
1) The tape tension is abnormally high;
2) The tape is damaged or a foreign object (grease, etc.) adheres to the tape.
2.
The drum FG pulse did not reach the System controller CPU because;
1) The signal circuit is disconnected in the middle;
2) The FG pulse generator (hall device) of the drum is faulty.
3.
The drum control voltage (DRUM CTL V) is not supplied to the MDA.
4.
Power (M12V) is not supplied to the drum MDA.
1.
The cassette cannot be ejected due to a failure in the drive mechanism of the housing.
2.
When the housing load increases during ejection, the loading motor is stopped because of lack of
headroom in its drive torque.
3.
The sensor/switch for detecting the end of ejection are not functioning normally.
4.
The loading motor drive voltage is lower than specified or power (M12V) is not supplied to the
motor (MDA).
5.
When the user attempted to eject a cassette, a foreign object (or perhaps the user's hand) was
caught in the opening of the housing.
1.
The capstan could not start or the capstan rotation has stopped due to too large a load on the tape,
because;
1) The tape tension is abnormally high (mechanical lock);
2) The tape is damaged or a foreign object (grease, etc.) is adhered to the tape (occurrence of tape
2.
The capstan FG pulse did not reach the System controller CPU because;
1) The signal circuit is disconnected in the middle;
2) The FG pulse generator (MR device) of the capstans is faulty.
3.
The capstan control voltage (CAPSTAN CTL V) is not supplied to the MDA.
4.
Power (M12V, SW5V) are not supplied to the capstan MDA.
1.
The SW 5 V power supply circuit is shorted with GND.
2.
The SW 12 V power supply circuit is shorted with GND.
1. The DVD unit is defective.
2. Contact failure of the wires in the DVD unit or VHS side.
1. The FG sensor is defective. (The soldered parts have separated.)
2. The pull-up resistor at the FG sensor output is defective. (The soldered parts have separated.)
3. Contact failure or soldering failure of the pins of the connector (board-to-board) to the FG sensor.
4. The power (5V) to the sensor is not supplied. (Connection failure/soldering failure)
5. The FG pulse is not sent to the System Controller CPU.
The tilt motor is defective. (The soldered parts have separated.)
6.
7. The drive power to the tilt motor is not supplied. (Connection failure/soldering failure)
8. The tilt motor drive MDA - IC is defective.
9. Auto-recovery of the DD tilting cannot take place due to overrun.
1.
The supply reel pulse is not generated in the FWD transport mode (PLAY/FWD SEARCH/FF,
etc.) because;
1) PLAY/FWD or SEARCH/FF is started while the tape in the inserted cassette is cut in the middle;
2) A mechanical factor caused tape slack inside and outside the supply reel side of the cassette shell.
3) The reel is rotating normally but the FG pulse is not generated due to a supply reel sensor failure.
2.
The take-up reel pulse is not generated in the REV transport mode (REV SEARCH/REW, etc.).
1) REV SEARCH/REW is started when the tape in the inserted cassette has been cut in the middle;
2) A mechanical factor caused tape slack inside and outside the take-up reel side of the cassette
3) The reel is rotating normally but the FG pulse is not generated due to a take-up reel sensor failure.
3.
The power (SW 5V) to a reel sensor is not supplied.
some reason.
The idler gear is meshed with the take-up reel gear, but incapable of winding due to too large
mechanical load (abnormal tension);
some reason.
mechanical load (abnormal tension);
Housing load increasing factors: Temperature environment (low temperature, etc.), mechanism
wear or failure.
entangling, etc.).
In this case, the supply reel will not rotate until the tape slack is removed by the FWD transport,
so the pulse is not generated until then;
shell. In this case, the take up will not rotate until the tape slack is removed by the REV transport,
so the pulse will not be generated until that time;
(No.YD052)1-25
Page 26
5.3.5 EMG detail information <1>
The status (electrical operation mode) of the VCR and the status
(mechanism operation mode/sensor information) of the mechanism in the latest EMG can be confirmed based on the figure in
EMG detail information <1> .
[FDP/OSD display] *1 : *2 : 34
*1: Deck operation mode at the moment of EMG
*2: Mechanism operation mode at the moment of EMG
3-: Mechanism sensor information at the moment of EMG
-4: Mechanism mode position at the moment of EMG
Note:
• For EMG detailed information <1>, the content of the
code that is shown on the display (or OSD) differs depending on the parts number of the system control microprocessor (IC3001) of the VCR. The system control
microprocessor parts number starts with two letters, refer these to the corresponding table.
*1 : Deck operation mode
[Common table of MN* and HD]
Display
MN*HD*
00-Mechanism being initialized
0100STOP with pinch roller pressure off (or tape present with P.OFF)
0201STOP with pinch roller pressure on
03-POWER OFF as a result of EMG
0404PLAY (Normal playback)
0C0EREC
1011Cassette ejected
2022FF
21-Tape fully loaded, START sensor ON, short FF
22-
2426FWD SEARCH (variable speed) including x2-speed
2C2EINSERT REC
4043REW
42-Cassette identification REV SEARCH before transition to REW
4447REV SEARCH (variable speed)
4C4CAUDIO DUB
6C6EINSERT REC (VIDEO + AUDIO)
8484FWD STILL / SLOW
8585REV STILL / SLOW
8C8FREC PAUSE
8D-Back spacing
8E-Forward spacing (FWD transport mode with BEST function)
ACAFINSERT REC PAUSE
AD-INSERT REC back spacing
CCCDAUDIO DUB PAUSE
CD-AUDIO DUB back spacing
ECEFINSERT REC (VIDEO + AUDIO) PAUSE
ED-INSERT REC (VIDEO + AUDIO) back spacing
Cassette identification FWD SEARCH before transition to FF
(SPx7-speed)
(SPx7-speed)
Deck operation mode
*2 : Mechanism operation mode
[Table of MN*]
Display
00Command standby (No command to be executed)
01Immediate Power OFF after EMG occurrence
02Loading from an intermediate position during mechanism initialization
03Unloading due to EMG occurrence during mechanism initialization
04Ejecting cassette (ULSTOP to EJECT)
05Inserting cassette (EJECT to ULSTOP)
06Loading tape (ULSTOP to PLAY)
07Unloading tape (PLAY to ULSTOP)
08Transition from pinch roller ON to STOP
09Transition from pinch roller OFF to STOP (PLAY to OFFSTOP)
0ATransition from pinch roller OFF to STOP at power OFF
0BTransition from pinch roller ON to STOP at power ON
0CTransition to PLAY
0DTransition to Search FF
0ETransition to REC
0FTransition to FWD STILL/SLOW
10Transition to REV STILL/SLOW
11Transition to Search REV
12Transition from FF/REW to STOP
13Transition to FF
14Transition to REW
15Tape end detection processing during loading
16Short FWD/REV at tape sensor ON during unloading
17Transition to FF/REW brake mode
Mechanism operation mode
[Table of HD*]
Display
00STOP with pinch roller pressure off
01STOP with pinch roller pressure on
02U/L STOP (or tape being loaded)
04PLAY (Normal playback)
05PLAY (x1-speed playback using JOG)
0EREC
11Cassette ejected
22FF
26FWD SEARCH (variable speed) including x2-speed
2EINSERT REC
43REW
47REV SEARCH
4CAUDIO DUB
6EINSERT REC (VIDEO + AUDIO)
84FWD STILL/SLOW
85REV STILL/SLOW
8FREC PAUSE
AFINSERT REC PAUSE
C7REV SEARCH (x1-speed reverse playback using JOG)
CD AUDIO DUB PAUSE
EFINSERT REC (VIDEO + AUDIO) PAUSE
F0Mechanism being initialized
F1POWER OFF as a result of EMG
F2Cassette being inserted
F3Cassette being ejected
F4Transition from STOP with pinch roller pressure on to STOP with pinch
roller pressure off
F5Transition from STOP with pinch roller pressure on to PLAY
F6Transition from STOP with pinch roller pressure on to REC
F7Cassette type detection SEARCH before FF/REW is being executed
F8Tape being unloaded
F9Transition from STOP with pinch roller pressure off to STOP with pinch
roller pressure on
FATransition from STOP with pinch roller pressure off to FF/REW
FBTransition from STOP with pinch roller pressure off to REC.P (T.REC,etc.)
FCTransition from STOP with pinch roller pressure off to cassette type
detection SEARCH
FDShort REV being executed after END sensor on during unloading
FETension loosening being executed after tape loading (STOP with pinch
Tab broken = 0Sensor ON = 0Sensor ON = 0
Tab present = 1sensor OFF = 1 Sensor OFF = 1
Mechanism sensor informatio n
Start sensorEnd sensor
ON
OFF
OFF
OFF
ON
ON
OFF
OFF
ON
OFF
OFF
ON
OFF
ON
OFF
OFFOFF
Mechansim
position sensor
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
-4 : Mechanism mode position
[Common table of MN* and HD*]
Mechanism
sensor
information
Dis-
play
Deck operation mode
-0Not established
-1EJECTEJECT position
-2EJECT-EJECT1Intermodal position
-3EJECT1EJECT1 position
-4EJECT1-EJECT2 Intermodal position
-5EJECT2EJECT2 position
-6EJECT2-ULSTOP Intermodal position
Even number
(0, 2, 4, 6, 8,
A, C, E)
-7ULSTOPULSTOP position
-8ULSTOP-UPPER Intermodal position
-9UPPERLoading (unloading) tape
-A UPPER-ONSTOP Intermodal position
-B ONSTOPPLAY position
-C PLAY-FWD/SSIntermodal position
-D FWD/SS
FWD (FWD Still/Slow) position
-E FWD/SS-REVIntermodal position
-F REV
REV (REV Still/Slow) position
-0REV-OFFSTOPIntermodal position
-1OFFSTOPPinch roller OFF position
Odd number
(1, 3, 5, 7, 9,
B, D, F)
-2
OFFSTOP-FFREWB
Intermodal position
-3FFREWBFF/REW Brake position
-4FFREWB-FFREW Intermodal position
-5FFREWFF/REW position
5.3.6 EMG detail information <2>
The type of the cassette tape and the cassette tape winding position can be confirmed based on the figure in EMG detail information <2> .
Note:
• EMG detail information <2> is the reference information
stored using the remaining tape detection function of
the cassette tape. As a result, it may not identify cassette correctly when a special cassette tape is used or
when the tape has variable thickness.
