All necessary settings are described in this operating
manual. If any difficulties should nevertheless arise
during startup, please do not tamper with the sensor
in any way. By doing so, you could endanger your
rights under the instrument warranty! Please contact
the nearest subsidiary or the head office in such a
case.
Please read this operating manual before placing the
instrument in service. Keep the operating manual in a
place which is accessible to all users at all times.
For technical questions
Service hotline:
Phone:+49 661 6003-300 or
+49 661 6003-653
Fax:+49 661 6003-881300 or
+49 661 6003-881653
E-mail:service@jumo.net
More information can be found in JUMO white paper
631, "Information on measuring ammonia in water".
4
2 Description
2.1 Areas of application
Refrigerating plants (such as indoor ice rinks, cold stores, etc.),
frequently use ammonia as the refrigerant. Ammonia (NH
) is a
3
toxic, pungent-smelling and colorless gas. These refrigerating
plants are monitored for escaping ammonia (leakage).
To do this, tubes and syste m par ts f il le d wi th w at er a re m on it ore d to
determine whether ammonia (NH
) has penetrated (dissolved in the
3
water). The ammonia-sensitive sensor type 201040 described here
is suitable for this purpose.
Attention:
The ammonia-sensitive sensor type 201040
described here is not suitable for detecting ammonia
in ambient air!
2.2 Function
A gas-permeable, hydrophobic PTFE film makes the connection
between the process medium and the sensor electrolyte. A
hydrogen ion-selective electrode is immersed in the electrolyte.
Ammonia escaping through the PTFE film changes the pH value of
the electrolyte. The NH
concentration in the process medium can
3
be measured in this manner. The electrolyte contains ammonium
(NH
+
) ions, with which the sample gas is in chemical equilibrium.
4
2.3 Operating conditions
The concept of an ammonia leakage monitoring system must
ensure that the escaping coolant reaches the ammonia-sensitive
sensor type 201040 quickly.
The sensor must be installed in a quick-change fitting part no.
00379538. The porous PTFE washer in this quick-change fitting
must not be clogged! If it is, ammonia leakage will be detected too
late or not at all. If necessary the customer should install a filter
upstream from the sensor.
The flow rate of the monitoring circuit must be checked at regular
intervals! A few drops over several hours is sufficient. If the flow rate
5
is too low the porous PTFE washer must be replaced, see Section
9.1.1 "Replacing the PTFE washer in the quick-change fitting",
page 22.
Attention:
The process medium must not contain any
substances that could damage the membrane (such
as oils, greases, particles of dirt or surfactants).
The porous PTFE washer in the quick-change fitting
20/00379538 that matches the sensor must not be
clogged!
A measurement taken in a mixture of ice and water is
not diagnostically conclusive!
2.4 Coolant monitoring
The following components are required for coolant monitoring:
-Ammonia-sensitive sensor, type 201040/65-22-120/000,
part no. 00440655 (JUMO type sheet 201040)
or
Ammonia-sensitive sensor for low-temperature applications,
type 201040/65-22-120/854, part no. 00440655
(JUMO type sheet 201040)
-PP manual quick-change fitting, type 202820/107-66/87,
part no. 00379538 (JUMO type sheet 202820)
-JUMO AQUIS 500 pH transmitter/controller,
type 202560/20-888-000-310-000-23/000, part no. 00480050
(JUMO type sheet 202560)
or
JUMO dTRANS pH 02 transmitter/controller,
type 202551/01-8-01-4-0-00-23, part no. 00560379
(JUMO type sheet 202560)
- Low-noise coaxial cable 1.5m long, part no. 00085154
(JUMO type sheet 202990)
or
6
Low-noise coaxial cable 5 m long, part no. 00307298
or
Low-noise coaxial cable 10 m long, part no. 00082649
Note:
Use of an impedance converter (type 202995/00-91,
part no. 00300455, JUMO type sheet 202995) is
recommended at low temperatures as the electrical
resistance of the ammonia sensor's glass membrane
increases sharply.
3 Technical data
Measuring range:0.01 to 9999 ppm (= mg/l) NH
Tempe ra tu re r an ge:
Standard version0 to +50°C
Extra code 854 (low temperature) -8 to +50°C
pH range:7.5 to 14
Fitting length:120 mm
Diameter:12 mm
Connection:Pg 13.5 screw-on head
Medium pressure
Sensor in quick-change fitting
Part no. 00379538 installed2 to 3 bar (max. 6 bar)
Sensor free1 bar abs. (atmospheric
pressure)
Suitable transmitter:JUMO AQUIS 500 pH or
3
JUMO dTRANS pH 02
7
4 Operating range
(1)
(2)
Only NH
The ratio of NH
NH
(ammonia) is 1:1
3
+
ions (ammonium) are present
4
+
ions (ammonium) and
4
(3)Only NH3 (ammonia) is present
Note:
The presence of ammonia in the process medium is
heavily dependent on its pH value (see above
diagram).
