INTEL STEL-2176 User Manual

查询STEL-2176供应商
STEL-2176
User Manual
STel-MAN-97709
STEL-2176
Digital Mod/Demod ASIC 16/64/256 QAM Receiver
with FEC
with FEC
R
TRADEMARKS
Stanford Telecom and STEL are registered trademarks of Stanford Telecommunications, Incorporated.
STEL-2176 User Manual
FOREWORD
The Telecom Component Products Division of Stanford Telecommunications, Inc., is pleased to provide its customers with this copy of the STEL 2176 User Manual.
This User Manual contains product information for the STEL 2176 and is being provided to assist our customers in understanding the advantages to be gained by integrating both the receiver and transmitter functions as an integral portion of their cable modem chip.
Recipients of this User Manual should note that the content contained here-in is subject to change. The content of this User Manual will be updated to reflect the latest technical data, without notice to the recipients of this document.
User Manual STEL-2176
Supported Modes of Operation:
Downstream
FEC 16 QAM 64 QAM 256 QAM
Annex A X X
Annex B X X
Annex C X X
Upstream
STD BPSK QPSK 16 QAM
MCNS X X
ERRATA for STEL-2176
DAVIC X X
STEL-2176 User Manual
TABLE OF C ON TENTS
PARAGRAPH PAGE
KEY FEATURES..................................................................................................................................... 1
RECEIVER........................................................................................................................................... 1
TRANSMITTER................................................................................................................................... 1
INTRODUCTION .................................................................................................................................. 2
RECEIVER OVERVIEW........................................................................................................................ 2
TRANSMITTER OVERVIEW................................................................................................................ 2
MECHANICAL SPECIFICATIONS ........................................................................................................ 3
208-PIN SQFP PACKAGE..................................................................................................................... 3
ELECTRICAL SPECIFICATIONS........................................................................................................ 8
RECEIVER ............................................................................................................................................. 10
OVERVIEW......................................................................................................................................... 10
FUNCTIONAL BLOCKS ...................................................................................................................... 11
ADC.............................................................................................................................................. 11
Microcontroller Interface................................................................................................................. 11
Master Receive Clock Generator...................................................................................................... 12
QAM Demodulator Blocks.............................................................................................................. 13
FEC Decoder Blocks ....................................................................................................................... 14
RECEIVE AND UNIVERSAL REGISTER DESCRIPTIONS .................................................................... 20
PROGRAMMING THE 2176 RECEIVE FUNCTIONS ............................................................................. 20
REGISTER DESCRIPTIONS.................................................................................................................. 20
Bank 0 - Universal Registers (Group 1)............................................................................................. 20
Bank 0 - QAM Demodulator Registers Universal Registers (Group 2) ................................................ 22
Bank 1 - FEC Registers (Group 3)..................................................................................................... 30
TIMING................................................................................................................................................. 35
NO GAP, PARALLEL MODE ............................................................................................................... 35
NO GAP, SERIAL MODE..................................................................................................................... 35
GAPS, PARALLEL MODE.................................................................................................................... 35
GAPS, SERIAL MODE ......................................................................................................................... 35
TRANSMITTER..................................................................................................................................... 39
INTRODUCTION ................................................................................................................................39
FUNCTIONAL BLOCK DIAGRAM DESCRIPTIONS ............................................................................. 39
DATA PATH DESCRIPTION ............................................................................................................... 39
Bit SYNC Block .............................................................................................................................. 39
Bit Encoder Block ........................................................................................................................... 41
Symbol Mapper Block..................................................................................................................... 45
Nyquist FIR Filter........................................................................................................................... 50
Interpolating Filter ......................................................................................................................... 50
Modulator ..................................................................................................................................... 51
10-Bit DAC..................................................................................................................................... 52
User Manual i STEL-2176
TABLE OF C ON TENTS
PARAGRAPH PAGE
CONTROL UNIT DESCRIPTION.......................................................................................................... 52
Bus Interface Unit ........................................................................................................................... 52
Master Transmit Clock Generator .................................................................................................... 52
Clock Generator ............................................................................................................................. 53
NCO.............................................................................................................................................. 53
TRANSMIT REGISTER DESCRIPTIONS................................................................................................ 54
Programming the 2176 Transmit and Receive Functions.................................................................... 54
Block 2, Upstream Registers (Group 4) ............................................................................................. 54
TIMING DIAGRAMS ............................................................................................................................ 57
BURST TIMING EXAMPLES ................................................................................................................. 65
RECOMMENDED INTERFACE CIRCUITS ............................................................................................ 70
STEL-2176 ii User Manual
LIST OF FIGU RES
FIGURE PAGE
1 Reference A/D Wiring............................................................................................... 7
2 Example Output Load Schematic................................................................................ 7
3 STEL-2176 Receiver Block Diagram ............................................................................ 11
4 Master Receive Clock Generator................................................................................. 12
5 QAM Demodulator Blocks......................................................................................... 13
6 ITU-T (J.83) Annex A FEC Subsystem ......................................................................... 14
7 16 QAM Constellation ............................................................................................... 15
8 64 QAM Constellation ............................................................................................... 15
9 256 QAM Constellation (DAVIC)................................................................................ 15
10 256 QAM Constellation (DVB/IEEE 802.14) ................................................................ 15
11 Demapper................................................................................................................. 15
12 De-Interleaver........................................................................................................... 16
13 ITU-T (J.83) Annex B FEC Subsystem.......................................................................... 16
14 Trellis Coded Demodulator........................................................................................ 17
15 64 QAM Mapping ..................................................................................................... 17
16 256 QAM Mapping.................................................................................................... 18
17 Derandomizer........................................................................................................... 19
18 De-Interleaver........................................................................................................... 19
19. Downstream Output Timing (Parallel Data Output) .................................................... 36
20. Downstream Output Timing (Serial Output)............................................................... 36
21. Downstream Output Timing (Parallel Data Output) .................................................... 37
22. Downstream Output Timing (Parallel Data Output) .................................................... 38