*5 : Cassette tape type <1>
DisplayCassette tape type <1>
00Cassette type not identified
16
Large reel/small reel (T-0 to T-15/T-130 to T-210) not classified
82Small reel, thick tape (T-120) identified/thin tape (T-140) identified
84Large reel (T-0 to T-60) identified
92
Small reel, thick tape (T-130) identified/thin tape (T-160 to T-210) identified
93
Small reel, thick tape/C cassette (T-0 to T-100/C cassette) not classified
C3
Small reel, thick tape/C cassette (T-0 to T-100/C cassette) being classified
D3
Small reel, thick tape/C cassette (T-0 to T-100/C cassette) being classified
E1C cassette, thick tape (TC-10 to TC-20) identified
E2Small reel, thick tape (T-0 to T-100) identified
E9C cassette, thin tape (TC-30 to TC-40) identified
F1
C cassette, thick tape/thin tape (TC-10 to TC-40) not classified
Notes:
• Cassette tape type <1> is identified a few times during
mode transition and the identification count is variable
depending on the cassette tape type. If an EMG occurs
in the middle of identification, the cassette tape type
may not be able to be identified.
• If other value than those listed in the above table is dis-
played, the cassette tape type is not identified.
*6 : Cassette tape winding position
The cassette tape winding position at the moment of EMG is displayed by dividing the entire tape (from the beginning to the end)
in 21 sections using a hex number from “00” to “14”.
00 : End of winding
14 : Beginning of winding
FF : Tape position not identified
Cassette type not identified
C cassette, thick tapeTC-10
Small reel, thick tapeT-20
C cassette, thick tapeTC-20P
C cassette, thin tapeTC-40
C cassette, thin tapeTC-30
Small reel, thick tapeT-40
Small reel, thick tapeT-60
Small reel, thick tapeT-80(DF-160)
Small reel, thick tapeT-90(DF-180)
Small reel, thick tapeT-100
Small reel, thin tapeT-140
Small reel, thick tapeT-120(DF-240)
Small reel, thick tapeT-130
Small reel, thin tapeT-160
Small reel, thin tapeT-210(DF-420)
Small reel, thin tapeT-180(DF-360)
Small reel, thin tapeT-168
Small reel, thick tapeDF-300
Large reelT-20
Large reelT-30
Large reelT-40
Large reelT-60
• The values of cassette tape type <2> in the above table
are typical values with representative cassette tapes.
5.3.7 EMG detail information <3>
Three deck operation modes preceding the deck operation mode
in which the EMG occurs may be confirmed based on the figures
in the EMG information detail <3>. For the contents of the displayed information, see the table "Deck operation mode" in section "5.3.5 EMG detail information <1>".
(No.YD052)1-27
Page 28
Victor Company of Japan, Limited
AV & MULTIMEDIA COMPANY DIGITAL VIDEO STORAGE CATEGORY 12, 3-chome, Moriya-cho, kanagawa-ku, Yokohama, kanagawa-prefecture, 221-8528, Japan
Safety precautions
The Components indentified by the symbolare
critical for safety. For continued safety, replace safety
critical components only with manufacturer's recommended parts.
1. Units of components on the schematic diagram
Unless otherwise specified.
1) All resistance values are in ohm. 1/6 W, 1/8 W (refer to
parts list).
Chip resistors are 1/16 W.
K: KΩ(1000Ω), M: MΩ (1000KΩ)
2) All capacitance values are in µF, (P: PF).
3) All inductance values are in µH, (m: mH).
4) All diodes are 1SS133, MA165 or 1N4148M (refer to parts
list).
Note: The Parts Number, value and rated voltage etc. in
the Schematic Diagram are for references only.
When replacing the parts, refer to the Parts List.
2. Indications of control voltage
AUX : Active at high.
AUX or AUX(L) : Active at low.
!
4. Voltage measurement
1) Regulator (DC/DC CONV) circuits
REC : Colour bar signal.
PB : Alignment tape (Colour bar).
—: Unmeasurable or unnecessary to measure.
2) Indication on schematic diagram
Voltage indications for REC and PB mode on the schematic diagram are as shown below.
REC mode
12 3
2.5
(5.0)
PB mode
1.8
PB and REC modes
(Voltage of PB and REC modes
are the same)
Note: If the voltages are not indicated on the schematic
diagram, refer to the voltage charts.
5. Signal path Symbols
The arrows indicate the signal path as follows.
NOTE : The arrow is DVC unique object.
Playback signal path
Playback and recording signal path
3. Interpreting Connector indications
1
2
Removable connector
3
1
2
Wire soldered directly on board
3
1
Non-removable Board connector
2
3
1
2
4
Board to Board
3
Connected pattern on board
The arrows indicate signal path
Note: For the destination of each signal and further line
connections that are cut off from the diagram,
refer to "BOARD INTERCONNECTIONS"
Recording signal path
(including E-E signal path)
Capstan servo path
Drum servo path
(Example)
R-Y
Playback R-Y signal path
Y
Recording Y signal path
6. Indication of the parts for adjustments
The parts for the adjustments are surrounded with the circle
as shown below.
7. Indication of the parts not mounted on the circuit board
“OPEN” is indicated by the parts not mounted on the circuit
board.
R216
2-1
OPEN
Page 31
CIRCUIT BOARD NOTES
1. Foil and Component sides
1) Foil side (B side) :
Parts on the foil side seen from foil face (pattern face)
are indicated.
2) Component side (A side) :
Parts on the component side seen from component face
(parts face) indicated.
rts location are indicated by guide scale on the circuit board.
2. Parts location guides
Parts location are indicated by guide scale on the circuit board.
LOCATION
IC
Category : IC
Horizontal “A” zone
Vertical “6” zone
(A : Component side)
D : Discrete component)
B : Foil side
C : Chip component
REF No.
IC101 B C6 A
Note: For general information in service manual, please
refer to the Service Manual of GENERAL INFORMATION Edition 4 No. 82054D (January 1994).
C 0 0
B -13.3 0.6
Q2002
E -5.8 0
C 0 0
B -13.1 0.7
Q2003
E 5.1 5.1
C -13.2 5.0
B 4.8 0
Q2051
E 0 0
C 7.3 0.2
B 0.2 0.3
Q2052
E 10.6 10.7
C 10.3 0.5
B 9.8 10.6
Q2053
E 0 0
C 0 10.6
B 4.8 0
Q2054
E 10.3 0.5
C 10.1 0.2
B 9.5 0.3
Q2055
E 0 0
C 0 0.5
B 4.8 0
Q2201
E 5.6 5.6
C -1.7 -1.4
B 5.6 5.6
Q2202
E 0 0
C 5.6 5.6
B 0 0
Q2203
E 0 0
C 0 0
B -1.7 -1.4
Q2204
E 0 0
C 0 0
B -1.6 -1.4
Q3002
E 0 0
C 4.2 4.0
B - Q3006
E 0 0
C 4.8 4.8
B 0 0
Q3007
E 0 0
C 0 0
B 0.7 0.7
Q4001
E 0 0
C 0 0
B 4.7 4.7
Q4002
E 4.9 4.9
C 5.6 5.6
B 5.6 5.6
Q5101
S 0 0
D 132.0 132.4
G 2.2 2.1
Q5102
E 0 0
C 2.2 2.1
B 0 0
Q5103
E 2.2 2.1
C 0 0
B 9.1 9.1
Q5306
E 10.7 10.7
