INTEL STEL-1109 User Manual

查询STEL-1109供应商
STEL-1109
Data Sheet
STEL-1109/CR
5 - 65 MHz
Burst Transmitter
R
TRADEMARKS................................................................................................................................................................ 4
KEY FEATURES................................................................................................................................................................ 5
INTRODUCTION............................................................................................................................................................ 6
PIN CONFIGURATION ................................................................................................................................................. 7
POWER SUPPLY PINS.................................................................................................................................................... 7
FUNCTIONAL BLOCK DIAGRAM DESCRIPTIONS............................................................................................ 8
Overview ........................................................................................................................................................................ 8
Data Path Description ................................................................................................................................................... 9
Bit Sync Block............................................................................................................................................................. 9
Bit Encoder Block....................................................................................................................................................... 10
Data Path Control (Multiplexers)........................................................................................................................ 10
Scrambler ................................................................................................................................................................ 11
Reed-Solomon Encoder......................................................................................................................................... 12
Symbol Mapper Block............................................................................................................................................... 13
Bit Mapper.............................................................................................................................................................. 13
Differential Encoder.............................................................................................................................................. 14
Symbol Mapper...................................................................................................................................................... 15
Nyquist Fir Filter ....................................................................................................................................................... 18
Interpolating Filter .................................................................................................................................................... 19
Modulator ................................................................................................................................................................... 20
10-Bit DAC.................................................................................................................................................................. 20
Control Unit Description.............................................................................................................................................. 20
Bus Interface Unit...................................................................................................................................................... 20
Clock Generator ......................................................................................................................................................... 20
NCO............................................................................................................................................................................. 21
TIMING DIAGRAMS..................................................................................................................................................... 23
Clock Timing.................................................................................................................................................................. 23
Pulse Width .................................................................................................................................................................... 23
Bit Clock Synchronization............................................................................................................................................ 24
Input Data and Clock Timing...................................................................................................................................... 25
Write Timing .................................................................................................................................................................. 26
Read Timing ................................................................................................................................................................... 27
NCO Loading (User Controlled)................................................................................................................................. 28
NCO Loading (Automatic) .......................................................................................................................................... 28
Digital Output Timing.................................................................................................................................................. 29
DATAEN to DATAENO Timing ................................................................................................................................ 30
BURST TIMING EXAMPLES........................................................................................................................................ 30
Burst Timing: Full Burst (Slave Mode, QPSK) .......................................................................................................... 31
Master Mode, BPSK Burst Timing Signal Relationships ......................................................................................... 32
Slave Mode, BPSK Burst Timing Signal Relationships............................................................................................ 32
Master Mode, QPSK Burst Timing Signal Relationships ........................................................................................ 33
Slave Mode, QPSK Burst Timing Signal Relationships ........................................................................................... 33
Master Mode, 16QAM Burst Timing Signal Relationships.................................................................................... 34
Slave Mode, 16QAM Burst Timing Signal Relationships........................................................................................ 34
ELECTRICAL SPECIFICATIONS ................................................................................................................................ 35
RECOMMENDED INTERFACE CIRCUITS.............................................................................................................. 38
Slave Mode Interface..................................................................................................................................................... 38
Master Mode Interface.................................................................................................................................................. 38
EXAMPLE OUTPUT LOAD SCHEMATIC ................................................................................................................ 39
MECHANICAL SPECIFICATIONS ............................................................................................................................. 39
STEL-1109 2 PRELIMINARY PRODUCT INFORMATION
LIST OF ILLUSTRATIONS