23. De-Interleaver External SRAM Timing........................................................................ 38
24 STEL-2176 Transmitter Block Diagram........................................................................ 40
25 Bit Encoder Functional Diagram................................................................................. 42
26 Scrambler Block Diagram........................................................................................... 43
27 DAVIC Scrambler...................................................................................................... 43
28 Mapping Block Functional Diagram ........................................................................... 45
29 BPSK Constellation.................................................................................................... 47
30 QPSK Constellation ................................................................................................... 47
31 Natural Mapping Constellation.................................................................................. 48
32 Gray Coded Constellation.......................................................................................... 49
33 Left Coded Constellation ........................................................................................... 49
34 DAVIC Coded Constellation ...................................................................................... 49
35 Right Coded Constellation ......................................................................................... 49
36 Nyquist FIR Filter...................................................................................................... 50
37 Interpolation Filter Block Diagram.............................................................................. 51
38. Master Clock Generation ........................................................................................... 53
User Manual iii STEL-2176
LIST OF TABLES
TABLE PAGE
1 STEL-2176 Pin Assignments ....................................................................................... 3
2 Absolute Maximum Ratings ....................................................................................... 8
3 Recommended Operating Conditions ......................................................................... 8
4 ADC Performance Specifications ................................................................................ 9
5 DC Characteristics ..................................................................................................... 9
6 Read/Write Register Set............................................................................................. 20
7 Write Only Registers:................................................................................................. 20
8 Group 2, Sub-Group 'A' Read/Write Registers............................................................. 22
9 Sub-Group 'A' Read-Only Registers ............................................................................ 22
10 SNR to ErrPwr Conversion......................................................................................... 23
11 Group 2, Sub-Group 'B' Read/Write Registers ............................................................. 24
12 Group 2, Sub-Group 'B' Read-Only Registers............................................................... 24
13 Group 2, Sub-Group 'C' Read/Write Registers............................................................. 26
14 Group 2, Sub-Group 'C' Read-Only Registers............................................................... 26
15 Group 2, Sub-Group 'D' Read/Write Registers............................................................. 26
16 Group 2, Sub-Group 'D' Read-Only Registers .............................................................. 27
17 Group 2, Sub-Group 'E' Read/Write Registers ............................................................. 28
18 Group 2, Sub-Group 'E' Read-Only Registers............................................................... 28
19 Group 2, Sub-Group 'F' Read/Write Registers ............................................................. 29
20 Group 2, Sub-Group 'F' Read-Only Registers ............................................................... 30
21 Group 3, Sub-Group 'A' Read/Write Registers............................................................. 30
22 Group 3, Sub-Group 'B' Read-Only Registers............................................................... 31
23 Group 3, Sub-Group 'C' Read/Write Registers............................................................. 31
24 Group 3, Sub-Group 'C' Read-Only Registers............................................................... 31
25 Group 3, Sub-Group 'D' Read/Write Registers............................................................. 32
26 Group 3, Sub-Group 'D' Read-Only Registers .............................................................. 32
27 Group 3, Sub-Group 'E' Read/Write Registers ............................................................. 33
28 Group 3, Sub-Group 'E' Read-Only Registers............................................................... 33
29 Group 3, Sub-Group 'F' Read/Write Registers ............................................................. 34
30 Group 3, Sub-Group 'G' Read/Write Registers............................................................. 34
31 Group 3, Sub-Group 'G' Read-Only Registers .............................................................. 34
32 Transmit Features...................................................................................................... 40
33 Data Latching Options ............................................................................................... 41
34 BIT Encoding Data Path Options................................................................................. 42
35 Scrambler Parameters ................................................................................................ 43
36 Sample Scramble Register Values................................................................................ 43
37 Reed-Solomon Encoder Parameters............................................................................. 44
38 Bit Mapping Options ................................................................................................. 45
39 Differential Encoder Control....................................................................................... 46
40 QPSK Differential Encoding and Phase Shift................................................................ 46
41 Symbol Mapping Selections........................................................................................ 48
42 Symbol Mapping ....................................................................................................... 48
43 FIR Filter Configuration Options ................................................................................ 50
STEL-2176 iv User Manual
LIST OF TABLES
TABLE PAGE
44 FIR Filter Coefficient Storage...................................................................................... 50
45 Interpolation Filter Bypass Control............................................................................. 51
46 Interpolation Filter Signal Level Control ..................................................................... 51
47 Signal Inversion Control ............................................................................................ 52
48 FCW Selection........................................................................................................... 54
49 Addresses of the STEL-2176 Register Groups .............................................................. 54
50 Transmit Block 2 Register Data Fields ......................................................................... 55
51 Clock Timing AC Characteristics................................................................................ 57
52 Pulse Width AC Characteristics.................................................................................. 58
53 Bit Clock Synchronization AC Characteristics.............................................................. 59
54 Input Data and Clock AC Characteristics .................................................................... 60
55 Write Timing AC Characteristics ................................................................................ 61
56 Read Timing AC Characteristics................................................................................. 62
57 NCO Loading AC Characteristics ............................................................................... 63
58 Digital Output Timing AC Characteristics................................................................... 64
59 TXDATAENI to TXDATAENO Timing AC Characteristics .......................................... 65
User Manual v STEL-2176
KEY FEATURES
RECEIVER
n 10-bit A/D on chip n 16/64/256 QAM demodulation n Selectable ITU-T (J.83), Annex A/Annex B
forward error correction (FEC)
n MCNS, IEEE 802.14 (preliminary),
DAVIC/DVB compliant
n Parallel or serial output data with or
without gaps
n Viterbi decoder for Annex B n Selectable Reed-Solomon decoder for
Annex A and Annex B
n Programmable De-Interleaver n Programmable De-Randomizer n MPEG-2 Framing
Introduction
n Programmable control registers for
maximum flexibility
n FIFO for optional removal of inter-frame
gaps
n Automatic frequency control (± 200 kHz) n Highly integrated receiver functions n Up to 50 MHz IF input n Uses inexpensive Crystal in the 25 MHz
range
n Adaptive Channel Equalizer (ACE) to
compensate for channel distortion
n Selectable Nyquist filter n Fast acquisition
TRANSMITTER
n Patented (U.S. Patent #5,412,352)
Complete BPSK/QPSK/16QAM modulator
n Complete upstream modulator
solution—serial data in, RF signal out
n Programmable over a wide range of data
rates
n Numerically Controlled Oscillator (NCO)
modulator provides fine frequency resolution
n Carrier frequencies programmable from 5
to 65 MHz
n Uses inexpensive crystal in 25 MHz range n Operates in continuous and burst modes
n Differential Encoder, Programmable
Scrambler, and Programmable Reed­Solomon FEC Encoder
n Programmable 64-tap FIR filter for signal
shaping before modulation
n 10-bit DAC on chip n Compatible with DAVIC, IEEE 802.14
(preliminary), Intelsat IESS-308, MCNS Standards
n Supports low data rates for voice
applications and high data rates for wideband applications
STEL-2176 1 User Manual
INTRODUCTION
The STEL-2176 is a complete subscriber-side cable modem chip that integrates both receiver and transmitter functions. It is offered in CMOS .35 micron geometry operating at 3.3 Volts with integrated DAC and ADC. Its programmable register set offers a flexible solution to meet current and evolving standards.