C 11.4 11.4
B 11.3 11.3
Q5307
E 52.7 52.4
C 52.7 52.3
B 0 0
Q5309
E 0 0
C 0 0
B 4.7 4.7
Q5310
E 5.2 5.1
C 5.6 5.6
B 5.9 5.9
Q5311
E 3.3 3.3
C 3.5 3.6
C1 B C 15L
C2 B C 14M
C4 A D 15M
C5 B C 14M
C6 B C 14M
C7 B C 14L
C8 B C 14L
C9 A D 13L
C10 A D 13L
C11 B C 14L
C12 B C 13L
C13 B C 13L
C14 B C 13L
C15 B C 14L
C17 B C 14L
C19 B C 14K
C20 B C 14K
C22 B C 14K
C24 B C 14K
C25 A D 14K
C26 A D 14J
C27 B C 14J
C30 B C 14J
C31 A D 15J
C33 A D 15J
C34 B C 14J
C35 B C 15J
C36 A D 15J
C37 B C 15J
C38 B C 15I
C39 A D 15J
C40 B C 15J
C41 B C 15I
C43 A D 15I
C44 A D 14I
C45 B C 16J
C46 B C 16J
C47 A D 15I
C48 B C 16J
C49 A D 17J
C55 B C 17J
C56 B C 17K
C57 B C 17L
C58 B C 17L
C59 B C 17L
C60 B C 17M
C61 A D 17L
C62 A D 16L
C63 B C 17K
C64 B C 17K
C77 B C 14J
C78 B C 17L
C201 A D 13F
C202 B C 15E
C203 A D 15E
C205 B C 15E
C207 B C 14E
C209 B C 14F
C211 B C 14F
C213 B C 15F
C215 B C 14F
C216 B C 14F
C2001 A D 14M
C2002 A D 14M
C2003 A D 14M
C2004 B C 14M
C2005 A D 17M
C2006 B C 16M
C2007 A D 16M
C2008 A D 16L
C2009 B C 16M
C2010 B C 16M
C2011 A D 16M
C2012 A D 15M
C2051 B C 11M
C2052 A D 21J
C2053 B C 20D
C2054 B C 21D
C2055 A D 20C
C2201 A D 19M
C2202 A D 19M
C2203 A D 19L
C2204 A D 18L
C2205 A D 18K
C2206 A D 18K
C2207 B C 18K
C2208 B C 17J
C2209 A D 18G
C2210 A D 18G
C2211 A D 18H
C2212 A D 18G
C2214 A D 19G
C2215 A D 20G
C2216 A D 20G
C2218 A D 20H
C2219 A D 20H
C2220 A D 19I
C2221 B C 19I
C2222 B C 18H
C2230 B C 18I
C2231 B C 18I
C2234 B C 20J
C2235 B C 19J
C2251 B C 18K
C2252 B C 18K
C2253 B C 18K
C2254 A D 17J
C2255 B C 18J
C2256 B C 17K
C2257 B C 17I
C2259 A D 17J
C2261 B C 18J
C2262 B C 18K
C3007 B C 6H
C3008 B C 21H
C3011 A D 18C
C3012 B C 17C
C3013 A D 17C
C3015 B C 16C
C3016 B C 16E
C3017 B C 16E
C3018 A D 16E
C3019 B C 16E
C3020 B C 16E
C3022 B C 18C
C3023 B C 17A
C3024 A D 3D
C3025 B C 3D
C3028 A D 4C
C3029 B C 6B
C3030 A D 6B
C3035 B C 16D
C3036 A D 17D
C3041 B C 17B
C3042 B C 16B
C3043 B C 17A
C3045 B C 17A
C3047 B C 12C
C3048 B C 11C
C3049 B C 15G
C3050 B C 18C
C3052 B C 11D
C3053 B C 14E
C3055 A D 16A
C3056 B C 9J
C3070 A D 16C
C3071 A D 8J
C3301 A D 3B
C3302 B C 4A
C3303 B C 7B
C4001 B C 18D
C4002 A D 13F
C4004 A D 13E
C4006 B C 14E
C4007 B C 11D
C4008 A D 13F
C4009 B C 13D
C4010 A D 12E
C4011 B C 11C
C4012 B C 14E
C4014 B C 13E
C4016 A D 8C
C4017 B C 8C
C4019 B C 14D
C4022 B C 13E
C4025 B C 11C
C4031 A D 8J
C5001 A D 3P
C5002 A D 1O
C5003 A D 5O
C5004 A D 6L
C5006 A D 2N
C5101 A D 2M
C5102 A D 1L
C5104 A D 5N
C5105 A D 4M
C5106 B C 4L
C5107 A D 5M
C5108 B C 5M
C5109 B C 4M
C5201 A D 5K
C5202 A D 4I
C5203 A D 4J
C5204 A D 2I
C5205 A D 3I
C5207 A D 1I
C5209 A D 2H
C5210 A D 3H
C5211 A D 5I
C5213 A D 1J
C5214 B C 5K
C5301 A D 2G
C5302 A D 1H
C5303 A D 4G
C5304 A D 4G
C5305 A D 5G
C5306 B C 4G
C5307 B C 5G
C5308 B C 5F
C5309 A D 5F
C5310 A D 3G
C5311 A D 2E
C5312 A D 2F
C5313 A D 2E
C5314 A D 3F
C6005 A D 21M
C6006 B C 22M
C6012 A D 21O
C6013 B C 22O
C6020 B C 21M
C6021 B C 21M
C6033 B C 22L
C6052 B C 22O
C6053 B C 22O
C6054 B C 22O
C6055 B C 22O
C6501 B C 19K
C6502 A D 19M
C6503 A D 19K
C6504 B C 19H
C6505 A D 19G
C6508 B C 19H
C6509 B C 19H
C6511 B C 19H
C6512 B C 19H
C6513 A D 19H
C6514 B C 20I
C6515 A D 20I
C6516 A D 19G
C6517 B C 19H
C6532 B C 21M
C6601 A D 18H
C6602 A D 19H
C6605 A D 20I
C7109 A D 18O
C7114 A D 18O
C7117 A D 17O
C7118 A D 17O
C7119 B C 18O
C7121 B C 14O
C7122 A D 16P
C7126 B C 10K
C7128 A D 8L
C7129 B C 9L
C7130 B C 8L
C7131 B C 7K
C7132 B C 7K
C7133 A D 8K
C7134 B C 8K
C7135 B C 7K
C7136 B C 9K
C7137 B C 4E
C7138 B C 4D
C7139 B C 4E
C7140 B C 4E
C7141 B C 5E
C7144 A D 8L
C7146 A D 8M
C7148 A D 9M
C7150 A D 9M
C7201 B C 7E
C7202 B C 6E
C7203 B C 7E
C7204 B C 5D
C7205 A D 4D
C7501 A D 8O
C7502 B C 8O
C7503 A D 8O
C7504 B C 8O
C7505 B C 7P
C7506 B C 7O
C7507 A D 7O
C7508 B C 7P
C8001 A D 2D
C8002 A D 1C
C8003 B C 2C
C8004 B C 2D
C8005 B C 2C
C8006 B C 3D
C8007 A D 2C
C8008 A D 3D
C8009 B C 2C
C8010 B C 3C
C8051 A D 3D
C8052 A D 3C
C8053 B C 3C
CONNECTOR
CN1 A D 18K
CN2001 A D 11M
CN2002 A D 21J
CN3001 A D 9J
CN3010 A D 22B
CN3102 A D 12A
CN3301 A D 2A
CN5001 A D 5O
CN7103 A D 22E
CN7301 A D 1E
CN7302 A D 4E
CN7303 A D 4C
DIODE
D1 B C 18N
D5 B C 14L
D2001 A D 20D
D2251 A D 17G
D3001 A D 14G
D3002 A D 11D
D3004 A D 3B
D3005 A D 5F
D3006 A D 2B
D3016 A D 17C
D3301 A D 5B
D3302 A D 4B
D4003 B C 18D
D5001 B C 1N
D5101 A D 2M
D5102 A D 2M
D5103 A D 5L
D5105 A D 5M
D5106 A D 5N
D5201 A D 4K
D5204 A D 1K
D5205 A D 2J
D5206 A D 2J
D5207 A D 4K
D5208 A D 2K
D5209 A D 1K
D5212 A D 4K
D5213 A D 2K
D5301 A D 3H
D5304 A D 2H
D5305 A D 4G
D5306 A D 5G
D5308 A D 3H
D5310 A D 4G
D5391 A D 6K
D5392 A D 3F
D5393 A D 2G
D6002 A D 21M
D8001 A D 4C
FUSE
F5001 A D 5P
IC
IC1 B C 15K
IC2201 B C 18J
IC3001 B C 15D
IC3003 B C 17C
IC3004 B C 17A
IC3301 A D 5B
IC3302 B C 7B
IC5201 A D 5K
IC5301 A D 3G
IC5302 B C 5G
IC7102 B C 17O
IC7104 B C 9L
IC7501 B C 8N
IC8001 B C 2C
COIL
L1 A D 14L
L3 A D 13L
L5 A D 13K
L6 A D 13J
L7 A D 16J
L10 A D 17K
L201 A D 13F
L203 A D 16E
L2001 A D 12M
L2251 A D 17J
L3301 A D 3B
L4001 A D 7J
L5201 A D 3H
L5202 A D 2H
L5203 A D 4I
L5301 A D 3E
L5302 A D 2G
L5303 A D 2E
L6003 A D 21O
L6005 A D 21L
L6032 A D 22L
L6050 A D 21O
L7101 A D 19O
L7103 A D 10K
L7201 A D 6E
L7202 A D 5D
L7501 A D 8O
L7502 A D 7O
TRNSISTOR
Q2 B C 14L
Q4 B C 16I
Q7 B C 17K
Q8 B C 18L
Q9 B C 18L
Q10 B C 18M
Q19 B C 13G
Q2001 B C 14N
Q2002 B C 14N
Q2003 B C 12M
Q2051 B C 21D
Q2052 B C 20C
Q2053 B C 20C
Q2054 B C 21C
Q2055 B C 20C
Q2201 B C 20F
Q2202 B C 21F
Q2203 B C 21G
Q2204 B C 20G
Q3001 A D 7H
Q3002 A D 21H
Q3004 B C 2B
Q3006 B C 16C
Q3007 B C 17C
Q3301 B C 12G
Q3302 B C 12G
Q4001 B C 11D
Q4002 B C 8C
Q4004 B C 11D
Q5101 A D 4M
Q5102 A D 5L
Q5103 B C 5N
Q5304 A D 2H
Q5305 B C 1H
Q5306 A D 4H
Q5307 B C 1G
Q5308 B C 1F
Q5309 B C 1F
Q5310 A D 5H
Q5311 A D 2G
Q5315 A D 4F
Q5391 B C 7L
Q6030 B C 22K
Q6031 B C 22K
Q7113 B C 10L
Q7201 B C 7E
Q7202 B C 6E
Q8001 B C 2C
Q8002 B C 3C
Q8052 B C 3C
Q8053 B C 3B
RESISTOR
R1 B C 15L
R2 B C 15M
R3 B C 14M
R6 B C 13K
R7 B C 14K
R11 B C 16J
R12 B C 16J
R15 B C 16I
R16 B C 16J
R17 B C 15I
R21 B C 17J
R22 B C 17J
R36 B C 17B
R37 B C 16K
R38 B C 13K
R40 B C 13G
R41 B C 13G
R201 B C 15E
R202 B C 14E
R203 B C 14E
R204 B C 14E
R208 B C 15F
R2007 B C 14M
R2010 B C 15M
R2013 B C 16M
R2014 B C 16M
R2015 B C 17M
R2016 B C 16M
R2017 B C 15M
R2018 B C 13N
R2019 B C 13N