Figure 1. STEL-1109 Block Diagram.................................................................................................................... 9
Figure 2. Bit Encoder Functional Diagram ........................................................................................................ 10
Figure 3. Scrambler Block Diagram .................................................................................................................... 11
Figure 4. DAVIC Scrambler.................................................................................................................................. 12
Figure 5. Mapping Block Functional Diagram.................................................................................................. 13
Figure 6. BPSK Constellation ............................................................................................................................... 15
Figure 7. QPSK Constellation .............................................................................................................................. 16
Figure 8. Natural Mapping Constellation.......................................................................................................... 16
Figure 9. Gray Coded Constellation ................................................................................................................... 17
Figure 10. Left Coded Constellation ..................................................................................................................... 17
Figure 11. DAVIC Coded Constellation ............................................................................................................... 18
Figure 12. Right Coded Constellation .................................................................................................................. 18
Figure 13. Nyquist FIR Filter.................................................................................................................................. 19
Figure 14. Interpolation Filter Block Diagram..................................................................................................... 19
Figure 15. Duty Cycle Derating Versus Temperature (@3.3v).......................................................................... 36
Figure 16. STEL-1109 Mechanical Characteristics .............................................................................................. 39
PRELIMINARY PRODUCT INFORMATION 3 STEL-1109
LIST OF TABLES
Table 1. STEL-1109 Features .............................................................................................................................. 5
Table 2. I/O Signal Pin Assignments................................................................................................................ 7
Table 3. STEL -1109 Configuration Register Data Fields............................................................................... 8
Table 4. Data Latching Options ......................................................................................................................... 9
Table 5. Bit Encoding Data Path Options......................................................................................................... 11
Table 6. Scrambler Parameters .......................................................................................................................... 11
Table 7. Sample Scramble Register Values ...................................................................................................... 12
Table 8. Reed-Solomon Encoder Parameters................................................................................................... 13
Table 9. Bit Mapping Options............................................................................................................................ 14
Table 10. Differential Encoder Control............................................................................................................... 14
Table 11. Qpsk Differential Encoding and Phase Shift.................................................................................... 15
Table 12. Symbol Mapping Selections................................................................................................................ 16
Table 13. Symbol Mapping .................................................................................................................................. 17
Table 14. FIR Filter Configuration Options ....................................................................................................... 18
Table 15. FIR Filter Coefficient Storage.............................................................................................................. 18
Table 16. Interpolation Filter Bypass Control.................................................................................................... 19
Table 17. Interpolation Filter Signal Level Control .......................................................................................... 19
Table 18. Signal Inversion Control...................................................................................................................... 20
Table 19. FCW Selection ....................................................................................................................................... 22
Table 20. Clock Timing AC Characteristics....................................................................................................... 23
Table 21. Pulse Width AC Characteristics ......................................................................................................... 23
Table 22. Bit Clock Synchronization AC Characteristics................................................................................. 24
Table 23. Input Data and Clock AC Characteristics......................................................................................... 25
Table 24. Write Timing AC Characteristics ....................................................................................................... 26
Table 25. Read Timing AC Characteristics........................................................................................................ 27
Table 26. NCO Loading AC Characteristics...................................................................................................... 28
Table 27. Digital Output Timing AC Characteristics ....................................................................................... 29
Table 28. DATAEN to DATAENO Timing AC Characteristics...................................................................... 30
Table 29. Absolute Maximum Ratings ............................................................................................................... 35
Table 30. Recommended Operating Conditions............................................................................................... 36
Table 31. DC Characteristics................................................................................................................................ 37
TRADEMARKS
Stanford Telecom and STEL are registered trademarks of Stanford Telecommunications, Incorporated.
STEL-1109 4 PRELIMINARY PRODUCT INFORMATION
KEY FEATURES
Complete BPSK/QPSK/16QAM modulator in
n
a CMOS ASIC
n Programmable over a wide range of data
rates
n NCO modulator provides fine frequency
resolution
n 165 MHz maximum clock rate generates a
modulated carrier at frequencies programmable from 5 to 65 MHz
n Operates in continuous and burst modes n Differential Encoder, Programmable
Scrambler, and Programmable Reed-Solomon FEC Encoder
Table 1. STEL-1109 Features
Feature Characteristic
Carrier frequency: 5 to 65 MHz (maximum of approximately 40% of master clock)
Symbol rate: From Master clock divided by 16 down to Master clock divided by
16384 (in steps of 4) yielding a maximum symbol rate of 10Msps with a 160 MHz clock.
FIR filter tap coefficients: 32 programmable taps (10 bits each), symmetric response
Modulation: BPSK, QPSK, or 16QAM
16QAM constellation: Eight selectable bit-to-symbol mappings
Five selectable symbol-to-constellation mappings
I and Q modulator signs / Spectral Inversion
Reed-Solomon encoder: Selectable on/off
Scrambler: Selectable on/off
Differential encoder: Selectable on/off
Signs of I and Q plus the mapping to Sine and Cosine carriers is programmable.