RECEIVER OVERVIEW
A 10-bit A/D converts the analog input signal. The analog input signal may be up to 50ÊMHz. For MCNS and DAVIC standards 44 MHz and 36 MHz are the two typical IF frequencies used. For 44ÊMHz the corresponding bandwidth is 6 MHz; for 36ÊMHz the corresponding bandwidth is 8 MHz. Sampling of the input may be set for 25 MHz for the 6ÊMHz bandwidth or 29 MHz for the 8 MHz bandwidth.
The downstream receiver offers 16/64/256 QAM demodulation for Annex A, associated with DAVIC, or Annex B, associated with MCNS. It also offers a variety of choices for the data and clock outputs: frames with or without gaps and parallel or serial data.
The incoming signal is sampled. The timing recovery circuit determines the epoch of each symbol. Automatic frequency and gain control circuitry correct the frequency and amplitude of the signal, and a Digital Down Converter (DDC) brings the alias band associated with sampling down to zero. A Nyquist filter eliminates inter-symbol interference, and an Adaptive Channel Equalizer (ACE) corrects for channel distortion while fine tuning the signal. A demapper transforms the modulated signal back into symbols and a De-
Interleaver puts the data bits back into the original order, while Trellis and Reed-Solomon decoders handle error correction.
For Annex A, a Reed-Solomon decoder decodes and corrects every 204 bytes in 188 bytes. For Annex B, there is a Viterbi decoder and a 128, 122 (code word length, information) 7-bit Reed-Solomon decoder. A de­randomizer is used to unscramble the data stream.
Format of the receiver output is MPEG-2 frames.
TRANSMITTER OVERVIEW
The transmitter is highly integrated and flexible. It receives serial data, randomizes the data, performs Forward Error Correction (FEC) and differential encoding, maps the data to a constellation before modulation, and outputs an analog RF signal.
It includes a 10-bit DAC and is capable of operating at data rates up to 20 Mbps in QPSK mode and 40ÊMbps in 16QAM mode.
The transmitter uses a digital FIR filter to optimally shape the spectrum of the modulating data prior to modulation. Signal level scaling is provided after the FIR filter to allow maximum arithmetic dynamic range.
The transmitter side offers QPSK and 16QAM modulation with frequencies from 5 to 65 MHz. It can operate in continuous or burst mode. And it can operate with very short gaps between bursts less than four symbols.
All digital interfaces support 3.3 volt and 5 volt logic.
STEL-2176 2 User Manual
MECHANICAL SPECIFICATIONS
208-PIN SQFP PACKAGE
Dimensions are in millimeters.
Introduction
TPG 53310.c-7/29/97
Table 1. STEL-2176 Pin Assignments
Pin No. Pin Name Pin Type Pin Description
1 VSS Ground 2 VDD Power Dedicated to crystal oscillator at pins 3 & 4 3 RXOSCIN Input Receiver oscillator input 4 RXOSCOUT Output Receiver oscillator output 5 VSS Ground Dedicated to crystal oscillator at pins 3 & 4 6 VDD Power Dedicated to digital section of receive clock multiplier 7 VDDA Power (Analog) Dedicated to analog section of receive clock multiplier 8 RXMULTEN Input Enable receive clock multiplier 9 VSSA Ground
(Analog) 10 VSS Ground Dedicated to receive clock multiplier 11 RXMULTCLK Output Receive clock multiplier output; enabled by pin 58 12 VDD Power 13 ADCDATASEL[2] Input ADC/DAC bypass mode select; 111=normal operation 14 ADCDATASEL[1] Input ADC/DAC bypass mode select; 110=bypass ADC 15 ADCDATASEL[0] Input ADC/DAC bypass mode select; 101=bypass DAC 16 VSS Ground 17 ADDATA[9] Bi-directional Bypass/test ADC/DAC
Dedicated to receive clock multiplier
User Manual 3 STEL-2176
Introduction
Pin No. Pin Name Pin Type Pin Description
18 ADDATA[8] Bi-directional Bypass/test ADC/DAC 19 ADDATA[7] Bi-directional Bypass/test ADC/DAC 20 ADDATA[6] Bi-directional Bypass/test ADC/DAC 21 ADDATA[5] Bi-directional Bypass/test ADC/DAC 22 VDD Power 23 ADDATA[4] Bi-directional Bypass/test ADC/DAC 24 ADDATA[3] Bi-directional Bypass/test ADC/DAC 25 ADDATA[2] Bi-directional Bypass/test ADC/DAC 26 ADDATA[1] Bi-directional Bypass/test ADC/DAC 27 ADDATA[0] Bi-directional Bypass/test ADC/DAC 28 VSS Ground 29 RXAGCOUTB Output AGC output B 30 RXAGCOUTA Output AGC output A 31 VDD5 Power 3.3V or 5V for AGC pins 29 & 30 32 V3OP Input Must set high if pin 31 is 3.3V or low if pin 31 is 5V 33 VSS Ground 34 IC Internal connection - leave open 35 SO Output SPI data out 36 VDD Power 37 SI Input SPI data in 38 SCK Input SPI clock 39 VSS Ground 40 ADDR[7] Input Control/Status register parallel address bus 41 ADDR[6] Input Control/Status register parallel address bus 42 ADDR[5] Input Control/Status register parallel address bus 43 ADDR[4] Input Control/Status register parallel address bus 44 VDD Power 45 ADDR[3] Input Control/Status register parallel address bus 46 ADDR[2] Input Control/Status register parallel address bus 47 ADDR[1] Input Control/Status register parallel address bus 48 ADDR[0] Input Control/Status register parallel address bus 49 VSS Ground 50 INTSEL[1] Input Serial/parallel inter. sel.: 00=parallel, 01=SPI (serial) 51 INTSEL[0] Input Serial/parallel interface select: 10=reserved, 11=res. 52 VDD Power 53 VSS Ground 54
55
56