In the acidic range, there will be a predominance of
ammonium (NH
+
) ions that are not detected by the
4
sensor!
At approx. 9.3 pH, the concentration ratio of ammonia
(NH
) and ammonium (NH
3
It is only in the heavily alkaline range that ammonia is
+
) is about 1:1.
4
predominant.
8
4.1 Output signal
NH+ H ONH
324
+-
+ OH
U = U- S
*
log [NH ]
03
(1)
The electrochemical process in the thin electrolyte layer upstream
from the glass membrane proceeds as per the following equation:
Hydrogen ions are taken out of the electrolyte, moving the pH value
up to higher values.
The correlation between ammonia concentration [NH
U, is given by the Nernst equation:
In the ideal case, the value of slope S is 58.16 mV/decade (at 20°C).
is the cell zero point.
U
0
The dependence levels off as the ammonia concentration falls, that
is, there is a lower detection limit. The following diagram shows a
typical characteristic line.
] and voltage
3
9
4.2 Design
(1) Reference system lead
(2) Electrolyte
(3) Internal buffer
(4) Internal lead (Ag/AgCl)
(5) Glass membrane (hydrogen ion-
(6) Gas-permeable PTFE film
(Ag/AgCl)
selective) with a thin electrolyte layer
Reference system lead (1) is immersed in the electrolyte and
provides a fixed reference potential for measurement as an Ag/AgCl
electrode, with the chloride ions contained in the electrolyte.
If the sample solution contains ammonia (NH
), for example, the
3
gas diffuses through the gas-permeable PTFE film (6) until the
partial pressure of the ammonia is the same on both sides of the
film (6). As the partial pressure changes, so does the pH value in the
thin layer of liquid upstream from the glass membrane (5). This
process is recorded by the hydrogen ion-sensitive glass membrane
(5). As the partial pressure depends on the concentration of
ammonia in the sample solution, the pH value can be used to
determine the ammonia concentration in the solution.
10
5 Mounting
Tr 12.9 x P1.5
Pg13.5
ø12 ±0.5
156
120
12
7
Screw-on head
Hose connection
Electrode shaft
(PPO)
(silicone)
Membrane cap
(stainless steel 1.4571)
O-ring
(FPM)
Gas-permeable PTFE film
5.1 Dimensions
Note:
The sensor may only be operated in the vertical
position!
The process medium must be free of particles and
dirt!
It may be necessary for the customer to provide a
filter upstream from the quick-change fitting.
11
6 Electrical connection
A high-quality shielded cable is required to connect the ammonia
sensor to a transmitter/controller, see Section 2.4 "Coolant
monitoring", page 6.
Use of an impedance converter is recommended at low
temperatures, as the electrical resistance of the gas-sensitive
sensor's glass membrane increases sharply, Section 2.4 "Coolant
monitoring", page 6.
The sensor (1) must only be removed from (or
returned to) the storage container (3) once the union
nut (2) has been completely unscrewed!
Otherwise the sensor will be destroyed by the buildup
of negative (or positive) pressure.
The pipelines must be rinsed for a new installation so
they are free of impurities or residue, which could
clog the porous PTFE washer in the quick-change
fitting.
12
✱ Fully unscrew the union nut (2) and slide it
up.
✱ Pull the sensor (1) out of the storage
container (3).
✱ Remove the O-ring from the sensor shaft.
The sensor is now ready to measure.
✱ Pour the electrolyte away.
Keep the storage container, as it may be
needed for later transportation or for storing
the sensor.
(1)
(2)
(3)
7.1 Taking the temperature dependence of the ammonia
sensor into account when using it in combination
with JUMO dTRANS pH 02 or JUMO AQUIS 500 pH
The output signal of the gas-sensitive sensor is temperaturedependent, so the temperature of the sample solution must be
known in order to measure correctly. The temperature can either be
measured automatically by a temperature probe (e.g. Pt100/
Pt1000), or the user must set it manually on the transmitter.
