Hitachi AN072302-1 User's Guide

Application Note for Vector Control with the SJ300 Inverter

Contents

[1]Overview

[2]How to Tune Each Parameter

(2-1) Tuning target of each parameter (2-2) SLV Control block diagram (2-3) V2 Control block diagram

(2-4) Standard motor parameter settings for SJ300 (400V class EU version) series inverter (2-5) Example of tuning effects (SLV mode)

[3] Positioning Under ASR mode (Orientation Function)

(3-1) Orientation Function

(3-2) Example of positioning under speed control mode (ASR) on SJ300 with SJ-FB (3-2-1) Example of wiring

(3-2-2) Example of parameter settings (3-2-3) Timing chart

[4] APR Control

(4-1) Example of parameter settings

(4-2) How to adjust control parameters for APR control

[5] Master Slave Control

(5-1) Example of parameter settings for Master-Slave control

(5-2) How many slaves can be connected?

(5-2-1) Parallel connection (5-2-2) Series connection

(5-3) Explanation of each P parameter

(5-4) Explanation of each output related to V2 control

Appendix A Calculation of total inertia (reflected to the motor shaft)

(A-1) Ventilation Fan (A-2) Truck

(A-3) Conveyer

Appendix B Calculation of load inertia

(B-1) A column (B-2) A cylinder

(B-3) A rectangular solid (B-4) A Cone

(B-5) Wind up (vertical linear motion) (B-6) Horizontal linear motion

This document is a guideline for optimizing motor/inverter performance in vector mode through parameter adjustments. Please note that actual performance of the motor depends on a combination of many parameters, and is difficult to describe concisely. Trial & error is the customary means to achieve good motor performance. Therefore please regard this information as just a guide only.

This document only shows technical issues related to vector control. Please refer to the SJ300 Inverter and SJ-FB manuals for detailed information for installation and operation.

[1] Overview

This engineering note applies when using SLV, 0-SLV and V2 (closed loop) control. It is often difficult to get optimized motor performance because many parameters interact. Please refer to this document for

getting a rough idea how to achieve good motor performance with above control modes. Please also note that the performance WILL NOT BE like a servo drive even in the case of V2 mode.

There are 3 basic modes with which you can get high torque performance with the SJ300 inverter:

(1) SLV control (No SJ-FB is used)

High motor torque performance with open loop can be obtained in the low frequency range (~0.5Hz). Please refer to a standard SLV block diagram in Fig 1 (section 2-2).

[H***] parameters are mainly adjusted for the control.

(2) 0-SLV control (No SJ-FB is used)

High torque performance can be obtained at around 0Hz. This does NOT mean the motor shaft will be at a standstill. The motor rotates slightly to generate motor torque, since this is not a servo drive. Depending on the application and tuning, you may be able to get full torque with the motor at standstill. This control algorithm is different from SLV control.

[H***] parameters are mainly adjusted for the control.

ΠFrequency control block portion

 

Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reference

 

 

 

 

 

 

 

 

 

I *

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωs

 

 

 

 

 

Output frequency

 

 

 

 

 

 

 

 

 

ωr*

+

 

 

 

 

ASR

+

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

ω1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

 

 

 

 

Slip reference

+

 

 

 

 

 

 

 

 

1/s

 

 

Output phase

 

 

 

-

 

 

 

 

(PI)

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωs*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q axis current

 

 

 

 

 

 

 

Slip reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reference

 

 

 

 

 

 

 

 

 

 

at 0Hz

 

 

 

 

 

 

 

 

 

 

 

Stability

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωr^

 

 

 

 

Speed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change over

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voltage control block portion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimation of

 

 

 

 

Estimation of

 

 

 

 

Estimation of

Magnetizing current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q-axis flux

 

 

 

 

 

 

Motor torque

 

 

 

 

 

 

Flux

 

 

 

 

 

 

 

 

 

 

id**

 

 

 

 

 

 

 

d-axis

 

 

Vd

 

 

 

 

 

 

Ed

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

id*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d-axis current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vd

 

 

 

 

reference

+

 

 

-

 

 

 