R2021 B C 17M
R2022 B C 16H
R2023 A D 17I
R2024 B C 15M
R2053 B C 21D
R2054 B C 20C
R2055 B C 21D
R2056 A D 20C
R2057 B C 20C
R2058 B C 20C
R2059 B C 21B
R2060 B C 20C
R2201 B C 19K
R2202 B C 19K
R2203 B C 19K
R2204 B C 19K
R2205 B C 19K
R2206 B C 19K
R2207 B C 19K
R2208 B C 19K
R2209 A D 20F
R2210 B C 21F
R2211 B C 20H
R2212 B C 21G
R2213 B C 21F
R2214 A D 20F
R2216 B C 20H
R2217 B C 20H
R2218 B C 20G
R2219 B C 20H
R2220 B C 20F
R2221 B C 19K
R2222 B C 20K
R2223 B C 20K
R2224 B C 20K
R2230 B C 18H
R2231 B C 18H
R2251 B C 17I
R2252 B C 17J
R2255 B C 18I
R2257 B C 17J
R3003 B C 15B
R3005 B C 15B
R3006 B C 15B
R3007 B C 16B
R3008 B C 16B
R3009 B C 16B
R3010 B C 16B
R3011 B C 16B
R3014 B C 16B
R3015 B C 17B
R3016 B C 17B
R3017 B C 17B
R3018 B C 17B
R3019 B C 17C
R3020 B C 17C
R3021 B C 17B
R3027 B C 18C
R3028 B C 18C
R3031 B C 18D
R3032 B C 18D
R3035 B C 18D
R3042 B C 17E
R3060 B C 14E
R3087 B C 13C
R3091 B C 12C
R3092 B C 12B
R3093 B C 12B
R3094 B C 12B
R3095 B C 12B
R3096 B C 12B
R3097 B C 12B
R3098 B C 12B
R3099 B C 13B
R3100 B C 13B
R3201 B C 10A
R3202 B C 10A
R3205 B C 9F
R3206 B C 10F
R3207 B C 10E
R3208 B C 10E
R3209 A D 15G
R3210 A D 8B
R3211 B C 20E
R3212 B C 18D
R3213 B C 18D
R3214 B C 11D
R3215 B C 11D
R3216 B C 11D
R3217 B C 11D
R3219 B C 20B
R3220 B C 18C
R3222 B C 18C
R3223 B C 16E
R3224 B C 17D
R3225 B C 16E
R3226 B C 17A
R3227 B C 17A
R3232 B C 6B
R3233 B C 2B
R3234 B C 1B
R3236 B C 9B
R3237 B C 17B
R3238 B C 17B
R3242 B C 17E
R3243 B C 17C
R3244 B C 18C
R3245 B C 16D
R3252 B C 8J
R3253 B C 9J
R3254 B C 14E
R3255 B C 10G
R3301 B C 7B
R3302 B C 8C
R3303 B C 8C
R3304 B C 8B
R3305 B C 8B
R3306 B C 7A
R3307 A D 1B
R3308 B C 7A
R3309 B C 2A
R3310 B C 2A
R3311 B C 7A
R3320 B C 11G
R4001 B C 18D
R4002 B C 12F
R4003 B C 14E
R4004 B C 18B
R4005 B C 12G
R4009 B C 18C
R4010 B C 13D
R4011 B C 13D
R4012 B C 13D
R4018 B C 13E
R4019 B C 14E
R4021 B C 13E
R4022 B C 7C
R4024 A D 12F
R5001 A D 5O
R5101 A D 4N
R5102 A D 4N
R5103 A D 5N
R5104 A D 2M
R5106 A D 3N
R5107 A D 5M
R5108 B C 5L
R5109 B C 4M
R5110 B C 4M
R5111 B C 4L
R5112 B C 5L
R5113 B C 5N
R5201 A D 5K
R5202 B C 4K
R5203 B C 5J
R5204 B C 5J
R5205 B C 5J
R5206 B C 5J
R5310 B C 1H
R5311 B C 4G
R5312 B C 1G
R5313 B C 1G
R5314 B C 1G
R5315 B C 1G
R5316 A D 4H
R5317 B C 1J
R5319 B C 2G
R5320 B C 3G
R5321 B C 3G
R5325 B C 4F
R5326 A D 4H
R5390 A D 4J
R5391 B C 6K
R5392 A D 5H
R5393 A D 5H
R5394 A D 5G
R5395 A D 5H
R6020 B C 22M
R6021 B C 22M
R6030 B C 22K
R6031 B C 21L
R6034 B C 22K
R6050 B C 22O
R6051 A D 21O
R6054 B C 21O
R6055 B C 22P
R6502 B C 19H
R7131 B C 17P
R7134 B C 18O
R7135 B C 10K
R7136 B C 10K
R7137 B C 10L
R7138 A D 10L
R7154 A D 15O
R7155 B C 14O
R7156 B C 14O
R7157 A D 15P
R7164 A D 13O
R7165 A D 13O
R7166 A D 13O
R7167 B C 11P
R7168 B C 11P
R7169 B C 10P
R7170 B C 11P
R7171 B C 10P
R7172 B C 11O
R7173 B C 5E
R7174 B C 5E
R7175 B C 4D
R7176 B C 4D
R7177 B C 4E
R7178 B C 4E
R7179 B C 4E
R7180 B C 4E
R7182 A D 17O
R7183 B C 5E
R7184 B C 5E
R7193 B C 20O
R7201 A D 8E
R7202 B C 7E
R7203 B C 7E
R7204 B C 6E
R7205 B C 6E
R7206 B C 6D
R7501 B C 7O
R7502 B C 8O
R7503 B C 8O
R7504 B C 8O
R7505 B C 8O
R7506 B C 8P
R7507 B C 7O
R8001 B C 2C
R8002 B C 2D
R8003 B C 1C
R8004 B C 2D
R8005 B C 2C
R8006 B C 3D
R8007 B C 2C
R8008 B C 2D
R8009 B C 2C
R8010 B C 2D
R8013 B C 2C
R8014 B C 3D
R8015 B C 2C
R8016 B C 3D
R8017 B C 2C
R8018 B C 3C
R8019 B C 3C
R8020 B C 3C
R8051 A D 3D
R8052 B C 2D
R8053 B C 2C
R8054 B C 3C
R8055 B C 3C
OTHER
CF6031 A D 21L
CP3001 A D 7J
CP3101 A D 5G
CP4001 A D 7J
CP5301 A D 2H
CP5302 A D 3F
FC5001 A D 5P
FC5002 A D 3P
J7002 A D 18P
J7004 A D 14P
J7005 A D 13P
J7006 A D 10P
J7008 A D 20P
J7009 A D 8P
J7010 A D 7P
JS3001 A D 10F
K2251 B C 18K
K2252 B C 18K
K2253 B C 18K
K5101 A D 4M
K5102 A D 2N
K7501 B C 7O
K7502 B C 8N
K7503 B C 8P
LF5002 A D 2O
PC085 B C 19O
PC0864 A D 4O
PC0865 A D 4O
PC02242 B C 1A
PC02505 B C 22N
PC3001 A D 17E
PC3002 A D 11E
PC5101 A D 5L
S3001 A D 20B
T2051 A D 20D
T5001 A D 2L
TP106 A D 16O
TP111 A D 16O
TP2253 A D 15O
TP4001 A D 16O
TU6001 A D 22P
VA5001 A D 3O
WR11 A D 4H
X1 A D 16J
X2 A D 16J
X3001 A D 16E
X3002 A D 16E
2-27
Page 57
CPU PIN FUNCTION
<SYSCON IC3001>
PIN NO.
1 SP_FG IN
2 TU_FG IN
3 BS_DIGI/COMP_IN IN NOT USED/A/V COMPULINK INPUT
4 UCS IN COMMUNICATION DATA FROM DVD CPU
5 RC IN REMOTE CONTROL DATA INPUT
6 D_A OUT LED DRIVE
7 D_B OUT LED DRIVE
8 D_C OUT LED DRIVE
9 D_D OUT LED DRIVE
10 D_E OUT LED DRIVE
11 SCLK IN
12 U2SDT IN COMMUNICATION INPUT DATA FROM DVD CPU
13 S2UDT OUT COMMUNICATION OUTPUT DATA TO DVD CPU
14 MTO OUT CONTROL FOR DVD LOADING MOTOR OF TRAY
15 N_REC[H] OUT NORMAL AUDIO REC MODE CONTROL SIGNAL (REC:H)
16 D_F OUT LED DRIVE
17 I2C_DATA_A/V IN/OUT SERIAL DATA TRANSFER OUTPUT FOR A/V IC
18 I2C_CLK_A/V OUT SERIAL DATA TRANSFER CLOCK FOR A/V IC
19 SP_SHORT[H] OUT MODE SELECT
20 EP_SHORT[H] OUT MODE SELECT
21 D_G OUT LED DRIVE
22 REC_S IN REC SAFETY SWITCH DETECT (SW ON:L)
23 D.FF OUT
24 V.PULSE OUT V.PULSE ADDITION TIMING CONTROL
25 RESET IN/OUT RESET TERMINAL(RESET ON:L)
26 A.FF OUT AUDIO FF OUTPUT
27 N.REC_ST[H] OUT NORMAL AUDIO SOUND RECORDING START
28 H.REC_ST[H] OUT HiFi AUDIO SOUND RECORDING START
29 SCS OUT DVD CPU CHIP SELECT
30 CPURST OUT RESET FOR DVD CPU
31 I2C_DATA IN
32 I2C_CLK/TEST IN/OUT
33 CAP_CTL_V OUT CAPSTAN MOTOR CONTROL
34 DRUM_CTL_V OUT DRUM MOTOR CONTROL
35 SB_GAIN OUT
36 VDD - SYSTEM POWER
37 X_OUT - MAIN SYSTEM CLOCK (14MHz)
38 X_IN - MAIN SYSTEM CLOCK (14MHz)
39 VSS - GND
40 XC_IN - TIMER CLOCK(32KHz)
41 XC_OUT - TIMER CLOCK(32KHz)
42 CLK_SEL IN CLOCK SELECT FOR FLASH WRITER
43 A.MUTE[H] OUT AUDIO MUTE CONTROL (MUTE:H)
44 P.MUTE OUT PICTURE MUTE CONTROL(MUTE ON:H)
45 CTL_GAIN OUT CONTROL AMP OUT FREQUENCY RESPONSE SWITCHING
46 CONV.CTL OUT RF CONVERTER ON/OFF CONTROL
47 VIDEO_OSD_OUT OUT COMPOSITE VIDEO SIGNAL OUTPUT
48 VSS2 - GND
49 V_TO_OSD IN COMPOSITE VIDEO SIGNAL INPUT
50 SYN_IN IN COMPOSITE SYNC/HORIZONTAL SYNC
LABELIN/OUTFUNCTION
DETECTION SIGNAL FOR SUPPLY REEL ROTATION/TAPE REMAIN
DETECTION SIGNAL TAKE-UP REEL ROTATION/TAPE REMAIN
EXTERNAL BUS CLOCK USED FOR PROGRAMMABLE HOST PERIPHERALS
ROTATION DETECTION SIGNAL FOR DRUM MOTOR/TIMING CONTROL SIGNAL FOR REC
SERIAL DATA TRANSFER OUTPUT FOR TUNER AND FMA CIRCUITS
SERIAL DATA TRANSFER CLOCK FOR TUNER AND FMA CIRCUITS
VOLTAGE CONTROL SIGNAL FOR VIDEO FREQUENCY RESPONSE
PIN NO.