Two selectable generator polynomials
Block length shortened any amount
Error correction capability T = 1 to 10
Self-synchronizing or frame synchronized (sidestream)
Location before or after RS Encoder
Programmable generator polynomial
Programmable length up to 224 - 1
Programmable initial seed
n Programmable 32-tap FIR Filter for signal
shaping before modulation
n 10-bit DAC implemented on chip n Complete upstream modulator solution –
serial data in and RF signal out
n Compatible with DAVIC, IEEE 802.14
(preliminary), Intelsat IESS-308, ITU J.83 Annex A, MCNS Standards
n Supports low data rates for voice
applications and high data rates for wideband applications
n Small Footprint, Surface Mount 80-Pin
MQFP Package
PRELIMINARY PRODUCT INFORMATION 5 STEL-1109
INTRODUCTION
The STEL-11091 is a highly integrated, maximally flexible, burst transmitter targeted to the cable modem market. It receives serial data, randomizes the data, performs FEC and differential encoding, maps the data to a constellation before modulation, and outputs an analog RF signal.
The STEL-1109 is the latest in a series of modulator chips that comprise the STEL-1103 through STEL-1108 modulators. Several key components (e.g., a 10-bit DAC, FECs, etc.) have been incorporated in the STEL-1109 and the enhancements have resulted in significant changes to the chipÕs electrical and software interfaces.
The STEL-1109 is capable of operating at data rates of up to 10 Mbps in BPSK mode, 20 Mbps in QPSK mode, and 40 Mbps in 16QAM mode. It operates at clock frequencies of up to 165 MHz, which allows its internal, 10-bit Digital-to-Analog Converter (DAC) to generate RF carrier frequencies of 5 to 65 MHz.
The STEL-1109 also uses digital FIR filtering to optimally shape the spectrum of the modulating data prior to modulation. This optimizes the spectrum of the modulated signal, and minimizes the analog filtering required after the modulator. The filters are
designed to have a symmetrical (mirror image) polynomial transfer function, thereby making the phase response of the filter linear. This also eliminates the inter-symbol interference that results from group delay distortion. In this way, it is possible to change the carrier frequency over a wide frequency range without having to change filters, thus providing the ability to operate a single system in many channels.
The STEL-1109 can operate with very short gaps between transmitted bursts to increase the efficiency of TDMA systems. The STEL-1109 (as well as the STEL­1103 and STEL-1108) operates properly even when the interburst gap is less than four (4) symbols (half the length of the FIR filter response). In this case the postcursor of the previous burst overlaps and is superimposed on the precursor of the following burst.
Signal level scaling is provided after the FIR filter to allow the STEL-1109Õs maximum arithmetic dynamic range to be utilized. Signal levels can be changed over a wide range depending on how the device is programmed.
In addition, the STEL-1109 is designed to operate from a 3.3 Vdc power supply and the chip can be interfaced with logic that operates at 5 Vdc.
1
The STEL-1109 utilizes advanced signal processing techniques which are covered by U.S. Patent Number 5,412,352.
STEL-1109 6 PRELIMINARY PRODUCT INFORMATION
PIN CONFIGURATION
The STEL-1109 input and output signal pin assignments are listed in Table 2. The location of the pin numbers is shown by Figure 16 (page 39). The
Table 2. I/O Signal Pin Assignments
1V
DD
2 DATA
3 DATA
4 DATA
5 DATA
6V
7V
8 ADDR
9 ADDR
10 ADDR
11 V
12 ADDR
13 ADDR
14 ADDR
15 V
16 V
4
5
6
7
SS
SS
5
4
3
DD
2
1
0
SS
SS
17 TSDATA [9] (I) 37 ACLK [20] (O) 57 V
18 DATAEN [10] (I) 38 V
19 TCLK [9] (I) 39 DATAENO [20] (O) 59 V
20 FCWSEL
Notes:
1. Pin 31 is applied to input buffers only.
2. See Package Outline (Figure 16) for pin identification.
[7] (S) 21 FCWSEL1[21] (I) 41 V
[20] (B) 22 V
[20] (B) 23 V
[20] (B) 24 V
[20] (B) 25 V
SS
SS
SS
DD
[7] (T) 42 SYMPLS [20] (O) 62 V
[7] (T) 43 V
[7] (T) 44 V
[7] (S) 45 V
[7] (S) 26 CLKEN [9,20] (I) 46 V
[7] (S) 27 V
SS
[7] (S) 47 V
[20] (I) 28 CLK [20] (I) 48 V
[20] (I) 29 RDSLEN [10] (I) 49 V
[20] (I) 30 V
[7] (S) 31 5V
DD
DD
[7] (S) 50 [7] (N.C.) 70 DIFFEN [13] (I)
[7] (I) 51 AV
[20] (I) 32 SCRMEN [10] (I) 52 OUT [20] (AO) 72
[20] (I) 33 V
[20] (I) 34 V
SS
SS
[7] (S) 53 OUTN [20] (AO) 73 DSB [20] (I)
[7] (T) 54 AV
[7] (S) 35 CKSUM [12] (O) 55 [7] (N.C.) 75 V
[7] (S) 36 V
[21] (I) 40 BITCLK [9,20] (O) 60 V
0
SS
DD
[7] (S) 56 V
[7] (S) 58 V
Legend: (AO) Analog Output (O) Output signal (B) Bi-directional (I/O) signal (S) Source (I) Input signal (T) Factory Test Pin (N.C.) Not Connected [#] Page Reference
STEL-1109 power supply pins are described in the following paragraph.
DD
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
SS
DD
SS
[7] (S) 61 V
[7] (S) 63 V
[7] (T) 64 V
[7] (T) 65 V
[7] (T) 66 V
SS
DD
DD
SS
DD
SS
[7] (T) 67 RSTB [20] (I)
[7] (T) 68 V
[7] (S) 69 V
SS
SS
[7] (S) 71 NCO LD [21] (I)
CSEL
[7] (S) 74 WR [20] (I)
DD
[7] (S) 76 DATA
[7] (T) 77 DATA
[7] (T) 78 DATA
[7] (T) 79 DATA
[7] (T) 80 V
0
1
2
3
SS
[7] (T)
[7] (S)
[7] (T)
[7] (S)
[7] (T)
[7] (S)
[7] (T)
[7] (S)
[20] (I)
[7] (S)
[20] (B)
[20] (B)
[20] (B)
[20] (B)
[7] (S)
POWER SUPPLY PINS
There are three separate power supply systems within the STEL-1109. The primary supply for the digital logic circuits is nominally 3.3 volts and is input on the V pins. The digital inputs have a separate supply, 5VDD, which can be connected to a 5 volt supply if the STEL­1109 inputs are driven from 5 volt logic. If the logic driving the STEL-1109 is run on 3.3 volts, then the 5V
PRELIMINARY PRODUCT INFORMATION 7 STEL-1109
pin should be connected to 3.3 volts. The return for both digital supplies is VSS. The DAC has a separate analog power supply and return, AV
DD
3.3 volt AV
input allows the user to provide a
DD
and AVSS. The
DD
separate well filtered supply for the DAC to prevent spurs that might be created from digital noise on the V
DD
supply system.
DD
FUNCTIONAL BLOCK DIAGRAM DESCRIPTIONS
OVERVIEW
The STEL-1109 is comprised of the Data Path and Control Unit sections shown in Figure 1. The Data Path is comprised of a Bit Sync Block, Bit Encoder Block (i.e.,Êthe Scrambler, Reed-Solomon Encoder, and two Multiplexers shown in Figure 2), Symbol Mapper Block (i.e., the Bit Mapper, Differential Encoder, and Symbol Mapper are shown in FigureÊ5), two channels (one for I and one for Q), a Combiner, and a 10-bit DAC. Each channel consists of a Nyquist Filter, Interpolation Filter, and Modulator. The Control Unit is comprised of a Bus Interface Unit (BIU), Clock Generator, and NCO.
Table 3. STEL-1109 Configuration Register Data Fields
Address Contents
(Hex) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
08 - 00
28 - 09
29
2A
2B
2C
2D
2E
Interpolation Filter Gain Control
Set To Zero Set To Zero
9
TCLK Sel.