 

ACR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

id

 

 

 

 

 

 

calculation of

 

 

 

Vd*

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Torque current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω1

 

 

 

 

 

 

Voltage Vector

 

 

 

 

 

 

 

 

 

 

 

voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

q-axis

 

 

iq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

Vq*

 

 

 

 

iq*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

Vq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

ACR

 

 

Vq

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iq

 

id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) V2 control (SJ-FB is used)

High torque and stable, accurate motor performance can be achieved with the SJ300 in vector mode. A motor encoder and a feedback option card for SJ300 (SJ-FB) are needed to use this control mode. There are two regulation modes within the V2 control mode: ASR mode and APR mode .

ΠASR mode : Inverter is controlled by speed command input (digitally set, analog input, or RS485)

APR mode : Inverter is controlled by pulse train input signal

[H***] and [P***] parameters are adjusted for achieving good motor control.

A suitable mode should be selected depending on the application.

[Difference between each control]

ØControl performance

Item

SLV mode

V2 mode

Speed linearity

<1 %

<0.01 %

Speed fluctuation

<1 %

<0.01 %

Control range

1 : 50

1 : 100

Speed response

15 rad/s

60 rad/s

Torque control range

1 : 50

1 : 100

Torque response

50 rad/s

500 rad/s

sNote: These are representative values only.

sPercentages are relative to base speed

ØTorque performance at low speed

Item

SLV control

0-SLV control

V2 control

Down sized motor

150% or more

150% or more

150% or more

Same kW motor

100% or more

100% or more

100% or more

sThese are guaranteed minimum values with a Hitachi standard induction motor. Actual capability is greater.

ØTorque performance at 0Hz

Item

0-SLV control

V2 control

Down-sized motor

150% or more

150% or more

 

with a small slip

with standstill

Same kW motor

100% or more

100% or more

 

with a small slip

with standstill

sThis has been confirmed using Hitachi standard induction motor and J2 motor (for V2 control).

[2] How to tune each parameter

(2-1) Tuning target of each parameter

There are many parameters, which influence the motor performance in SLV, 0-SLV & V2 control modes. In some cases auto tuning is not fully sufficient to get the best motor performance because there are various kinds of motors in the world. It is sometimes necessary to adjust by hand after the auto tuning.

Generally the performance of the motor can be determined from two criteria:

ØTorque performance at low speed

ØSpeed response against target speed

Table 1 shows main parameters that influence the motor performance inSLV mode. The concept is the same in 0-SLV and V2 modes as well.

Table 1. Explanation of parameters related to motor performance in SLV mode

Code

 

 

 

Function

 

 

 

Remarks

H001

Auto tuning mode

 

 

This determines the method of auto tuning.

 

 

 

R1

 

L

 

 

00 (NOR) : Auto tuning invalid

 

 

 

 

R2

01 (NRT) : Auto tuning with motor at standstill

 

 

 

 

 

 

 

 

 

 

02 (AUT) : Auto tuning with motor rotation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LM

Auto tuning determines the following motor constants

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

automatically. (See left figure as well.)

 

 

 

 

 

 

 

 

 

 

 

Equivalent circuit of one leg of

Ÿ

R1 (primary resistance)

 

the motor winding

 

 

Ÿ

R2 (secondary resistance)

ŸL (leakage inductance)

ŸIo (magnetizing current at base frequency)

ŸJ (total load inertia)

 

 

 

 

 

 

Normally better motor performance can be obtained by auto tuning

 

 

 

 

 

 

with motor rotation with an actual load on the motor. But if the

 

 

 

 

 

 

system does not allow rotating the motor, like a lift application for

 

 

 

 

 

 

example, auto tuning with motor at standstill can be used.

H002

Motor constant selection

This determines which set of motor parameters is used by the drive.