51 VDD2 - SYSTEM POWER
52 AFCC -
53 AFCLPF -
54 VCR_LED[L]/FSCI OUT
55 DVD_LED[L]/FSCLPF OUT
56 SMUTE OUT SPINDLE MUTING OUTPUT SIGNAL
57 A.MUTE2[H] OUT AUDIO MUTE CONTROL(MUTE ON:H)
58 DVD[H] OUT DVD MODE:H
59 P.CTL[H] OUT CONTROL SIGNAL FOR SWITCHING POWER SUPPLY
60 MT1 OUT CONTROL FOR DVD LOADING MOTOR OF TRAY
61 LM_F/R/S OUT LOADING MOTOR DRIVE
62 CAP.M_F/R OUT CAPSTAN MOTOR REVERSE CONTROL(FWD : H / REV : L)
63 HS_FR/AGC_CTL OUT HIGH SPEED FF/REW CONTROL
64 PROG/INTER OUT INTERLACE/PROGRESSIVE SELECT
65 D.FG.IN IN DRUM FG PULSE INPUT
66 S_DET IN DETECTION OF VIDEO SYNC SIGNAL (DETECTED:H)
67 C.FG_AMP_OUT OUT CAPSTAN FG PULSE AMP OUT
68 C.FG_IN IN CAPSTAN FG PULSE INPUT
69 AMP_VREF_OUT OUT CTL PULSE AMP REFFERENCE VOLTAGE OUTPUT
70 AMP_VREF_IN IN CTL PULSE AMP REFFERENCE VOLTAGE INPUT
71 AVSS - GND
72 AMP_C -
73 AVCC - SYSTEM POWER
74 CTL[+] IN/OUT CTL(+) SIGNAL
75 CTL[-] IN/OUT CTL(-) SIGNAL
76 CTL_AMP_OUT OUT CTL PULSE OUTPUT
77 PROTECT IN CONTROL SIGNAL FOR SWITCHING POWER SUPPLY
78 END_SENSOR IN END SENSOR
79 JUST_CLK/CH_SW OUT RF CONVERTER CHANNEL SELECT
80 LED IN DETECT THE MTS MODE
81 A.ENV/ND[L] IN AUDIO PB FM ENV.INPUT/NON HiFi MODE:L
82 TRAYOPSW IN DETECTION SWITCH OF TRAY OPEN/CLOSE
83 VIDEO_ENV IN
84 AFC IN TUNING CHECK
85 START_SENSOR IN START SENSOR
86 S1OUT OUT ADD THE DC BIAS TO S1 OUTPUT
87 DIG7 OUT LED DRIVE
88 KEY1 IN OPERATION CONTROL SIGNAL
89 KEY2 IN OPERATION CONTROL SIGNAL
90 POWER_DET IN
91 LSA IN MECHANISM MODE DETECT(A)
92 LSB IN MECHANISM MODE DETECT(B)
93 LSC IN MECHANISM MODE DETECT(C)
94 LSD IN MECHANISM MODE DETECT(D)
95 DIG1 OUT LED DRIVE
96 DIG2 OUT LED DRIVE
97 DIG3 OUT LED DRIVE
98 DIG4 OUT LED DRIVE
99 DIG5 OUT LED DRIVE
100 DIG6 OUT LED DRIVE
LABELIN/OUTFUNCTION
AFC CLOCK(SYNC SEPARATOR FOR OSD/EXTERNAL CIRCUIT FOR AFC)
FILTER OUTPUT FOR HORIZONTAL SYNCHRONIZING OF OSD CHARACTER
VCR LED ON/OFF CONTROL (LED ON : L) / FSC INPUT FOR OSD
DVD LED ON/OFF CONTROL (LED ON : L) / FSC OUTPUT FOR OSD
CAPCITOR CONNECT TERMINAL FOR CTL PULSE AMP CIRCUIT
AUTO TRACKING DETECT/INPUT THE AVERAGE OF PLAYBACK VIDEO SIGNAL
DETECTION SIGNAL FOR POWER DOWN OF AC POWER SUPPLY
2-28
Page 58
V
2
SWITCH/JACK, DISPLAY, DVD BRACKET AND SWITCH CIRCUIT BOARDS
<36>SWITCH/JACK
D7001
D7005
J7191
LPB10228-001A
R7191
D7192
D7191
C7191
S7014
R7025
S7015
R7042
CN7191
<13>D
LPB10
<28>DISPLAY
LPB10228-001A
S7001
R7011
S7016S7017
S7002
C7013
R7012R7013R7014R7015
S7003
S7010
COMPONENT PARTS LOCATION GUIDE <DISPLAY> LPB10228-001A
REF.NO. LOCATION
CAPACITOR
C7011 A D 18A
C7012 B C 19B
C7013 B C 2A
C7014 B C 5A
C7021 B C 17B
C7022 B C 16B
C7023 B C 16B
C7024 B C 16B
C7025 B C 15B
C7026 B C 15B
C7027 B C 15B
REF.NO. LOCATION
CONNECTOR
CN7003 A D 20C
DIODE
D7002 A D 7C
D7006 A D 7C
D7022 B C 19B
IC
IC7002 A D 19B
REF.NO. LOCATION
TRANSISTOR
Q7001 B C 13B
Q7002 B C 13B
Q7003 B C 13B
Q7004 B C 14B
Q7005 B C 14B
Q7006 B C 14B
Q7007 B C 15B
Q7008 B C 15B
Q7009 B C 15B
Q7010 B C 15B
Q7011 B C 16B
S7011
C7014
S7004
REF.NO. LOCATION
Q7012 B C 16B
Q7013 B C 17B
Q7014 B C 17B
RESISTOR
R7001 B C 17B
R7002 B C 16B
R7003 B C 16B
R7004 B C 16B
R7005 B C 15B
R7006 B C 15B
R7007 B C 15A
R7041
D7002
REF.NO. LOCATION
R7010 B C 19A
R7011 B C 3A
R7012 B C 3A
R7013 B C 4A
R7014 B C 6A
R7015 B C 7A
R7020 B C 19A
R7021 B C 8B
R7022 B C 8B
R7023 B C 8B
R7031 B C 15A
R7032 B C 15B
S7005
D7006
R7022
S7012
R7023
R7021
S7006
REF.NO. LOCATION
R7033 B C 15B
R7034 B C 16B
R7035 B C 16B
R7036 B C 17B
R7037 B C 17B
R7040 B C 19B
R7041 B C 7C
OTHER
DI7001 A D 15B
S7001 A D 2C
S7002 A D 3A
REF.NO. LOCATION
S7003 A D 4A
S7004 A D 6A
S7005 A D 7A
S7006 A D 8A
S7010 A D 5A
S7011 A D 6C
S7012 A D 8C
S7013 A D 12C
S7016 A D 3C
S7017 A D 4C
2-29
Page 59
<13>DVD BRACKET
LPB10228-001A
<98>SWITCH
LEB10070-001A
S7013
Q7001
Q7002Q7003
Q7004
Q7005
Q7006
DI7001
Q7007
C7027
Q7008
R7031
C7026
Q7009
R7032
R7007
R7006
Q7010
C7025
R7033
R7005
Q7011
C7024
R7034
C7023
R7004
Q7012
R7003
R7035
C7022
Q7013
R7002
R7036
C7021
R7001
Q7014
R7037
C7011
D7022
C7012
R7010
IC7002
R7040
CN7003
R7020
2-30
Page 60
DVD SERVO CONTROL CIRCUIT BOARD
<99> DVD SERVO CONTROL
LVB10452-003B-COMPONENT SIDE-
Victor Company of Japan, Limited
AV & MULTIMEDIA COMPANY DIGITAL VIDEO STORAGE CATEGORY 12, 3-chome, Moriya-cho, kanagawa-ku, Yokohama, kanagawa-prefecture, 221-8528, Japan
(No.YD052)
Printed in Japan
VPT
Page 71
PARTS LIST
[HR-XVC28BUC,HR-XVC28BUS,
HR-XVC29SUC,HR-XVC29SUS]
* SAFETY PRECAUTION
Parts identified by the symbol are critical for safety. Replace only with
specified part numbers.
* BEWARE OF BOGUS PARTS
Parts that do not meet specifications may cause trouble in regard to safety
and performance. We recommend that genuine JVC parts be used.
* (x_) in a description column shows the number of the used part.
- Contents -
Exploded view of general assembly and parts list ........................ 2
VHS mechanism assembly and parts list ...................................... 5
TRAVERSE mechanism assembly and parts list .......................... 8
LOADING mechanism assembly and parts list ........................... 10
Packing materials and accessories parts list .............................. 20
(No.YD052)3-1
Page 72
Exploded view of general assembly and parts list
6
6
6
4
6
5
5
Block No. M1MM
VHS MECHANISM ASSY<M2>
22
24
MAIN BOARD ASSY<03>
1
16
1A
j
j
1C
1B
j
22
j
j
TU6001
10
j
21
9
f
e
JS3001
c
i
i
21
24
25
14
25
25
15
m
i
23
22
i
i
27
i
UP
24
m
c
b
13
13
12
d
e
f
17
26
j
c
j
c
a
a
i
i
i
a
a
11
i
20
20
7
d
b
d
A
d
17
d
20
8
d
18
19
13
DVD BRACKET BOARD ASSY<13>
16
3
3-2(No.YD052)
Page 73
CN2001
CN7103
CN7191
CN7103
from FRONT PANEL
(JACK CN7191)
SWITCH/JACK BOARD ASSY<36>
2
WR2
CN7191
WR1
B
2
CN7003
A/C HEAD
CN3102
BOTTOM SIDE
CN7302
CN1
CN503
WR3
CN501
WR4
CN7301
WR5
CN3301
DISPLAY BOARD ASSY<28>
2
2
2
2
2
DVD UNIT
Z
FITTING
DVD UNIT
Z
Z-Z SECTION
FITTING's hooks hold DVD UNIT.
DRAWING FROM DIRECTION A
FITTING
Z
Z
NOTE) WHEN YOU FIX ANY
TOP SIDE
PWB WITH THE SCREW.
PUT IT ON THE JIGS.
NOTE) FFC WIRE SHOULD BE POSITIONED
BELLOW CASSETTE DOOR.
(FOR AVOID FFC WIRE DISTURB CASSETTE
IN AND OUT.)
4LP10488-002CTOP COVERC,D
5QYSBSG3006MATAP SCREWM3 x 6mm TOP SIDE(x2)A,B
5QYSBSG3006NATAP SCREWM3 x 6mm TOP SIDE(x2)C,D
6QYSBSG3006MATAP SCREWM3 x 6mm TOP REAR(x6)A,B
6QYSBSG3006NATAP SCREWM3 x 6mm TOP REAR(x6)C,D
7LP21190-004AFITTINGA,B
7LP21190-005AFITTINGC,D
8LP41077-002ALABEL(CAUTION)
9PDV2531DDRUM FINAL ASSY
14LP21178-023AREAR COVER
15QYSBSG3006MATAP SCREWM3 x 6mm REAR COVER
16LP31348-001AFOOT(x2)
17LP30002-0E5ASPACER(x2)
18LP31392-001ABRACKET
19QYSDSF2608ZATAP SCREWM2.6 x 8mm BRACKET
20QYSBSG3010ZATAP SCREWM3 x 10mm DVD UNIT(x3)
21QYSPSPD3008ZASCREWM3 x 8mm DRUM(x3)
22LP31391-002ASPECIAL SCREWMECHANISM(x3)
23LP31391-001ASPECIAL SCREWHOUSING
24LP31391-001ASPECIAL SCREWMAIN(x3)
25QYTDSF3008MATAP SCREWM3 x 8mm JACK(x4)
26PQ44695-1-1EARTH PLATE
27LP31345-001AEARTH PLATE
WR1QUQ112-2212CG-EFFC WIREDISPLAY CN7003-MAIN CN3102
WR2QUQ112-1010CG-EFFC WIRESWITCH/JACK CN7191-MAIN CN7103
WR3QUQ210-1916CC-EFFC WIREDVD UNIT CN501-MAIN CN7301
WR4QUQ210-1716CC-EFFC WIREDVD UNIT CN503-MAIN CN7302
WR5QUQ210-0510CC-EFFC WIREDVD UNIT CN1-MAIN CN3301
MARK
3-4(No.YD052)
Page 75
VHS mechanism assembly and parts list
112
AA
124
128
Block No. M2MM
127
141
AA
110
AA
118
77
76
AA
122
130
140
72
71
AA
73
75
37
17
AA
36
78
121
74
105
88
BB
90
79
89
21
4
AA
BB
38
107
90
BB
89
AA
AA
Not used
137
151
123
125
112
126
119
111
120
117
115
AA
56
52
55
3
53
58
86
91
107
80
26
83
81
105
AA
82
113
114
A/C HEAD
BOARD ASSY <12>
WR2
57
42
58
116
50
44
49
WR1
134
102
AA
AA
69
70
PMD0048A-C
BB
AA
95
AA
96
93
94
ClassificationPart No.Symbol in drawing
GreaseKYODO-SH-JBAA
OilCOSMO-HV56BB
BB
15
22
39
68
AA
61
60
63
66
AA
24
18
19
20
LOADING MOTOR
BOARD ASSY <55>
16
AA
AA
AA
64
65
WR3
67
62
59
AA
23
NOTE:The section marked in AA and BB
indicate lubrication and greasing areas.