FZSINB
Set To Zero Set To Zero Set To Zero
21
Symbol Mapping
LSB Sampling Rate Control (see address 39 for MSB)
Interpolation Filt. Bypass
Bit Mapping
15
13
FIR Filter Coefficients
19
Table 1 summarizes the main features of the circuits described by the remaining paragraphs of this section.
The STEL-1109 provides 58, programmable, read/write registers (Configuration Registers). Table 3 provides a graphic representation of the STEL-1109Õs Configuration Registers and their data fields. Each register can be selected for a write or read operation using addresses 00H through 39H.
21
NCO
18
20
20
Invert I/Q Chan.
18
19
Set To One Set To Zero
MOD
Set To One Set To Zero
CLRFIR
Auxiliary Clock Rate Divider
14
18
FIR bypass
PN Code Sel9PN On/Off
20
Set To Zero
Bit Sync Re-arm
9
9
2F
32-30
35-33
36
PPolynomial
37
38
DATAENBPB10DATAENSEL10RSENBPB10RSENSEL10SCRMENBPB10SCRMENSEL10DiffDCBPB14DiffDCSEL
39 Set To Zero Set To Zero
13
BypassB
10
S-RS
TRLSBF
Set To Zero
SCRAMBLER Init Registers
SCRAMBLER Mask Registers
10
12
Self-Sync
LDLSBF
11
12
11
11
12
T
12
K
MSB Sampling Rate Control (see address 29 for LSB)
14
20
Note: Superscripted numbers are page references where discussion on setting the particular register(s)
or bit(s) begins.
STEL-1109 8 PRELIMINARY PRODUCT INFORMATION
DIFFEN TCLK
TSDATA
DATAEN RDSLEN
SCRMEN
AV
DD
5V
DD
V
DD
RST
CLKEN CLK
NCO LD FCWSEL
DATA
7-0
ADDR
5-0
DSB WR CSEL
1-0
BIT
Sync
Block
BIT
Encoder
Block
Clock
Generator
Bus
Interface
Unit
I
,
[1:0]
Q
[1:0]
4
SAMPLS
MASTER CLOCK
Symbol Mapper
Block
Numerically
Controlled
Oscillator
I
[1:0] 2
Q
2
[1:0]
Nyquist
Filter
Nyquist
Filter
Interpolating
Filter
Interpolating
Filter
COS 2πFT
DATA PATH
Modulator
SIN 2πFT
10-Bit
DAC
OUT OUTN
DATAENO
CKSUM
BITCLK SYMPLS ACLK
Figure 1. STEL-1109 Block Diagram
DATA PATH DESCRIPTION
BIT SYNC BLOCK
The Bit Sync Block has two functions, latching input data, and synchronizing the STEL-1109 BITCLK and symbol counters to the user data.
Latching Input Data
Latching of input data is accomplished in three ways:
Externally supplied TSDATA is latched by the
internal BITCLK.
Table 4. Data Latching Options
Data Source Latched By Register 2C Bit 7 Register 2D Bits 1,0 Mode Name
TSDATA BITCLK 0 X,0 Master Mode TSDATA TCLK 1 X,0 Slave Mode PN Code 10, 3 BITCLK 0 0,1 Test Mode PN Code 23, 18 BITCLK 0 1,1 Test Mode
CONTROL UNIT
WCP 52981.c-5/2/97
Externally supplied TSDATA is latched by an
externally provided TCLK
Internally generated PN code data is latched by the
internal BITCLK
See Table 4 for register settings to implement each mode.
PRELIMINARY PRODUCT INFORMATION 9 STEL-1109
BITCLK latches data on its falling edge. TCLK latches data on its rising edge.
Whenever the CLKEN input is low, the BITCLK output will stop. In order to provide customers with a continuous clock, the STEL-1109 provides an auxiliary clock (ACLK) output which is discussed later in the clock generator section. The ACLK output is primarily for use in master mode where users may need a clock to run control circuits during the guard time between bursts.
When using slave mode, the data that is latched by the rising edge of TCLK is re-latched internally by the next falling edge of BITCLK which re-synchronizes the data to the internal master clock.