 

 

 

 

 

 

 

00 : Motor parameters for a Hitachi standard motor

 

 

 

 

 

 

 

(Uses [H020] ~ [H024] )

 

 

 

 

 

 

 

01 : Use auto tuning data

 

 

 

 

 

 

 

(Uses [H030] ~ [H034] )

 

 

 

 

 

 

 

02 : Use auto tuning data with On-line auto tuning

 

 

 

 

 

 

On-line auto tuning occurs every time the inverter stops. It

 

 

 

 

 

 

measures R1 and R2, the main values that may change

 

 

 

 

 

 

due to a motor temperature change. The tuning period is roughly

 

 

 

 

 

 

5 seconds maximum, and if the RUN command is given during

 

 

 

 

 

 

the tuning routine, the inverter will start and tuning is aborted.

H003

Motor kW

 

 

 

This sets the motor kW, not a kW of an inverter.

H004

Motor poles

 

 

 

 

 

H005

Speed response factor K

Controls the speed response

 

 

 

 

 

 

Ÿ

Large K à Quick response (Too high a value can cause instability.)

 

 

 

 

 

 

Ÿ Small K à Slow but stable response

 

 

 

 

 

 

Value is also dependent on Proportional gain (P-gain : [H050])

 

 

 

 

 

 

and Integration gain (I-gain : [H051]). ( K = f(Kp, Ki) ).

H006

Motor stability control factor

This should be adjusted in case of motor instability.

 

 

 

 

 

 

Increase / decrease depends on the situation.

H020 / H030

Primary resistance of the

Influences mainly the torque at low speed.

 

motor R1 [Ω]

 

 

 

Ÿ

Large R1 à Higher torque (Too high R1 à Over magnetizing)

 

 

 

 

 

 

Ÿ

Small R1 à Smaller torque

H021 / H031

Secondary resistance of the

Influence mainly on the speed change ratio (= slip compensation)

 

motor R2 [Ω]

ideal

Ÿ

Large R2 à Increase speed change ratio

 

Torque

 

 

(= Actual speed becomes faster than a target speed.)

 

 

 

 

Small

 

Big R2

Ÿ

Small R2 à Decrease speed change ratio

 

 

 

 

 

 

 

 

 

(= Actual speed becomes slower than a target speed.)

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Speed

 

 

Code

Function

 

 

 

Remarks

 

 

 

 

 

H022 / H032

Leakage inductance

of

the

L does not influence control much compared to other

 

motor L [mH]

 

 

parameters, however a suitable value is recommended to be set.

H023 / H033

Magnetizing current

of

the

Influences mainly the torque at low speed.

 

motor Io [A]

 

 

Ÿ

Large Io à Bigger torque (Too big Io à Over magnetizing)

 

 

 

 

Ÿ

Small Io à Smaller torque

H024 / H034

Total inertia J [kgm2]

 

 

Influences mainly speed and torque response performance

 

 

 

 

This should be the total inertia (Σ J) on the motor shaft,

 

 

 

 

including the inertia of the rotor of the motor and the load. See

 

 

 

 

table 2 for information on how to tune in each case.

 

 

 

 

à See appendix A for calculation of the total inertia.

H050

Proportional gain under

 

Fine tuning of proportional portion of speed response factor.

 

PI control mode (Kp)

 

Ÿ

Large Kp àQuick response (Too high Kp can cause instability.)

 

(% based on [H005])

Ÿ

Small Kp à Slow but stable response

H051

Integration gain under

 

Fine tuning of Ki portion of speed response factor.

 

PI control mode (Ki)

 

 

Ÿ

Large Ki à Quick response (Too high Ki can cause instability.)

 

(% based on [H005])

Ÿ

Small Ki à Slow but stable response

H052

Proportional gain under

 

 

 

 

P control mode (Kp)

 

 

 

 

 

(% based on [H005])

 

 

F002

Acceleration time

 

 

Acc and Dec time influence the response. Even if

F003

Deceleration time

 

 

optimized tuning parameter values are set, actual motor speed will

 

 

 

 

change according to the set ramp time.

 

 

 

 

If a quick response is required, the ramps should be set as fast as

 

 

 

 

possible. Or, use LAC (LAD cancellation) to make the ramp invalid.

A044

Control mode

 

 

Control mode should be set to 03 (SLV), 04 (0-SLV) or 05 (V2).