85
87
AA
AA
46
47
(No.YD052)3-5
Page 76
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
VHS mechanism
Symbol No.Part No.Part NameDescriptionLocal
3LP40097-002EGUIDE POLE CAP
4NAH0004-001FULL ERASE HEAD
15LP30958-001BLOADING GEAR BASE
16QYTPST2620ZATAP SCREWM2.6 x 20mm(x2)
17QYTDST2606ZATAP SCREWM2.6 x 6mm
18LP40798-002ALOADING GEAR(SUPPLY) ASSY
19LP40837-001ATORSION SPRING(SUPPLY)
20LP40903-004AFIXING PLATE
21LP40806-001DPOLE BASE ASSY(SUPPLY)
22LP30959-001BLOADING GEAR
23LP40802-002ALOADING GEAR(TAKE UP) ASSY
24LP40838-001ATORSION SPRING(TAKE UP)
26LP40808-001EPOLE BASE ASSY(TAKE UP)
36LP21055-001GTAKE UP LEVER
37LP40943-001ATENSION SPRING
38LP40859-001DT-UP HEAD
39LP30961-001CLID GUIDE
42LP40810-003APINCH ROLLER ARM ASSY
44LP40840-001ETORSION SPRING
46LP30963-002APRESS LEVER
47PQM30017-24SLIT WASHER
49LP40813-001DGUIDE ARM ASSY
50LP40841-001ATORSION SPRING
52NAH0005-001AC HEAD
53LP30965-003AHEAD BASE
55LP40842-001DCOMPRESSION SPRING
56QYTDST2006MATAP SCREWM2 x 6mm
57LP41036-002AA/C ADJ.SCREW(x2)
58QYTDST2606ZATAP SCREWM2.6 x 6mm(x2)
59QAR0289-001LOADING MOTOR
60QYTPSP3003ZASCREWM3 x 3mm(x2)
61LP21056-002JMOTOR BRACKET
62QYTPST2620ZATAP SCREWM2.6 x 20mm
63LP40814-001BWORM BEARING
64LP21044-001ECONTROL CAM
65PQM30017-24SLIT WASHER
66LP40815-001AWORM GEAR
67LP40816-001BHELICAL GEAR
68LP40817-001ACONNECT GEAR
69LP10400-001NCONTROL PLATE
70LP40843-001ATORSION SPRING
71LP40818-002ATENSION ARM ASSY
72LP40844-001FTENSION SPRING
73LP21045-001ETENSION ARM BASE
74LP40821-001ATENSION BAND ASSY
75LP30967-001BBAND HOLDER-1
76LP30968-001CBAND HOLDER-2
77LP40822-002BADJUST PIN
78LP31000-005ETENSION ARM LEVER
79LP21046-001CMAIN BRAKE(TAKE UP)
80LP40824-001ABAND BRAKE ASSY
81LP30969-002BBRAKE LEVER
82LP30003-033CTENSION SPRING
83LP30003-035CTENSION SPRING
85QAR0322-002CAPSTAN MOTOR
86QYTPSG2606ZATAP SCREWM2.6 x 6mm(x3)
87LP30005-010ABELTCAPSTAN MOTOR
88LP30970-001BIDLER ARM
89LP40828-004AIDLER GEAR 1(x2)
90LP40829-003AIDLER GEAR 2(x2)
91LP31014-002AWIRE HOLDER
93LP40934-001BCLUTCH UNIT
94PQM30017-47SLIT WASHER
95LP30973-001ADIRECT GEAR
96LP40939-001ACOMPRESSION SPRING
102LP30974-001CCHANGE LEVER
105LP21049-001AREEL DISK(x2)
107LP30017-004ASPACERREEL DISK(x2)
110LP10401-001LSIDE FRAME(L)
111LP10402-001MSIDE FRAME(R)
112QYTDST2606ZATAP SCREWM2.6 x 6mm(x2)
113LP40917-001DTORSION SPRING
114LP30976-002BSIDE PLATE
115LP30977-002ELIMIT PLATE
116LP40846-001CLIMIT SPRING
117LP31100-002ADRIVE LEVER
118LP30978-001BDRIVE ARM(L)
119LP30979-001SDRIVE ARM(R)
120LP40847-001BTORSION SPRING
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
MARK
Block No. [M][2][M][M]
3-6(No.YD052)
Page 77
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
Symbol No.Part No.Part NameDescriptionLocal
121LP30980-002ACONNECT PLATE
122LP10403-001CSIDE HOLDER(L)
123LP10404-001FSIDE HOLDER(R)
124LP30983-002ALOCK LEVER(L)
125LP30984-002ALOCK LEVER(R)
126LP40924-001DTENSION SPRING
127LP40972-001AEARTH SPRING(1)
128LP40857-001BEARTH SPRING(2)
130LP30981-003BCASSETTE HOLDER ASSY
134LP21051-002CREC SAFETY LEVER
137LP21052-002ATOP FRAME
140LP41153-001AEARTH SPRING(3)
141LP40924-001DTENSION SPRING
151LP30985-002MDOOR OPENER
WR1WJT0117-001AE-CARD WIREDRUM
WR2WJT0067-001BE-CARD WIREA/C HEAD CN2001
WR3WJS0022-001AE-FL/RB WIRELOADING MOTOR
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
MARK
(No.YD052)3-7
Page 78
DVD Traverse mechanism assembly and parts list
A
16
28
BEND WIRE AT THE PWB EDGE
AFTER INSERTING WIRE
CN101
28
CN101
CN201
Block No. M3MM
Grease
JVG-31N
CFD-4007ZY2
1401C
27
27
25
A
24
DVD SERVO CONTROL BOARD ASSY <99>
27
15
14
12
26
BACK SIDE
3
6
13
23
22
3
17
3-8(No.YD052)
2
5
21
4
11
1
LETTER SIDE
11
9
8
7
10
20
19
18
63.3mm 0.1mm
Page 79
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
DVD Traverse mechanism
Block No. [M][3][M][M]
Symbol No.Part No.Part NameDescriptionLocal
1LV21814-001AMECHA BASE
2LE20731-002ASPINDLE BASE
3QYSDST2605MTAP SCREWM2.6 x 5mm(x2)
4LE40931-001ASHAFT
5LE40995-001ABAR SPRING
6QYSPSTU2080MTAP SCREWM2 x 8mm
7LE20730-002AFEED HOLDER
8QAR0165-001FEED MOTOR
9LV41510-001AFEED GEAR T
10QYSPSPU2040MSCREWM2 x 4mm(x2)
11QYSDST2605MTAP SCREWM2.6 x 5mm(x3)
12QAL0577-001P.UP
13LE20732-001ASW ACTUATOR
14LE31093-001ALEAD SPRING
15QYSPSFU1740ZTAP SCREWM1.7 x 4mm(x2)
16QUQ105-2412ACFFC WIRE24pin 12cm
17LE40931-001ASHAFT
18LE40855-002AFEED GEAR E
19LV41517-003ALEAD SCREW
20LE40930-001AFEED GEAR M
21LE40928-002ATHURUST SPRING
22LE40927-002APLATE
23QYSDST2614ZTAP SCREWM2.6 x 14mm
24QAR0334-001S.MOTOR
25QYSPSPU1760ZSCREWM1.7 x 6mm(x3)
26LE40994-001AT.SPRING
27LE40858-002ASPECIAL SCREW(x4)
28QYSDST2004ZTAP SCREWM2 x 4mm(x2)
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
MARK
(No.YD052)3-9
Page 80
DVD Loading mechanism assembly and parts list
Block No. M4MM
20
18
(All circumferences)
19
17
11
12
9
5
15
_
+
7.95mm
3
0.10mm
24
22
14
13
24
22
16
2
4
Back side
24
23
Grease
JVG-31N
JVS-1003
1
24
25
23
8
3-10(No.YD052)
10
7
DVD TRAVERSE
MECHANISM ASSY<M3>
a
b
6
SWITCH
BOARD
ASSY <98>
a
b
_
+
Page 81
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
DVD Loading mechanism
Block No. [M][4][M][M]
Symbol No.Part No.Part NameDescriptionLocal
1LE10275-006ALOADING BASE
2LE31043-001APULLEY GEAR
3LE31042-001AMIDDLE GEAR
4LE31044-001AIDLE GEAR
5LE20665-005ASLIDE CAM
6LE20666-003AELEVATOR
7LE10276-002ATRAY
8LE31045-001ABUSHING
9LE40898-001ASHAFT
10QYSSSF2008ZTAP SCREWM2 x 8mm
11QYSDSF2008ZTAP SCREWM2 x 8mm(x2)
12LE40937-003ALEAF SPRING
13QAR0197-001MOTOR
14LV42087-002AMOTOR PULLEY
15QYSPSPU1730ZSCREWFOR MOTOR(x2)
16LE40897-001ABELT
17LE31046-003ACLAMPER
18LV42930-003AP.C.MAGNET
19LE40899-001AYOKE
20LE40906-001ASPECIAL SCREW
22LE40900-003AINSULATORREAR(x2)
23LE40900-005AINSULATORFRONT(x2)
24LE40901-001ASPECIAL SCREW(x4)
25QYWFM419025WASHER9mm/4.1mm x 0.25mm
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
MARK
(No.YD052)3-11
Page 82
Electrical parts list
Main board
Block No. [0][3]
Symbol No.