13
7.2 Calibrating the ammonia sensor
PGM
General information
The slope of the sensors varies somewhat from instance to instance
and also changes during operation (caused by deposits such as
lime, or by wear). This changes the output signal of the sensor.
The software of JUMO dTRANS pH 02 and JUMO AQUIS 500 pH
transmitters is specifically geared to coolant monitoring. They use a
typical, concentration-dependent characteristic line. The individual
properties of the sensor are only taken into account here by
offsetting the zero point. This considerably reduces the effort
required for calibration.
Ammonia calculation
The ammonia sensor output signal follows a straight characteristic
line up to voltage U
(default = 84 mV). Above U1, the characteristic
1
line will be curved (see diagram on Page 9).
Lower detection limit U
0
U0 is the voltage supplied by the ammonia sensor in an ammoniafree process medium.
The default setting for U0 is 138 mV.
One-point calibration
With one-point calibration, voltage U
is determined (in the
0
ammonia-free process medium).
Requirement:
The process medium must be free from ammonia.
✱ Immerse the ammonia sensor in the process medium.
✱ Start one-point calibration on the JUMO transmitter.
✱ Wait until the voltage shown on the JUMO transmitter has
stabilized.
Please do not make any changes by pressing the or
keys!
✱ End calibration by pressing the key.
The JUMO transmitter shows 0.0 ppm.
14
Note:
With manual temperature compensation, the fixed
temperature of the medium assigned by the user is
shown on the JUMO transmitter.
15
8 Maintenance
Note:
The flow rate of the medium through the quick-change
fitting should be checked regularly! The nature of the
process medium must be taken into consideration when
determining the check interval. The typical flow rate is a
few milliliters per day and depends on the parameters of
the coolant (pressure, temperature, viscosity, etc.).
If no coolant emerges at the overflow of the quickchange fitting, check the porous PTFE washer in the
quick-change fitting and replace it if necessary, Section
9.1.1 "Replacing the PTFE washer in the quick-change
fitting", page 22.
If the flow rate of the medium is too low in general, the
porous PTFE washer (part no. 00583477, white,
standard) can be replaced by the less dense version
(part no. 00583479, black, for higher flow rate), Section
9.1.1 "Replacing the PTFE washer in the quick-change
fitting", page 22.
Typic al ly the e lectrolyte o f the g as -sensit iv e senso r m ust
be replaced semi-annually or annually depending on the
coolant that is used.
The gas-sensitive sensor has a high resistance.
Therefore a greater tendency to drift must be factored in.
This should be taken into consideration when selecting
the limit values for alarms (ammonia leaks).
If the drift of the sensor signal is unusually great, the
electrolyte must be replaced, Section 8.1 "Refilling/
replacing the electrolyte", page 17.
16
8.1 Refilling/replacing the electrolyte
(8)
(4)
(2)
(5)
(1)
(3)
(6)
(7)
✱ Hold the sensor (5) with its electrical
connection (8) pointing vertically
downward.
✱ At the level of the vent opening (7), slide
the vent wedge (6) under the silicone
tubing.
✱ Remove the old membrane cap (2).
✱ Remove the vent wedge (6).
✱ In the gap (4), top up the electrolyte to the
brim.
✱ Fill the new membrane cap (2) with three
drops of electrolyte to "lubricate" the O-
ring in the membrane cap. This will
prevent the sensitive PTFE membrane (1)
from being damaged by the glass
membrane (3).
✱ Place the membrane cap (2) on the
thread and screw it on with a quarter
turn.
Attention:
Do not screw the membrane cap
all the way down, as this could
destroy it!
17
Attention:
(2)
(4)
(3)
(1)
The electrolyte must not get into the plug-type
head (1) of the sensor! This causes contact problems.
✱ Hold the sensor as shown in the above diagram.
✱ At the level of the vent opening (2), slide the vent wedge (3) under
the silicone tubing.
✱ Screw the membrane cap (4) all the way down
(excess electrolyte will escape).
✱ Remove the vent wedge (3).
✱ Use an absorbent cloth to soak up excess electrolyte.
The ammonia sensor is now ready for startup.
18
8.2 Storing the sensor in the storage container
(1)
(2)
(3)
Attention:
It is essential to keep to the
procedure described below, as
otherwise pressure buildup will
destroy the sensor membrane!
The sensor must not be stored dry!
✱ Slide the union nut (2) onto the sensor shaft.
✱ Slide the O-ring of the union nut (2) onto the
sensor shaft.