A045

Output gain (Vgain)

 

 

Output gain scales the duty cycle of PWM output, regardless of

 

 

 

 

the input voltage of the inverter.

 

 

 

 

Decreasing output gain can solve the problem of motor instability,

 

 

 

 

however the output torque will also decrease in this case.

A081

AVR function

 

 

AVR function attempts to maintain a stable output voltage by

 

 

 

 

changing the duty cycle of the PWM output in real-time. If the input

 

 

 

 

voltage changes or bus voltage changes due to regeneration, motor

 

 

 

 

sees constant voltage. That means the motor efficiency will be better.

 

 

 

 

In some cases, disabling the AVR function can resolve motor

 

 

 

 

instability problems.

 

 

 

 

AVR function attempts to always mainain constant output voltage.

 

 

 

 

During operation, DC bus voltage is always changing, which

 

 

 

 

means AVR function is always acting to change the duty cycle of

 

 

 

 

PWM output voltage. Since it is an active control function it may

 

 

 

 

lead sometimes motor instability (unstable energy transmission).

 

 

 

 

In such cases, setting AVR OFF can solve the problem.

b022

OL restriction level

 

 

Set OL level [b022] as high as possible, or else disable it

 

 

 

 

(set [b021] to “00 ”), because a rather high motor current is

 

 

 

 

required in low frequency area in the case of vector control.

 

 

 

 

High torque cannot be achieved if OL restriction is preformed.

b041~b044

Torque limit level

 

 

Set torque limit level as high as possible, or else disable it

 

 

 

 

( = assign TL to an intelligent input terminal and leave it OFF),

 

 

 

 

because high motor current is required in the low frequency area

 

 

 

 

in the case of vector control.

 

 

 

 

Maximum torque cannot be achieved if torque limit is triggered.

b083

Carrier frequency

 

 

Decreasing carrier frequency can solve the problem of motor

 

 

 

 

instability.

 

 

 

 

This is because the effect of dead time will be reduced.

*Second and 3rd functions ([H2**] & [H3**]) have the same meaning for 2nd and 3rd motors.

Refer to Table 3 for standard (default) motor parameter settings for SJ300 series inverter.

Table 2 shows suggestions for adjusting the SLV and other related parameters to correct various phenomena.

Table 2. Suggestions for tuning

#

Phenomena

Parameter

How to adjust

 

 

 

 

1

Actual speed is faster than the target speed.

H021

Decrease R2 value

(Speed deviation is +)

(Minimum target is 80% of the preset value)

 

 

2

Actual speed is slower than the target speed.

H021

Increase R2 value

(Speed deviation is - )

(Maximum target is 120% of the preset value)

 

 

 

 

 

 

 

Insufficient torque at low speed (~ few Hz)

H020

Increase R1 value

 

(Maximum target is 120% of the preset value)

3

 

 

 

H023

Increase Io value

 

 

 

 

(Maximum target is 120% of the preset value)

 

 

 

 

 

 

 

4

Shock at start

H024

Decrease J

 

 

 

 

5

Unstable motor rotation

H005

Decrease speed response factor

 

 

 

 

 

 

H024

Decrease J

 

 

 

 

 

 

H006

Increase / decrease stability control factor

 

 

(Increase or decrease depends on the situation.)

 

 

 

 

 

A045

Decrease output gain

 

 

 

 

 

 

A081

Set AVR function to OFF

 

 

 

 

 

 

b083

Decrease carrier frequency

 

 

 

 

6

Insufficient torque at low speed due to torque

b021,

Set;

b041

limit action

Torque limit level > Overload restriction level

 

~b044

 

 

 

 

 

H005

Increase speed response factor

7

Response is slow

 

 

H050

Increase P-gain of speed response factor

 

 

 

 

 

 

H051

Decrease I-gain of speed response factor

 

 

 

 

 

 

H005

Decrease speed response factor

8

Speed overshoot due to too quick

 

 

H050

Decrease P-gain of speed response factor

response

 

 

 

 

 

 

 

 

 

H051

Increase I-gain of speed response factor

 

 

 

 

*Refer to Table 3 for a standard (default) motor parameter settings for SJ300 series inverter.