57 VDD Power 58 ENCLKOUT Input Enables output pins 11 & 102 59 VSS Ground 60 DATA[7] Bi-directional Control/Status register parallel data in/out 61 DATA[6] Bi-directional Control/Status register parallel data in/out 62 DATA[5] Bi-directional Control/Status register parallel data in/out 63 DATA[4] Bi-directional Control/Status register parallel data in/out 64 VDD Power 65 DATA[3] Bi-directional Control/Status register parallel data in/out 66 DATA[2] Bi-directional Control/Status register parallel data in/out 67 DATA[1] Bi-directional Control/Status register parallel data in/out 68 DATA[0] Bi-directional Control/Status register parallel data in/out 69 VSS Ground 70 RXRESCLK Output FEC test clock output (8 times RX symbol rate) 71 VDD Power 72 RXTSTDOUT[9] Output Test mux output 73 RXTSTDOUT[8] Output Test mux output 74 RXTSTDOUT[7] Output Test mux output 75 RXTSTDOUT[6] Output Test mux output
CS
WRB
DSB
Input Control/Status register chip select (active low)
Input Control/Status register read/write (low=write)
Input Control/Status register data strobe signal (active low)
STEL-2176 4 User Manual
Pin No. Pin Name Pin Type Pin Description
76 VSS Ground 77 RXTSTDOUT[5] Output Test mux output 78 RXTSTDOUT[4] Output Test mux output 79 RXTSTDOUT[3] Output Test mux output 80 RXTSTDOUT[2] Output Test mux output 81 VDD Power 82 RXTSTDOUT[1] Output Test mux output 83 RXTSTDOUT[0] Output Test mux output 84 RXTSTCLK Output Test mux output clock 85 VSS Ground 86 VDD Power Dedicated to digital portion of DAC 87 VDDA Power (analog) Dedicated to analog portion of DAC 88 DACOUTP Analog output Output of DAC. Terminate in 37.5 ohms to ground 89 DACOUTN Analog output Comp. output of DAC. Terminate in 37.5 ohms to ground
Figure 2)
90 VSSA Power (analog) Dedicated to analog portion of DAC 91 VSS Ground Dedicated to digital portion of DAC 92 VDD Power Dedicated to crystal oscillator at pins 93 & 94 93 TXOSCIN Input TX oscillator input 94 TXOSCOUT Output TX oscillator output 95 VSS Ground Dedicated to crystal oscillator at pins 93 & 94 96 VDD Power Dedicated to digital section of transmit clock PLL 97 VDDA Power (analog) Dedicated to analog section of transmit clock PLL 98 TXPLLEN Input Enable transmit clock PLL 99 VSSA Ground (analog) Dedicated to analog section of transmit clock PLL
100 TXBYPCLK Input High speed transmit bypass clock 101 VDD Power Dedicated to digital section of transmit clock PLL 102 TXPLLCLK Output Transmit clock PLL output; enabled by pin 58 103 VSS Ground Dedicated to digital section of transmit clock PLL 104 VDD Power 105 VSS Ground 106
TXRSTB
Input Transmit reset (active low)
107 VDD Power 108 TXTSDATA Input Transmit data input 109 TXDATAENI Input Transmit data enable input 110 TXTCLK Input Transmit tclk 111 VSS Ground 112 TXFCWSEL[1] Input Transmit frequency control word (FCW) select 113 TXFCWSEL[0] Input Transmit frequency control word (FCW) select 114 VDD Power 115 TXCLKEN Input Transmit clock enable 116 TXDIFFEN Input Transmit differential encoder enable 117 TXRDSLEN Input Transmit Reed-Solomon enable 118 TXSCRMEN Input Transmit scrambler enable 119 VSS Ground 120 TXCKSUM Output Transmit Reed-Solomon check sum 121 TXACLK Output Transmit auxiliary clock output 122 TXDATAENO Output Transmit data enable output 123 VDD Power 124 TXBITCLK Output Transmit bit clock 125 TXSYMPLS Output Transmit symbol pulse output 126 TXNCOLD Input Transmit NCO load 127 VDD5 Power Input buffer bias. Set to 3.3V or 5V dep. on max. input V.
voltage. 128 RXRSTB Input Receiver reset (active low) 129 VSS Ground 130 RXPDATAOUT[7] Output Receive parallel output data 131 RXPDATAOUT[6] Output Receive parallel output data 132 RXPDATAOUT[5] Output Receive parallel output data
Introduction
(See Figure 2)
(See
User Manual 5 STEL-2176
Introduction
Pin No. Pin Name Pin Type Pin Description
133 RXPDATAOUT[4] Output Receive parallel output data 134 VDD Power 135 RXPDATAOUT[3] Output Receive parallel output data 136 RXPDATAOUT[2] Output Receive parallel output data 137 RXPDATAOUT[1] Output Receive parallel output data 138 RXPDATAOUT[0] Output Rec. par. output data or serial data if in serial mode 139 VSS Ground 140 RXOUTCLK Output Receive output data clock 141 VDD Power 142 RXACQFLAG Output Receive demod. acquisition flag 143 RXACQFAIL Output Receive demod. acquisition failure flag 144 RXDECDFLG Output Receive FEC decodable flag 145 FRAMESYNC Output Receive output frame sync flag 146 VSS Ground 147 SRAMADDR[15] Output De-Interleaver optional external SRAM address 148 SRAMADDR[14] Output De-Interleaver optional external SRAM address 149 SRAMADDR[13] Output De-Interleaver optional external SRAM address 150 SRAMADDR[12] Output De-Interleaver optional external SRAM address 151 VDD Power 152 SRAMADDR[11] Output De-Interleaver optional external SRAM address 153 SRAMADDR[10] Output De-Interleaver optional external SRAM address 154 SRAMADDR[9] Output De-Interleaver optional external SRAM address 155 SRAMADDR[8] Output De-Interleaver optional external SRAM address 156 VSS Ground 157 VDD Power 158 VSS Ground 159 SRAMADDR[7] Output De-Interleaver optional external SRAM address 160 SRAMADDR[6] Output De-Interleaver optional external SRAM address 161 SRAMADDR[5] Output De-Interleaver optional external SRAM address 162 SRAMADDR[4] Output De-Interleaver optional external SRAM address 163 VDD Power 164 SRAMADDR[3] Output De-Interleaver optional external SRAM address 165 SRAMADDR[2] Output De-Interleaver optional external SRAM address 166 SRAMADDR[1] Output De-Interleaver optional external SRAM address 167 SRAMADDR[0] Output De-Interleaver optional external SRAM address 168 VSS Ground 169 SRAMDATA[7] Bi-Directional De-Interleaver optional external SRAM data bus 170 SRAMDATA[6] Bi-Directional De-Interleaver optional external SRAM data bus 171 SRAMDATA[5] Bi-Directional De-Interleaver optional external SRAM data bus 172 SRAMDATA[4] Bi-Directional De-Interleaver optional external