✱ Insert the sensor into the storage container
filled with electrolyte (to a max. level of 2
cm).
✱ Seal the storage container (3) with the union
nut (2).
Attention:
Do not move the sensor in the
wet-storage container once the
screw fitting is closed!
The positive or negative pressure
that this produces will destroy the
membrane.
8.3 Removing the electrode from the storage container
✱ Fully unscrew the union nut (2). Then take the sensor out of the
storage container.
19
9 Accessories
52
ø60
22.5
57.5
ø35
G1 1/4 A
163
Pg13.5
20
35
B
A
(1)
(2)
(3)
(3)
9.1 Quick-change fitting for ammonia sensor
(A)Turn the handwheel to close (maintenance)
(B)Turn the handwheel to open (operation)
(1)Quick-change fitting for ammonia sensor (PP)
Part no. 00379538
(2)Discharge: G1/8 A (POM) hose connection
(3)Handwheel
20
Attention:
The installation position of the fitting is vertical (as
shown in the drawing)!
The sensor may only be removed when the fitting is
closed!
Do not close the discharge (4)!
Optimum operating pressure: 2 to 3 bar.
Maximum operating pressure: 6 bar.
✱ Screw the ammonia sensor into the fitting and tighten to 3 Nm.
✱ The process medium that escapes from the overflow (4) can be
drained through a tube.
✱ Turning the handwheel (3) left/counter-clockwise (A) opens the
fitting, turning to the right/clockwise (B) closes the fitting.
Note
If too much process medium runs out of the overflow:
-Reduce the system pressure
-Mount the quick-change fitting in the bypass with a
control valve upstream
If not enough process medium runs out of the
overflow, the ammonia sensor may respond too late
or not at all to an ammonia leak. In this case, the flow
rate must be increased:
-Install the PTFE washer with higher porosity (part
no. 00583479, black, for higher flow rate).
21
9.1.1 Replacing the PTFE washer in the quick-change fitting
✱ Turning the handwheel (6) left (counter-clockwise) opens the
fitting and moves the sensor out of the process medium.
✱ Unscrew the gas-sensitive ammonia sensor from the fitting.
✱ Dismantle the fitting: Loosen the three hexagon socket screws
(1) (do not unscrew them completely)
✱ Pull the electrode fixture (2) out of the fitting.
✱ Unscrew the cap (5) on the lower end of the electrode fixture (2).
✱ Replace the PTFE washer (4).
22
✱ Place the O-ring (3) in its groove before mounting.
✱ Screw the cap (5) onto the electrode fixture (2) (max. 3.5 Nm).
✱ Insert the electrode fixture (2) in the fitting.
✱ Tighten the hexagon socket screws (1).
✱ Screw the gas-sensitive ammonia sensor into the fitting (about
3Nm).
✱ Turning the handwheel (5) to the right (clockwise) closes the
fitting and moves the gas-sensitive ammonia sensor into the
process medium.
Attention:
When mounting the PTFE washer (4) make certain the
O-ring (3) is resting in the groove!
23
9.2 Maintenance kits
DesignationPart no.
Maintenance kit for ammonia-sensitive sensor
(standard version)
Maintenance kit for ammonia-sensitive sensor
(extra code 854, low-temperature applications)
PTFE washers for manual quick-change fitting
(standard, white, 3 washers)
PTFE washers for manual quick-change fitting
(increased flow rate, black, 3 washers)
10 Possible errors
ErrorPossible causeAction
The measured value
drifts
Pressure/
temperature
Keep values
constant
00449637
00477746
00583477
00583479
Widely fluctuating
measured values
No process medium
escapes from the
overflow of the
manual quick-
fluctuations in the
process medium
Coolant
concentration is too
high
Air bubble
downstream from the
membrane of the
ammonia-sensitive
sensor
Porous PTFE washer
is dirty
Use an ammonia
sensor with extra
code 854 (lowtemperature
applications)
Refill/replace
electrolyte
Replace the PTFE
washer. Customerinstalled filter
upstream from the
change fitting
manual quickchange fitting
24
JUMO GmbH & Co. KGJUMO Instrument Co. Ltd.JUMO Process Control, Inc.
JUMO House
Te mp l e B an k , R iv e rw a y
Harlow - Essex CM20 2DY, UK
Phone:+44 1279 63 55 33
Fax:+44 1279 63 52 62
E-mail:sales@jumo.co.uk
Internet: www.jumo.co.uk
6733 Myers Road
East Syracuse, NY 13057, USA
Phone:315-437-5866