PW1LPA10280-01BMAIN BOARD ASSY
IC1JCP8060-NVAIC
IC2201AN3663FBPIC
IC3001MN101D10GJJIC(MCU)MASK
IC3004LPN0956-001B-01 IC(EEPROM)
IC3301LB1641IC
IC3302
IC5201UTCTL431-TIC
IC5201 or TL431/A/-TIC
IC5301UTCTL431-TIC
IC5302MM1565AF-XIC
IC7102MM1507XN-XIC
IC7104BH7868FS-XIC
IC7501
IC7501 or 74VHCT08ASJ-X IC
IC8001HA17558AF-XIC
IC8001 or RC4558D-XIC
*The VCR goes to jig RCU mode after replacing the EEPROM and the VCR does not accept some RCU command.
Therefore please set the VCR to the user RCU mode after replacing the EEPROM.
The method of setting the VCR to the user RCU mode is written on the service manual.
Page 83
Symbol No.
Part No.Part NameDescriptionLocal
Symbol No.
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
Part No.Part NameDescriptionLocal
MARK
C5NCB31CK-104XC CAPACITOR0.1uF 16V K
C6NCB31CK-104XC CAPACITOR0.1uF 16V K
C7NCB31CK-104XC CAPACITOR0.1uF 16V K
C8NCF31AZ-105XC CAPACITOR1uF 10V Z
C9QEKJ1HM-225ZE CAPACITOR2.2uF 50V M
C11NCF31AZ-105XC CAPACITOR1uF 10V Z
C12NCF31AZ-105XC CAPACITOR1uF 10V Z
C14NCF31AZ-105XC CAPACITOR1uF 10V Z
C15NCB31CK-104XC CAPACITOR0.1uF 16V K
C17NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C19NCB31CK-104XC CAPACITOR0.1uF 16V K
C20NCB31CK-104XC CAPACITOR0.1uF 16V K
C22NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C24NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C25QEKJ1HM-335ZE CAPACITOR3.3uF 50V M
C26QEKJ1EM-106ZE CAPACITOR10uF 25V M
C27NCB31EK-103XC CAPACITOR0.01uF 25V K
C30NCB31HK-331XC CAPACITOR330pF 50V K
C31QEKJ0JM-476ZE CAPACITOR47uF 6.3V M
C33QEKJ1EM-106ZE CAPACITOR10uF 25V M
C34NCB31EK-103XC CAPACITOR0.01uF 25V K
C35NCB31EK-103XC CAPACITOR0.01uF 25V K
C36QEKJ1HM-105ZE CAPACITOR1uF 50V M
C37NDC31HJ-4R0XC CAPACITOR4pF 50V J
C40NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C41NCB31CK-104XC CAPACITOR0.1uF 16V K
C43QEKJ1HM-335ZE CAPACITOR3.3uF 50V M
C44QEKJ1HM-225ZE CAPACITOR2.2uF 50V M
C45NCB31EK-472XC CAPACITOR4700pF 25V K
C46NCB31CK-333XC CAPACITOR0.033uF 16V K
C47QEKJ1HM-474ZE CAPACITOR0.47uF 50V M
C48NCB31EK-223XC CAPACITOR0.022uF 25V K
C49QEKJ1HM-475ZE CAPACITOR4.7uF 50V M
C56NCB31CK-104XC CAPACITOR0.1uF 16V K
C57NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C58NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C59NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C60NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C77NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C78NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C201QERF0JM-476ZE CAPACITOR47uF 6.3V M
C202NCB31CK-104XC CAPACITOR0.1uF 16V K
C203QERF1HM-105Z E CAPACITOR1uF 50V M
C205NDC31HJ-101XC CAPACITOR100pF 50V J
C207NCF31AZ-105XC CAPACITOR1uF 10V Z
C215NRSA63J-0R0XMG RESISTOR0Ω 1/16W J
C216NRSA63J-0R0XMG RESISTOR0Ω 1/16W J
C2001QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2002QEKJ1HM-105Z E CAPACITOR1uF 50V M
C2005QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2006NCB31EK-682XC CAPACITOR6800pF 25V K
C2007QEKJ1CM-226Z E CAPACITOR22uF 16V M
C2008QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2009NCB31HK-102XC CAPACITOR1000pF 50V K
C2010NCB31HK-681XC CAPACITOR680pF 50V K
C2011QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2012QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2051NCB31HK-331XC CAPACITOR330pF 50V K
C2052QFV61HJ-823ZMF CAPACITOR0.082uF 50V J
C2053NCB31HK-472XC CAPACITOR4700pF 50V K
C2054NCB31EK-223XC CAPACITOR0.022uF 25V K
C2055QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2201QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2202QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2203QEKJ1HM-475Z E CAPACITOR4.7uF 50V M
C2204QEKJ0JM-336ZE CAPACITOR33uF 6.3V M
C2205QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2206QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2207NCB31EK-153XC CAPACITOR0.015uF 25V K
C2208NCB31EK-153XC CAPACITOR0.015uF 25V K
C2209QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2210QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2211QEKJ0JM-336ZE CAPACITOR33uF 6.3V M
C2212QEKJ0JM-476ZE CAPACITOR47uF 6.3V M
C2214QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2215QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2218QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2219QEKJ1CM-226Z E CAPACITOR22uF 16V M
C2220QEKJ1EM-106ZE CAPACITOR10uF 25V M
C2221NCB31EK-223XC CAPACITOR0.022uF 25V K
C2222NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C2234NCB30JK-105XC CAPACITOR1uF 6.3V K
C2235NCB30JK-105XC CAPACITOR1uF 6.3V K
C2251NCB31EK-103XC CAPACITOR0.01uF 25V K
C2252NCB31EK-103XC CAPACITOR0.01uF 25V K
C2253NCB31EK-103XC CAPACITOR0.01uF 25V K
C2254QEKJ0JM-476ZE CAPACITOR47uF 6.3V M
C2255NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C2256NCB31EK-103XC CAPACITOR0.01uF 25V K
C2257NCB31EK-103XC CAPACITOR0.01uF 25V K
C2259QEKJ1HM-334ZE CAPACITOR0.33uF 50V M
C3011QEKJ1HM-475ZE CAPACITOR4.7uF 50V M
C3016NDC31HJ-180XC CAPACITOR18pF 50V J
C3017NDC31HJ-270XC CAPACITOR27pF 50V J
C3028QETN0JM-108ZE CAPACITOR1000uF 6.3V M
C3029NCF31AZ-105XC CAPACITOR1uF 10V Z
C3030QEKJ1HM-475ZE CAPACITOR4.7uF 50V M
C3035NCB31CK-223XC CAPACITOR0.022uF 16V K
C3036QERF0JM-107ZE CAPACITOR100uF 6.3V M
C3047NCB31EK-103XC CAPACITOR0.01uF 25V K
C3048NCB31EK-103XC CAPACITOR0.01uF 25V K
C3049NCB31EK-103XC CAPACITOR0.01uF 25V K
C3052NCB31EK-103XC CAPACITOR0.01uF 25V K
C3053NCB31EK-103XC CAPACITOR0.01uF 25V K
C3071QETN1HM-336Z E CAPACITOR33uF 50V M
C3301QETN1CM-107Z E CAPACITOR100uF 16V M
C3302NCB31EK-103XC CAPACITOR0.01uF 25V K
C3303NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C4001NCB31CK-104XC CAPACITOR0.1uF 16V K
C4002QERF1HM-105Z E CAPACITOR1uF 50V M
C4004QERF1AM-336Z E CAPACITOR33uF 10V M
C4006NRSA63J-0R0XMG RESISTOR0Ω 1/16W J
C4007NCB31EK-103XC CAPACITOR0.01uF 25V K
C4009NCB31HK-102XC CAPACITOR1000pF 50V K
C4010QEKJ0JM-476ZE CAPACITOR47uF 6.3V M
C4011NCF31CZ-224XC CAPACITOR0.22uF 16V Z
C4014NDC31HJ-101XC CAPACITOR100pF 50V J
C4019NCB31EK-103XC CAPACITOR0.01uF 25V K
C5001QFZ9073-683MM CAPACITOR 0.068uF AC250V M
C5002QFZ9073-223MM CAPACITOR 0.022uF AC250V M
C5003QCZ9071-101C CAPACITOR100pF AC400V K
C5004QCZ9071-472C CAPACITOR4700pF AC400V M
C5006QETM2DM-157E CAPACITOR150uF 200V M
C5101QCZ0353-101ZC CAPACITOR100pF 1kV K
C5102QCZ0136-102ZC CAPACITOR1000pF 1kV K
C5104QETN1HM-105Z E CAPACITOR1uF 50V M
C5106NCB31HK-821XC CAPACITOR820pF 50V K
C5108NCB31HK-104XC CAPACITOR0.1uF 50V K
C5109NCB31HK-183XC CAPACITOR0.018uF 50V K
C5202QEZ0564-128E CAPACITOR1200uF 10V M
C5204QEZ0564-128E CAPACITOR1200uF 10V M
C5205QEZ0655-397ZE CAPACITOR390uF 16V M
C5207QETN2AM-475Z E CAPACITOR4.7uF 100V M
C5209QETN1AM-107Z E CAPACITOR100uF 10V M
C5210QETN1CM-107Z E CAPACITOR100uF 16V M
C5211QETN1AM-107Z E CAPACITOR100uF 10V M
C5214NCB31AK-154XC CAPACITOR0.15uF 10V K
C5301QETN1AM-107Z E CAPACITOR100uF 10V M
C5303QETN1HM-225Z E CAPACITOR2.2uF 50V M
C5304QETN1CM-107Z E CAPACITOR100uF 16V M
C5305QETN1AM-107Z E CAPACITOR100uF 10V M
C5306NCF31AZ-105XC CAPACITOR1uF 10V Z
C5307NCB31HK-471XC CAPACITOR470pF 50V K
C5308NCB30JK-105XC CAPACITOR1uF 6.3V K
C5309QETN1AM-107Z E CAPACITOR100uF 10V M
C5310QETN1AM-107Z E CAPACITOR100uF 10V M
C5314QETN1CM-107Z E CAPACITOR100uF 16V M
C6013NCB31HK-102XC CAPACITOR1000pF 50V K
C6021NDC31HJ-151XC CAPACITOR150pF 50V J
C6053NDC31HJ-120XC CAPACITOR12pF 50V J
C6054NDC31HJ-100XC CAPACITOR10pF 50V J
C6501NCB31CK-104XC CAPACITOR0.1uF 16V K
C6502QEKJ1EM-106ZE CAPACITOR10uF 25V M
C6503QEKJ1HM-105ZE CAPACITOR1uF 50V M
C6504NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C6505QEKJ1HM-335ZE CAPACITOR3.3uF 50V M
(No.YD052)3-13
Page 84
Symbol No.