Synchronizing BITCLK / SYMPLS
The synchronization circuit aligns the STEL-1109 BITCLK and its SYMPLS counter circuits to the beginning of the first user data symbol. The circuit has two parts, an arming circuit and a trigger circuit. Once armed, the first rising edge on the TCLK input will activate (trigger) the synchronization process.
The circuit can be armed in two ways; taking CLKEN from low to high, or toggling Configuration Register 2EH bit 0 from low to high to low again. In a normal burst mode application, the circuit is automatically re­armed between bursts because CLKEN goes low. For applications that will not allow CLKEN to cycle low between bursts, some system level precautions should be observed to maintain synchronization of user data to the STEL-1109 BITCLK.
Once triggered, the sync circuit re-starts the BITCLK and SYMPLS counters. The BITCLK output starts high, and SYMPLS resets to the start of a symbol. There is a delay equal to about three cycles of the master clock from the rising edge of the TCLK input before this re­start occurs. During this brief delay period, the BITCLK and SYMPLS counters are still free running and may or may not have transitions.
BIT ENCODER BLOCK
The Bit Encoder Block consists of a Scrambler, a Reed-Solomon Encoder, and data path controls (multiplexers), as shown in Figure 2.
SCRMEN
Input
Multiplexer
Scrambler
Reed-Solomon
Encoder
ENCODED SERIAL DATA
Output
Multiplexer
CHKSUM SIGNAL
WCP 52982.c-4/26/97
SERIAL DATA
DATAEN
RDSLEN
S-RS
Figure 2. Bit Encoder Functional Diagram
Data Path Control (Multiplexers)
The STEL-1109 provides a great deal of flexibility and control over the routing of data through or around the encoding functions. With appropriate register selections, data can be routed around (bypass) both encoders, through either one and around the other, through the scrambler then the RS Encoder, or through the RS Encoder and then the scrambler. Control over the bypassing can be set for software control or external (user) input signal control. Generally, if an encoding function will be left either on or off continuously, then software control is appropriate. If the function must be turned on and off dynamically (typically in order to send the preamble Ôin the clearÕ i.e. unencoded), then external (user) input control is required. If the Reed­Solomon encoder will not be used at all, then a separate bypass option can be activated to remove an 8 bit delay register from the data path that is required if the possibility of turning on the encoder exists. Each of the external (user) input control pins (if enabled) turns on the encoding function when high and bypasses the function when low.
In master mode, the rising edge of TCLK normally marks the transition of the first user data bit (which will be latched in by the next falling edge of BITCLK). In slave mode, the first user data bit must already be valid at this first rising edge of TCLK.
The DATAEN input signal determines whether or not data will advance (shift through) the encoding blocks. The presence of a high on the DATAEN input when the BITCLK output goes low allows the circuits to advance data through them. The DATAEN signal is delayed
STEL-1109 10 PRELIMINARY PRODUCT INFORMATION
internally to allow the rising edge of DATAEN to coincide with the first rising edge of TCLK.
Table 5. BIT Encoding Data Path Options
Data Path Register 36 Bits 6,5 Register 38 Bits 7-2
Data stopped (continuously) X,X 01 XXÊXX Data path on (continuously) X,X 11 XXÊXX Data path enabled by pin 18 X,X X0 XXÊXX Scrambler off (continuously) X,X XX XX 01 Scrambler on (continuously) X,X XX XX 11 Scrambler enabled by pin 32 X,X XX XX X0 RS Encode off (continuously) 1,X XX 01 XX RS Encode on (continuously) 1,X XXÊ11 XX RS Encode enabled by pin 29 1,X XXÊX0 XX Scrambler then RS Encoder 1,1 XXÊXXÊXX RS Encoder then Scrambler 1,0 XXÊXXÊXX Bypass RS Encoder 0,X XXÊXXÊXX
Scrambler
The scrambler can be used to randomize the serial data in order to avoid a strong spectral component that might otherwise arise from the occurrence of repeating patterns in the input data. The Scrambler (Figure 3) uses a Pseudo-Random (PN) generator to generate a PN code pattern. All 24 registers are presettable and any combination of the registers can be connected (tapped) to form any polynomial of up to 24 bits. The scrambler may be either frame synchronized or self synchronized. Table 6 shows the registers involved.