SRAM data bus 173 VDD Power 174 SRAMDATA[3] Bi-Directional De-Interleaver optional external SRAM data bus 175 SRAMDATA[2] Bi-Directional De-Interleaver optional external SRAM data bus 176 SRAMDATA[1] Bi-Directional De-Interleaver optional external SRAM data bus 177 SRAMDATA[0] Bi-Directional De-Interleaver optional external SRAM data bus 178 VSS Ground 179 SRAMWEB Output De-Interleaver SRAM write enable (active low) 180 SRAMCSB Output De-Interleaver SRAM chip select (active low) 181 SRAMOEB Output De-Interleaver SRAM output enable (active low) 182 VDD Power 183 RXIENBLE Input FEC test input I clock 184 RXQENBLE Input FEC test input Q clock 185 VSS Ground 186 RXBYPCLK Bi-directional Receiver bypass clock input; output reserved 187 VDD Power 188 VSSA Ground (analog) Dedicated to analog section of ADC 189 VDDA Power (analog) Dedicated to analog section of ADC 190 VCMA Analog output From ADC
(See Figure 1)
191 VDD Power Dedicated to digital section of ADC
(See Figure 1)
(See Figure 1)
(See Figure 1)
STEL-2176 6 User Manual
Introduction
Pin No. Pin Name Pin Type Pin Description
192 VREFN Analog output From ADC 193 VSSA Ground (analog) Dedicated to analog section of ADC 194 VSS Ground Dedicated to digital section of ADC 195 VDDA Power (analog) Dedicated to analog section of ADC 196 VDDA Power (analog) Dedicated to analog section of ADC 197 ADCINP Analog input ADC input 198 ADCINN Analog input Complementary ADC input 199 VSSA Ground (analog) Dedicated to analog section of ADC 200 VSSA Ground (analog) Dedicated to analog section of ADC 201 VDD Power Dedicated to digital section of ADC 202 VDDA Power (analog) Dedicated to analog section of ADC 203 VREFP Analog output From ADC 204 VSS Ground Dedicated to digital section of ADC 205 VCMB Analog output From ADC 206 VSSA Ground (analog) Dedicated to analog section of ADC 207 VDDA Power (analog) Dedicated to analog section of ADC
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
(See Figure 1)
208 VDD Power
Analog In (P)Analog In (N)
0.1 µF
0.1µF0.1 µF
0.1 µF
0.1
0.1
µF
µF
0.1 µF
0.1
0.1 µF
µF
Digital GND
(VSS)
Analog GND
(VSSA)
DACOUTP
DACOUTN
STEL-2176
Figure 1. Reference A/D Wiring
T1-6TKK81
0.1 µF
50
AV
SS
0.1 µF
Mini-
50
AV
SS
Circuits
1:1
0.1 µF
50 line
X
Note 1
Digital Supply
(VDD)
50 load
Note 1: Normally some application dependent alias filtering and amplitude control appear at this point in the circuit
WCP 53807.c-12/5/97
Figure 2. Example Output Load Schematic
User Manual 7 STEL-2176
Introduction
ELECTRICAL SPECIFICATIONS
The STEL-2176 electrical characteristics are provided by Table 2 through Table 4.
WARNING
Stresses greater than those shown in Table 2 may cause permanent damage to the STEL-2176. Exposure to these conditions for extended periods may also affect the STEL-2176 reliability.
Table 2. Absolute Maximum Ratings
Symbol Parameter Range Units
T
stg
V
DDmax
A
VDDmax
5V AV V
I(max)
I
i
P
Diss (max)
DDmax
SS
Storage Temperature Ð40 to +125 °C
Supply voltage on VDD Ð0.3 to +4.6 volts Supply voltage on AVDD Ð0.3 to +4.6 volts Supply voltage on 5VDD Ð0.3 to +7.0 volts
Analog supply return for AVDD ± 10% of VDD volts
Input voltage Ð0.3 to 5VDD+0.3 volts
DC input current ± 30 mA
Power dissipation 1500 mW
Note: All voltages are referenced to V 5V
must be greater than or equal to VSS. This rule can be violated for a maximum of 100 msec
DD
during power up.
.
SS
Note 1
Note 2
Table 3. Recommended Operating Conditions
Symbol Parameter Range Units
AV
5V
V
DD
C
LOAD
R
LOAD
DD
DD
Supply Voltage +3.3 ± 10% Volts Supply Voltage +5.0 ± 10% Volts Supply Voltage +3.3 ± 10% Volts
DAC Load Capacitance
DAC Load Resistance
20 30K
pF
ohms
Recommended DAC Load 37.5 ohms
V
LOAD
T
a
DAC Output Voltage
1.25
Volts
Operating Temperature (Ambient) Ð40 to +85 °C
Note:
1. All voltages with respect to VSS and assume AV
ss
= V
ss
2. If interface logic is to be driven by VDD then connect the 5VDD pin to the VDD supply and set pin 32 to correct value.
3. Duty Cycle Derating is required from +70° to +85° C.
Note 1
Note 2
Note 3
STEL-2176 8 User Manual
Introduction
Table 4. ADC Performance Specifications
Parameter Min Nom Max Units
Sampling Frequency 50 MHz
Resolution 10 bits
Input Differential Signal Range -0.75 +0.75 Volts
Analog Input Bandwidth 60 MHz
Signal to Distortion Ratio 10 MHz
54 dB
signal over 25 MHz BW
Input Common Mode 1.4 1.5 1.6 Volts
Table 5. DC Characteristics
(V
= 3.3 V ±10%, V
DD
Symbol Parameter Min. Nom. Max. Units Conditions
I
VDDQ
I
VDD
I
5V
DD
I
AV
DD
V
IH
CLK
V
IL
CLK
V
IH
V
IL
I
IH
I
IL
V
OH(min)
V
OL(max)
I
OS
C
IN
C
OUT
I
OFS
V
O
R
O
C
O
Supply Current, Quiescent 1.0 mA Static, no clock
Supply Current, Operational, V
Supply Current, Operational, 5V
Supply Current, Operational, AV
DD
DD
DD
Clock High Level Input Voltage 2.0 volts CLK, Logic '1'
Clock Low Level Input Voltage 0.8 volts CLK, Logic '0'
High Level Input Voltage 2.0 volts Other inputs, Logic '1'
Low Level Input Voltage 0.8 volts Other inputs, Logic '0'
High Level Input Current 10 µAV Low Level Input Current Ð10 µAV
High Level Output Voltage 2.4 3.0 VDD volts IO = Ð2.0 mA
Low Level Output Voltage 0.2 0.4 volts IO = +2.0 mA
Output Short Circuit CurrentÊ 40 mA V
Input Capacitance 2 pF All inputs
Output Capacitance 4 10 pF All outputs
Output Full Scale DAC Current 16 19 22 mA Single output
DAC Compliance Voltage (Differential)
DAC Output Resistance
1
DAC Output Capacitance 4 8 pF
= 0 V, T
SS
= -40° to 85° C)
a
1.9 mA/MHz
0.2 mA
12.0 mA
±0.96
Volts Based on 50 ohms load
N/A
= 5V
IN
IN
OUT
= V
= VDD,
DD
SS
VDDÊ=Êmax
resistance to ground.