Part No.Part NameDescriptionLocal
Symbol No.
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
Part No.Part NameDescriptionLocal
MARK
C6508NCB31EK-223XC CAPACITOR0.022uF 25V K
C6509NCB31CK-104XC CAPACITOR0.1uF 16V K
C6511NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C6512NCB31EK-223XC CAPACITOR0.022uF 25V K
C6513QEKJ1HM-225ZE CAPACITOR2.2uF 50V M
C6514NCB31EK-223XC CAPACITOR0.022uF 25V K
C6515QEKJ1HM-335ZE CAPACITOR3.3uF 50V M
C6516QEKJ1EM-475ZE CAPACITOR4.7uF 25V M
C6517NCB31AK-224XC CAPACITOR0.22uF 10V K
C6532NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C7114QETJ0JM-477ZE CAPACITOR470uF 6.3V M
C7117QEKJ1EM-106ZE CAPACITOR10uF 25V M
C7118QEKJ1EM-106ZE CAPACITOR10uF 25V M
C7119NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C7129NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C7131NCB31EK-103XC CAPACITOR0.01uF 25V K
C7132NCF31AZ-105XC CAPACITOR1uF 10V Z
C7133QEKJ1CM-226ZE CAPACITOR22uF 16V M
C7134NCF31AZ-105XC CAPACITOR1uF 10V Z
C7135NCF31AZ-105XC CAPACITOR1uF 10V Z
C7136NCF31AZ-105XC CAPACITOR1uF 10V Z
C7146QETJ0JM-477ZE CAPACITOR470uF 6.3V M
C7148QETJ0JM-477ZE CAPACITOR470uF 6.3V M
C7150QETJ0JM-477ZE CAPACITOR470uF 6.3V M
C7502NCF31EZ-104XC CAPACITOR0.1uF 25V Z
C7503QEKJ1HM-475ZE CAPACITOR4.7uF 50V M
C7504NDC31HJ-151XC CAPACITOR150pF 50V J
C7506NCB31CK-104XC CAPACITOR0.1uF 16V K
C7507QEKJ0JM-107ZE CAPACITOR100uF 6.3V M
C7508NCB31CK-104XC CAPACITOR0.1uF 16V K
C8001QEKJ1CM-226ZE CAPACITOR22uF 16V M
C8002QEKJ1CM-226ZE CAPACITOR22uF 16V M
C8003NCB31HK-821XC CAPACITOR820pF 50V K
C8004NCB31HK-821XC CAPACITOR820pF 50V K
C8005NCB31HK-821XC CAPACITOR820pF 50V K
C8006NCB31HK-821XC CAPACITOR820pF 50V K
C8007QEKJ1CM-226ZE CAPACITOR22uF 16V M
C8008QEKJ1CM-226ZE CAPACITOR22uF 16V M
C8052QEKJ0JM-107ZE CAPACITOR100uF 6.3V M
C101NCB31CK-104XC CAPACITOR0.1uF 16V K
C102NCB31CK-104XC CAPACITOR0.1uF 16V K
C103NCB31CK-104XC CAPACITOR0.1uF 16V K
C104NCB31CK-104XC CAPACITOR0.1uF 16V K
C105NEA70JM-476XE CAPACITOR47uF 6.3V M
C106NBE20JM-226X
C107NCB31CK-104XC CAPACITOR0.1uF 16V K
C108NEA70JM-476XE CAPACITOR47uF 6.3V M
C111NCB31CK-104XC CAPACITOR0.1uF 16V K
C204NCB31CK-104XC CAPACITOR0.1uF 16V K
C205NCB31HK-271XC CAPACITOR270pF 50V K
C206NDC31HJ-151XC CAPACITOR150pF 50V J
C208NCB31HK-561XC CAPACITOR560pF 50V K
C211NCB31HK-223XC CAPACITOR0.022uF 50V K
C212NCB31CK-103XC CAPACITOR0.01uF 16V K
C217NCB31CK-104XC CAPACITOR0.1uF 16V K
C251NCB31AK-474XC CAPACITOR0.47uF 10V K
C253NCB31HK-561XC CAPACITOR560pF 50V K
C255NCB31CK-153XC CAPACITOR0.015uF 16V K
C256NCB31CK-104XC CAPACITOR0.1uF 16V K
C257NCB31HK-822XC CAPACITOR8200pF 50V K
C258NCB31CK-153XC CAPACITOR0.015uF 16V K
C259NCB31CK-153XC CAPACITOR0.015uF 16V K
C260NCB31EK-223XC CAPACITOR0.022uF 25V K
C261NCB31EK-223XC CAPACITOR0.022uF 25V K
C262NCB31EK-223XC CAPACITOR0.022uF 25V K
C264NEA70JM-227XE CAPACITOR220uF 6.3V M
C301NEA70GM-227X E CAPACITOR220uF 4V M
C302NEA70GM-476X E CAPACITOR47uF 4V M
C303NEA70GM-476X E CAPACITOR47uF 4V M
C304NCB31CK-105XC CAPACITOR1uF 16V K
C305NCB31CK-104XC CAPACITOR0.1uF 16V K
C306NCB31CK-104XC CAPACITOR0.1uF 16V K
C307NCB31CK-104XC CAPACITOR0.1uF 16V K
C308NCB31CK-104XC CAPACITOR0.1uF 16V K
C309NCB31CK-104XC CAPACITOR0.1uF 16V K
C310NCB31CK-104XC CAPACITOR0.1uF 16V K
C311NCB31CK-104XC CAPACITOR0.1uF 16V K
C312NCB31CK-104XC CAPACITOR0.1uF 16V K
C313NCB31CK-104XC CAPACITOR0.1uF 16V K
C314NCB31CK-104XC CAPACITOR0.1uF 16V K
C315NCB31CK-104XC CAPACITOR0.1uF 16V K
C316NCB31CK-104XC CAPACITOR0.1uF 16V K
C317NCB31CK-104XC CAPACITOR0.1uF 16V K
C318NCB31CK-104XC CAPACITOR0.1uF 16V K
C319NCB31CK-104XC CAPACITOR0.1uF 16V K
C320NCB31CK-104XC CAPACITOR0.1uF 16V K
C321NCB31CK-104XC CAPACITOR0.1uF 16V K
C322NCB31CK-104XC CAPACITOR0.1uF 16V K
C323NCB31CK-104XC CAPACITOR0.1uF 16V K
C324NCB21CK-105XC CAPACITOR1uF 16V K
C325NDC31HJ-180XC CAPACITOR18pF 50V J
C326NDC31HJ-150XC CAPACITOR15pF 50V J
C327NCB31HK-103XC CAPACITOR0.01uF 50V K
C330NCB31CK-104XC CAPACITOR0.1uF 16V K
C331NCB31CK-333XC CAPACITOR0.033uF 16V K
C332NCB31CK-104XC CAPACITOR0.1uF 16V K
C333NCB31CK-104XC CAPACITOR0.1uF 16V K
C334NCB31CK-104XC CAPACITOR0.1uF 16V K
C335NCB31CK-104XC CAPACITOR0.1uF 16V K
C337NCB31CK-183XC CAPACITOR0.018uF 16V K
C338NCB31HK-562XC CAPACITOR5600pF 50V K
C339NCB31CK-104XC CAPACITOR0.1uF 16V K
C340NCB21CK-105XC CAPACITOR1uF 16V K
C341NCB30JK-105XC CAPACITOR1uF 6.3V K
C347NCB31CK-104XC CAPACITOR0.1uF 16V K
C348NCB31CK-104XC CAPACITOR0.1uF 16V K
C349NCB31CK-104XC CAPACITOR0.1uF 16V K
C350NCB31CK-104XC CAPACITOR0.1uF 16V K
C356NCB21CK-105XC CAPACITOR1uF 16V K
TA E CAPACITOR
22uF 6.3V M
(No.YD052)3-17
Page 88
Symbol No.
Part No.Part NameDescriptionLocal
Symbol No.
MODEL
HR-XVC28BUC
HR-XVC28BUSAB
MARK
MODEL
HR-XVC29SUC
HR-XVC29SUSCD
Part No.Part NameDescriptionLocal
MARK
C359NCB31CK-104XC CAPACITOR0.1uF 16V K
C371NCB21CK-105XC CAPACITOR1uF 16V K
C374NCB31CK-104XC CAPACITOR0.1uF 16V K
C391NCB31CK-104XC CAPACITOR0.1uF 16V K
C392NCB31CK-104XC CAPACITOR0.1uF 16V K
C455NCB31CK-103XC CAPACITOR0.01uF 16V K
C505NDC31HJ-330XC CAPACITOR33pF 50V J
C506NDC31HJ-330XC CAPACITOR33pF 50V J
C507NDC31HJ-330XC CAPACITOR33pF 50V J
C508NDC31HJ-330XC CAPACITOR33pF 50V J
C509NDC31HJ-330XC CAPACITOR33pF 50V J
C510NDC31HJ-330XC CAPACITOR33pF 50V J
C547NCB31CK-104XC CAPACITOR0.1uF 16V K
C551NCB31CK-104XC CAPACITOR0.1uF 16V K
C552NCB31CK-104XC CAPACITOR0.1uF 16V K
C553NBE20JM-226X
TA E CAPACITOR
22uF 6.3V M
C554NCB31CK-104XC CAPACITOR0.1uF 16V K
C555NCB31CK-104XC CAPACITOR0.1uF 16V K
C556NCB31CK-104XC CAPACITOR0.1uF 16V K
C557NCF31AZ-105XC CAPACITOR1uF 10V Z
C558NCB31CK-104XC CAPACITOR0.1uF 16V K
C559NCB31CK-104XC CAPACITOR0.1uF 16V K
C701NCB31CK-104XC CAPACITOR0.1uF 16V K
C704NEA70JM-227XE CAPACITOR220uF 6.3V M
C706NEA71CM-106XE CAPACITOR10uF 16V M
C707NCB31CK-104XC CAPACITOR0.1uF 16V K
C721NCB31HK-102XC CAPACITOR1000pF 50V K
C902NCB31CK-104XC CAPACITOR0.1uF 16V K
C903NCB31CK-104XC CAPACITOR0.1uF 16V K
C904NCB31CK-104XC CAPACITOR0.1uF 16V K
C906NCB31CK-104XC CAPACITOR0.1uF 16V K
C907NRSA02J-100XMG RESISTOR10Ω 1/10W J