See Table 5 for a summary of register settings required to achieve the various data path possibilities.
24-bit Mask Reg
24-bit INIT Reg
24-bit Shift Reg
123 222324
123 222324
123 222324
XOR
The value in the INIT registers is loaded into the scrambler shift registers whenever the scrambler is disabled. The scrambler will scramble data one bit at a time at each falling edge of BITCLK that occurs while both the scrambler and DATAEN are active (enabled).
SCRMEN SERIAL INPUT
SSYNC
AND
XOR
SELF SYNC
MUX
FRAME SYNC
SERIAL OUTPUT
WCP 52983.c-4/26/97
Internal delays on the SCRMEN control signal input allow for a rising edge to occur coincident with the
Figure 3. Scrambler Block Diagram
rising edge of BITCLK that precedes the latching of the first data bit to be scrambled.
Table 6. Scrambler Parameters
Parameter Characteristic Configuration Register Setting
Generator Polynomial (Mask Reg)
Seed (INIT Reg)
Scrambler Type
p(x) = c24x24 + c23x23 + É + c1x + 1 where c
Any 24 bit binary value, s
is a binary value (0, 1)
i
24-1
Register 35 Bit 7 to Bit 0
to c
c
24
17
Register 32 Bit 7 to Bit 0 s
to s
24
17
Frame synchronized (sidestream) Register 36 Bit 4
Set to zero
Register 34 Bit 7 to Bit 0 c
to c
16
9
Register 31 Bit 7 to Bit 0 s
to s
16
9
Register 33 Bit 7 to Bit 0 c8 to c
1
Register 30 Bit 7 to Bit 0 s
to s
8
1
Scrambler Self-synchronized Register 36 Bit 4
PRELIMINARY PRODUCT INFORMATION 11 STEL-1109
Type
The Mask, Init, and SSync fields can be programmed for different scrambler configurations. For example, the DAVIC Scrambler configuration shown in FigureÊ4 can
Table 7. Sample Scramble Register Values
Parameter Characteristic Configuration Register Setting
Generator Polynomial (Mask Reg)
Seed (INIT Reg)
Scrambler Type
p(x) = x15 + x14 + 1 Register 35
0000A9 Hex Register 32
Frame synchronized (sidestream) Register 36 Bit 4
Reed - Solomon Encoder
The STEL-1109 uses a standard Reed-Solomon (RS) Encoder for error correction encoding of the serial data stream.
When DATAEN is high and the RS Encoder is enabled, the serial data stream both passes straight through the RS Encoder and also into encoding circuitry. The encoding circuitry computes a checksum that is 2T bytes long for every k bytes of input data. After the last bit of each block of k bytes of input data, the RS Encoder inserts its checksum (2T bytes of data) into the data path. There is no adverse effect to letting TCLK or TSDATA continue to run during the checksum; the data input will be ignored. CKSUM (pin 35) will be asserted high to indicate that the checksum bytes are being inserted into the data stream and will be lowered at the end of the checksum data insertion. The width of the CKSUM pulse is 2T bytes.
The STEL-1109 registers include two bits for determining the bit order for data into and checksum out of the RS Encoder circuitry. Set these to match the
Set to one
be implemented by programming the Mask, Init, and SSync fields with the values indicated by Table 7.
Bit 7 to Bit 0 0000Ê0000
Bit 7 to Bit 0 0000Ê0000
Set to zero
Register 34 Bit 7 to Bit 0 0110Ê0000
Register 31 Bit 7 to Bit 0 0000Ê0000
Register 33 Bit 7 to Bit 0 0000Ê0000
Register 30 Bit 7 to Bit 0 1010 1001
Reed-Solomon decoding circuitry along with the other parameters.
The error correction encoding uses GF (256) and can be programmed for an error correction capability of 1 to 10, a block length of 3 to 255, and one of two primitive polynomials using the data fields listed in Table 8.
100101010000000
123456789101112131415
EX-OR
Enable
AND
EX-OR
Clear Data Input
Randomized Data
WCP 52984.c-4/26/97
Figure 4. DAVIC Scrambler
STEL-1109 12 PRELIMINARY PRODUCT INFORMATION
Loading...
+ 28 hidden pages