NOTES:
1. Current source to ground output.
User Manual 9 STEL-2176
Receiver Description
RECEIVER
OVERVIEW
The STEL-2176 is a complete subscriber-side cable modem ASIC which integrates both the downstream receiver and upstream transmitter functions. The receiver includes a high performance 10-bit Analog-to­Digital Converter (ADC) with a direct Intermediate Frequency (IF) interface. The receiver also includes a QAM demodulator and both ITU-T (J.83) Annex A and Annex B Forward Error Correction (FEC). The upstream transmitter includes a BPSK/QPSK/16QAM modulator with highly flexible FEC and scrambling, and a 10-bit low spurious digital to analog converter (DAC) for direct synthesis of an upstream 5 to 65 MHz signal. Both the receiver and transmitter are highly flexible and programmable; the STEL-2176 Digital Mod/Demod ASIC offers a solution to meet current and evolving standards.
The input to the STEL-2176 receiver is an analog IF signal of up to 50 MHz. Typically, the IF signal has 44 MHz center frequency with a 6 MHz bandwidth for NTSC based systems, or a 36 MHz center frequency with an 8 MHz bandwidth for PAL based systems. In typical applications, the input signal is sampled by the ADC at approximately 25 MHz for the 44 MHz IF, or at approximately 29 MHz for the 36 MHz IF
This type of sub-sampling technique works by intentionally undersampling the carrier frequency so that aliased signal appears at a lower frequency. The sampling rate is still high enough to capture all of the modulation bandwidth without distortion. In the case of a 44 MHz IF and a 25 MHz clock, the resulting digital signal is centered at 6 MHz. In the case of a 36 MHz IF and 29 MHz clock, the resulting digital signal is centered at 7 MHz. For more information on sub­sampling techniques, please see Stanford Telecom Application Note A-117.
The digital samples from the ADC are downconverted to baseband I and Q signals in the Digital Down Converter (DDC) block. Since the RF tuner sections of a cable modem may have large frequency errors, an Automatic Frequency Control (AFC) block is used in the STEL-2176 for coarse tuning of the DDC. This allows rapid acquisition of the input signal even with
frequency errors of ±200 kHz. Fine tuning of the DDC is
done using a carrier Phase-Lock Loop (PLL).
An Automatic Gain Control (AGC) function provides two output signals to adjust the RF and IF analog gain stages of circuitry external to the STEL-2176, so that the ADC input is in the optimal range. The two outputs can be programmed to create a sequential AGC system which maximizes RF gain for improved receiver noise figure. The two AGC outputs and the external gain adjust blocks work together to maximize ADC performance, but when large adjacent channels are present, the power of the desired signal may change. A second digital AGC tracks and adjusts the level of the desired signal after the adjacent channel energy is removed by filtering.
Following the DDC, a square root raised cosine Nyquist filter eliminates adjacent channel signals, and performs matched filtering to eliminate intersymbol interference. The filter excess bandwidth or alpha is programmable from 0.12 to 0.20. The Timing Recovery block finds the exact location in the center of each symbol using a special low-jitter discriminator. These values are fed to the Adaptive Channel Equalizer.
An Adaptive Channel Equalizer (ACE) compensates for any multipath distortion on the input signal introduced in the channel. The equalizer uses one sample per symbol (T spaced taps). The output of the equalizer is baseband I and Q signals with carrier frequency and phase errors, symbol timing errors, gain errors, and multipath effects removed.
The Demapper takes the baseband I and Q signals representing the QAM symbols, and translates each symbol back into a series of binary values based on one of the selectable constellation maps.
Following the Demapper is the Forward Error Correction (FEC) system. This programmable system supports both the ITU-T (J.83) Annex A (see page 14) and Annex B (see page 16) standards. In general, both FEC systems employ Reed Solomon Decoders, Frame Sync circuits that determine the FEC code block boundaries, and a De-Interleaver. Interleaving is used in the FEC standards to improve performance when the channel contains bursty noise. Since the transmitter Interleaver spreads the data over a large time, when the receiver performs the matched operation to the Interleaver in order to bring the data back into the correct time sequence, any burst errors appear to be spread out in time. This helps makes these errors
STEL-2176 10 User Manual
Receiver Description
correctable by the FEC. The STEL-2176 internal memory can support all MCNS Interleaver configurations. For deeper interleaving, a direct interface to external memory is provided.
The output of the receiver is typically arranged as MPEG-2 frames, although the MPEG-2 framing can be
Fo=44/36 MHz
BW= 6/8 MHz
A
10 bits/ Sample
4Samples/Symbol
ADC
~25 MHz
44 MHz 36 MHz
Interpolator
AFC AGC DDC
1st IF Output
Programmable
Nyquist
(0.12 to 0.2)
by-passed for ATM applications. The output can be 8­bit parallel with a byte clock or serial with a bit clock. The data can be output in a smooth fashion without inter-frame gaps or with the pauses in output data caused by the FEC system passed through to the output (see Receiver Timing discussion).
A
Clock
Recovery
Adaptive
Channel Equalizer (20 taps)
De-mapper
Viterbi
Diff. Decoder
Reed-Solomon
Decoder
(204,188 and
128,122)
Micro Controller Interface
Micro Controller ( SPI, Parallel)
Figure 3. STEL-2176 Receiver Block Diagram
FUNCTIONAL BLOCKS
ADC
The ADC uses differential analog signal inputs ADCINP and ADCINN. Differential coupling to the ADC is important to prevent common mode noise from the digital sections of the ASIC from coupling into the
input. The recommended input signal level is ± 0.75V.
The input is sampled by the ADC, and the samples are converted into 10-bit digital values. The sampling rate
is typically 25 MHz for an input of 44 MHz ± 3 MHz
with a symbol rate of about 5 MHz (i.e., the MCNS
standard) or 29 MHz for an input of 36 MHz ± 4 MHz
with a symbol rate of about 7 MHz (i.e., the DAVIC and DVB standards). The sampling rate is controlled the choice of crystal connected between RXOSCIN and RXOSCOUT or by the clock frequency applied to
Clock
Synthesizer
~25 MHz XO
Frame Sync
Deinterleaver
External RAM
WCP 52861.c-5/07/97
RXOSCIN. The sample rate must be slightly more than 4 samples per symbol. The sample clock generated by the crystal/receive clock oscillator or applied to RXOSCIN must be a low phase noise signal. For this reason, dedicated power and ground connections for the receive oscillator and input buffer are adjacent to the RXOSCIN and RXOSCOUT pins.