Hitachi AN072302-1 User's Guide

SLV Control block diagram (Fig 1)

Motor

 

 

 

 

Speed response [H005]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P gain for PI [H050]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I gain for PI [H051]

 

Motor Constant

 

 

 

 

 

 

 

 

 

 

 

P gain for P [H052]

 

 

 

 

 

 

 

 

 

 

 

 

 

(R1, R2, L, Io)

 

 

 

 

 

 

 

 

 

 

 

[H070], [H071], [H072]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωr*

 

 

Motor Constant (R1,L,Io,J)

 

 

 

 

 

 

vU* vV* vW*

 

 

 

 

Speed

 

 

 

 

 

 

 

 

 

 

 

 

 

Speed reference

iq*

 

 

 

iq*

 

 

 

 

 

 

 

 

 

 

ωr^

control

 

 

 

 

 

 

 

vq*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

id*

 

 

 

 

 

id*

 

Voltage calculation

Voltage conversion

 

 

Magnetizing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Interference control)

vd*

 

 

current reference

 

 

 

 

 

 

 

(2φà3φ)

 

 

 

 

 

 

 

 

φd*

 

 

 

 

 

 

 

 

 

 

 

 

Motor Constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(R1, R2, L, Io)

 

 

 

 

 

 

 

 

 

 

Magnetizing

 

 

 

 

 

 

 

 

 

 

 

θ

 

Iu

Iw

current Io

 

 

 

 

 

 

 

 

 

ω1*

 

 

 

 

 

 

 

 

 

 

 

Vd

 

 

 

 

 

 

 

 

 

iq*

Torque current

 

 

Vq

 

 

 

 

 

 

 

 

 

 

vq0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iq

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(q-ACR)

 

 

 

 

 

 

 

 

 

 

 

Motor Constant

 

 

 

 

 

 

 

 

 

 

Motor Constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(R1, R2, L, Io)

 

 

 

 

 

 

 

Compensation

 

 

(R1, R2, L, Io)

 

 

 

 

 

 

 

id*

 

 

 

 

 

voltage

 

 

 

 

 

 

 

 

 

 

Magnetizing

 

 

 

calculation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

id

current control

vd0

 

 

 

 

 

 

 

 

 

 

 

 

 

(d-ACR)

 

 

 

Stabilization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

factor [H006]

 

 

 

 

 

 

 

 

 

id*

d-axis secondary

φd*

iq*

Frequency

ω1*

 

Integrator

 

 

 

 

 

 

 

 

 

θ

 

 

 

 

 

 

 

calculation

 

 

 

 

 

 

 

 

flux control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motor Constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(R1, R2, L, Io)

 

 

 

 

 

id

 

 

θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iq

Current converter

Iu

 

 

 

 

 

 

 

 

 

 

 

φd*

iq

 

(3φ à2φ )

 

Iw

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωr^

Speed

 

 

 

 

 

 

 

 

 

 

 

 

 

ω1*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimator

 

 

 

 

 

Motor Constant

(R1, R2, L, Io)

Vector control technical information

 

 

 

 

 

 

Inverter main body

 

LAC

 

 

 

Internal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

setting

 

TH

 

 

APR

LAD

ASR

Torque

ACR

PWM

M

 

limiter

 

 

 

 

 

 

 

PCLR

 

 

 

 

 

 

 

 

 

 

 

Speed

 

 

 

POK

 

 

 

detection

 

SJ-FB

EC

 

 

 

 

 

Position

 

 

 

 

 

 

 

 

ORT

Orientation

 

 

 

detection

EAP,EAN

 

 

control

 

 

 

 

EBP,EBN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EZP,EZN

 

 

 

 

 

 

 

EP5,EG5

 

STAT

 

Speed deviation

Zero speed

 

 

AP,AN

 

 

 

 

 

BP,BN

 

 

 

excessive signal

detection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAP,SAN

 

 

 

 

 

 

 

SBP,SBN

 

 

 

DSE

ZS

 

 

 

 

Loading...
+ 18 hidden pages