Microcontroller Interface
The microcontroller interface provides access to the internal programmable Universal, Downstream (Receive), and Upstream (Transmit) registers (see page
20) via a parallel or a SPI interface. The interface used is selected by the interface select lines (INTSEL[1-0]).
User Manual 11 STEL-2176
Receiver Description
The parallel interface consists of an 8-bit address bus (ADDR[7-0]), an 8-bit bi-directional data bus (DATA[7­0]), and the control signals chip select (CS), read/write (WRB), and data strobe (DSB).
The SPI interface consists of a serial input (SI), serial output (SO), and a serial clock (SCK).
Master Receive Clock Generator
The STEL-2176 uses a master clock (MCLK) to control the receive timing functions. MCLK can be generated in either of three ways as shown in Figure 4.
A receive bypass clock can be applied to the RXBYPCLK input and selected to drive CLK. The RXMULTEN should be held high to select the RXBYPCLK input.
An external clock can be applied to the RXOSCIN input or a crystal can be connected across the RXOSCIN and RXOSCOUT inputs. The oscillator circuit outputs a 20­50 MHz signal to a frequency multiplier PLL, which upconverts the signal to a 100-150 MHz clock. When the bypass clock is not used, RXMULTEN is driven high to
select the output of the frequency multiplier to drive the MCLK signal. The frequency multiplier output frequency is controlled by the formula:
MCLK OscillatorOutput
=∗
N
M
where:
The Oscillator signal (RXOSCIN and
RXOSCOUT) is four times the signal symbol rate.
The value of M and N should be selected so
MCLK is four times the value of the Oscillator signal.
N is the value stored in RxFsynN (bits 6-0 of Bank
0 Register F7H), and M is the value stored in RxFsynM (bits 6-0 of Bank 0 Register F6H).
The recommended values for DAVIC, DVB, and
IEEE 802.14 are Oscillator Frequency = 29 MHz, M = 2, and N = 8. The recommended values for MCNS are Oscillator Frequency = 25 MHz, M = 2, and N = 8.
ENCLKOUT
RXOSCIN
RXOSCOUT
RXMULTEN RXBYPCLK
RXBYPASSFSYN
OSCILLATOR
FREQUENCY
MULTIPLIER
PLL
Figure 4. Master Receive Clock Generator
MUX
WCP 53852.c-12/7/97
RXMULTCLK
To ADC
MCLK
STEL-2176 12 User Manual
Receiver Description
QAM Demodulator Blocks
The following diagram shows the major QAM circuit blocks.
OutA OutB
AGC
S(t)
ADC
DDC
AFC
I,Q
Timing
Recovery
& SRRC
Filter
I,Q
(1 sample/
symbol)
Adaptive Equalize
WCP 53702.c-10/28/97
I,Q
(to FEC)
Figure 5. QAM Demodulator Blocks
Digital Down Converter (DDC)
The digital samples from the ADC are mixed down to baseband I and Q signals in the Digital Down Converter (DDC) block. The input analog signal is sub­sampled at the rate set by the receive crystal oscillator or a clock applied directly to the RXOSCIN input. The resultant sub-sampled input signalÕs spectrum is aliased to a lower frequency. In typical cases, with a 44
MHz _ 3 MHz input and a 25 MHz sample rate, the
digital signal appears to the input of the DDC as a 6
MHz _ 3 MHz signal. For a 36 MHz _ 4 MHz input and
a 29 MHz sample rate, the digital signal appears to the
input of the DDC as a 7 MHz _ 4 MHz signal. Other
input frequencies and sample rates are also possible. The digital signal is down converted to baseband I and
Q by mixing with cos 2π fct and sin 2π f
t where fc is the
c
center frequency of the digital signal.
The Digital Down Converter contains a numerically controlled oscillator (NCO) with cosine and sine outputs, a pair of mixers, and an image filter. The frequency f
is a combination of a starting value that is
c
set using DeltaTheta_in [13:0] (bits 7-2 of Bank 0 Register 10H and Bank 0 Register 11H) and any frequency error terms computed by the Automatic Frequency Control block. The value for DeltaTheta_in [13:0] is given by:
DeltaTheta_in [13:0] = f
/ADC sample rate _214
c
For fc = 6 MHz and ADC sample rate = 25 MHz, DeltaTheta_in [13:0] = 0F5C
H
For fc = 7 MHz and ADC sample rate = 29 MHz, DeltaTheta_in [13:0] = 0F73
H
The complex NCO drives a pair of multipliers which serve as mixers. The products of the ADC samples and the sine and cosine outputs of the NCO produce the desired baseband I and Q signals plus undesired higher frequency image terms. These higher frequency terms are removed by an image filter.
Automatic Frequency control (AFC)
The STEL-2176 can accommodate up to ±200 kHz
uncertainty in the carrier frequency. The carrier frequency recovery is divided into two steps. The first step is a coarse frequency estimation during initial signal acquisition. This estimation is performed by the AFC section. The estimated carrier frequency offset is calculated by the AFC and fed to the DDC NCO.
AGC
The AGC takes the output from the Image Filter in the DDC and estimates the power of the signal. The AGC discriminator compares the estimate to one or two different thresholds that can be set via the registers values AGC_ThresholdA (Bank 0 Register 14 AGC_ThresholdB (Bank 0 Register 15
). Thresholds
H
) and
H
should be set to optimize ADC performance. The range of the AGC`s power thresholds is 0 to 128 (2
8-1
). For 256-
QAM, the value ranges from about 75 to 100 (default is
96), depending on the desired A/D clipping level. The trade off for selecting the value weighs occasional ADC clipping with a large input versus loss of signal fidelity with a small input. The power of the input signal depends upon adjacent channel interference, AM hum, burst noise, etc.
The AGC generates two 1-bit outputs OUTA and OUTB that indicate whether that the input analog signal is too high or too low. The OUTA and OUTB signals should be smoothed using low pass filters. These filters can
each be a series resistor of ___ ohms and a shunt capacitor of ___ _F. OUTA and OUTB can be set to
have a logic high voltage of either 3.3V or 5V. For 3.3V operation, connect the power source's +3.3V output to pins 31 and 32 and its return to VSS. For 5V operation, connect the power source's +5V output to pin 31 and its return to pin 32 and VSS.
The polarity of OUTA and OUTB may be controlled with AGC_InvertOutputA (bit 0 of Bank 0 Register 12
H
and AGC_InvertOutputB (bit 1 of Bank 0 Register 12H). For variable gain stages where a higher control voltage at the input to the filter produces higher gain, set the AGC_InvertOutput bit to 0. For variable gain stages
)
User Manual 13 STEL-2176
Receiver Description
where a higher control voltage at the input to the filter produces lower gain, set the AGC_InvertOutput bit to
1.
The two outputs can be programmed to create a sequential AGC system which maximizes RF gain for improved receiver noise figure. This is accomplished by setting AGC_ThresholdA (Bank 0 Register 14H) and AGC_ThresholdB (Bank 0 Register 15H) to slightly different values. The threshold which is set to a lower value will cause its associated output to command increase gain first. This output is typically connected to the RF variable gain stages so that the best receiver noise figure is achieved.
Timing Recovery and Nyquist Filter
The sampled signal (> 4 times the symbol rate in I and Q format) is fed to this block to:
¥ Eliminate inter-symbol interference (ISI) by filtering it
with a square route raised cosine filter (SRRC) of a selectable excess bandwidth (a) for 12%<= a<=20%.
¥ Recover the exact symbol rate, within 100 ppm of the
nominal value.
The adaptive equalizer control registers are Block 1 Registers 21H to 24H.
FEC Decoder Blocks
The purpose of the FEC subsystem is to improve the bit error rate performance of the data link. The arrangement of the FEC blocks in the receiver is in reverse order from the transmitter. The STEL-2176 FEC subsystem can decode signals which are generated in conformance with either the ITU-T (J.83) Annex A or Annex B FEC standards.
There are two different though similar set of blocks used for ITU-T (J.83) Annex A (Figure 6) and Annex B (Figure 13).
The STEL-2176 supports the MPEG-2 standard. MPEG-2 uses 188 byte packets with a sync byte and three header bytes containing service identification, scrambling, and control information. The 184 bytes of data follows the sync and header bytes. Normally this header information flows through to the receiver output, but with ITU-T (J.83) Annex B there is an option of bypassing the MPEG-2 outer layer of processing.
¥ Resample and transmit one composite sample (I and
Q for each symbol) to the equalizer. These samples are taken at the epoch of each symbol.
Adaptive Channel Equalizer
The output of the Timing Recovery block is fed to the Adaptive Equalizer at a rate of one complex sample/symbol. The Adaptive Equalizer will:
1. Compensate for channel distortion including:
a. Multipath
b. AM hum
c. FM hum
d. Phase noise
2. Fine tune to the carrier frequency and phase offset.
3. Set the acquisition flag ÒtrueÓ, after the equalizer successfully locks on to the signal.
4. Write to ErrPwr (Block 0 Register 44H) the estimated output SNR.
Annex A FEC
The ITU-T (J.83) Annex A FEC subsystem consists of the following blocks:
I,Q from Adaptive Equalizer
De-mapper De-Interleaver
Reed-Solomon
Decoder
De-Randomizer
Frame
Sync
To Output Clock
WCP 53703.c-10/28/97
Figure 6. ITU-T (J.83) Annex A FEC Subsystem
Demapper
This block maps the Adaptive Channel Equalizer I and Q outputs for each symbol into 4, 6, or 8 bits for 16, 64, or 256 QAM respectively. The mapping tables are as follows:
STEL-2176 14 User Manual
Receiver Description
Q
Q
110100 111100 101100 100100000100 001100 011100 010100
10
01
11
IkQk=10
0111
IkQk=10
00
00
=11 IkQk=01
I
kQk
10
10
IkQk=00
00
00
01 11
WCP 53711.c-10/29/97
Figure 7. 16 QAM Constellation
1100
1110 0110 0100 1000 1001 1101 1100
1101 1111 0111 0101 1010 1011 1111 1110
1001 1011 0011 0001 0010 0011 0111 0110
1000 1010 0010 0000 0000 0001 0101 0100
0100 0101 0001 0000 0000 0010 1010 1000
0110 0111 0011 0010 0001 0011 1011 1001
1110 1111 1011 1010 0101 0111 1111 1101
1100 1101 1001 1000 0100 0110 1110 1100
Q
I
IIIIIIIIIIIII
11
01
I
10
IkQk=00
I
I
=01IkQk=11
kQk
WCP 53712.c-10/29/97
110101 111101 101101 100101000101 001101 011101 010101
110111 111111 101111 100111000111 001111 011111 010111
110110 111110 101110 100110000110 001110 011110 010110
110010 111010 101010 100010000010 001010 011010 010010
110011 111011 101011 100011000011 001011 011011 010011
110001 111001 101001 100001000001 001001 011001 010001
rotate 90 degrees
IkQk=10
rotate 180 degrees
=11
I
kQk
rotate 270 degrees
=01
I
kQk
110000 111000 101000 100000000000 001000 011000 010000
IIIIIIIIIIIIII
I
Figure 9. 256 QAM Constellation (DAVIC)
Q
110100 110101 110001 110000100000 100001 100101 100100
110110 100111 110011 110010100010 100011 100111 100110
111110 111111 111011 111010101010 101011 100111 101110
111100 111101 111001 111000101000 101001 101101 101100
011100 011101 011001 011000001000 001001 001101 001100
011110 011111 011011 011010001010 001011 001111 001110
010110 010111 010011 010010000010 000011 000111 000110
rotate 90 degrees
IkQk=10
rotate 180 degrees
=11
I
kQk
rotate 270 degrees
=01
I
kQk
010100 010101 010001 010000000000 000001 000101 000100
IIIIIIIIIIIIII
I
IkQk=00
I
WCP 53713.c-10/29/97
IkQk=00
I
WCP 53839.c-12/5/97
Figure 8. 64 QAM Constellation
Two bits are the same for each modulation type, and are identified as IKQK. The remaining bits are identified as [b
q-1
. . . b
where q = 2, 4, and 6 for 16, 64 or 256
o],
QAM.
IKQK are processed by the differential decoder before being fed to the frame sync block. The remaining bits [b
q-1
. . . b
are fed directly to the frame sync.
o]
Differential Decoder
Two bits (IKQK) of each symbol are differentially
Figure 10. 256 QAM Constellation (DVB/IEEE 802.14)
b
= Ak = (I
q+1
bq = Bk = (Q
I
Demapper
Q
k
Q
k
I
Q
k
I
k
) (I
k-1
) (I
k-1
Q bits (b
Differential
Decoder
q-1
k-1
k-1
... b0)
Q Q
Bk=b
Ak=b
) ¥ (1Ik Q
k-1
) ¥ (1Ik Q
k-1
M-tuple
q
Conversion
q+1
to
Byte
WCP 53708.c-10/28/97
Figure 11. Demapper
decoded according to the equation:
User Manual 15 STEL-2176
)
k
)
k
To Frame Sync
Loading...
+ 56 hidden pages