Gorman-Rupp Pumps T8A60S-B-F-FM User Manual

5 (1)
OM‐05278‐01
September 13, 2001
Rev. I 04‐15‐13
C
THE GORMAN‐RUPP COMPANY MANSFIELD, OHIO
www.grpumps.com
GORMAN‐RUPP OF CANADA LIMITED ST. THOMAS, ONTARIO, CANADA Printed in U.S.A.
2001 The Gorman‐Rupp Company
AND MAINTENANCE MANUAL
WITH PARTS LIST
SUPER T SERIES PUMPS
MODEL
T8A60S‐B
INCLUDING: /F, /FM
Register your new
Gorman‐Rupp pump online at
www.grpumps.com/register.
Valid serial number and e‐mail address required.
RECORD YOUR PUMP MODEL AND SERIAL NUMBER
Please record your pump model and serial number in the
spaces provided below. Your Gorman‐Rupp distributor
needs this information when you require parts or service.
Pump Model:
Serial Number:
TABLE OF CONTENTS
i
INTRODUCTION PAGE I - 1.................................................
SAFETY - SECTION A PAGE A - 1...........................................
INSTALLATION - SECTION B PAGE B - 1....................................
Pump Dimensions PAGE B - 1.....................................................
PREINSTALLATION INSPECTION PAGE B - 2............................................
POSITIONING PUMP PAGE B - 2.......................................................
Lifting PAGE B - 2.................................................................
Mounting PAGE B - 2.............................................................
Clearance PAGE B - 2.............................................................
SUCTION AND DISCHARGE PIPING PAGE B - 2.........................................
Materials PAGE B - 2..............................................................
Line Configuration PAGE B - 3......................................................
Connections to Pump PAGE B - 3..................................................
Gauges PAGE B - 3...............................................................
SUCTION LINES PAGE B - 3...........................................................
Fittings PAGE B - 3...............................................................
Strainers PAGE B - 3..............................................................
Sealing PAGE B - 3...............................................................
Suction Lines In Sumps PAGE B - 3.................................................
Suction Line Positioning PAGE B - 4................................................
DISCHARGE LINES PAGE B - 4........................................................
Siphoning PAGE B - 4.............................................................
Valves PAGE B - 4................................................................
Bypass Lines PAGE B - 5..........................................................
AUTOMATIC AIR RELEASE VALVE PAGE B - 6...........................................
Theory of Operation PAGE B - 6....................................................
Air Release Valve Installation PAGE B - 6............................................
ALIGNMENT PAGE B - 7..............................................................
Coupled Drives PAGE B - 8........................................................
V‐Belt Drives PAGE B - 8...........................................................
OPERATION - SECTION C PAGE C - 1......................................
PRIMING PAGE C - 1.................................................................
STARTING PAGE C - 1................................................................
Rotation PAGE C - 1..............................................................
OPERATION PAGE C - 2..............................................................
Lines With a Bypass PAGE C - 2....................................................
Lines Without a Bypass PAGE C - 2.................................................
Leakage PAGE C - 2..............................................................
Liquid Temperature And Overheating PAGE C - 2.....................................
Strainer Check PAGE C - 3.........................................................
Pump Vacuum Check PAGE C - 3..................................................
STOPPING PAGE C - 3................................................................
Cold Weather Preservation PAGE C - 3..............................................
BEARING TEMPERATURE CHECK PAGE C - 3..........................................
TABLE OF CONTENTS
(continued)
ii
TROUBLESHOOTING - SECTION D PAGE D - 1..............................
PREVENTIVE MAINTENANCE PAGE D - 3...............................................
PUMP MAINTENANCE AND REPAIR - SECTION E PAGE E - 1................
PERFORMANCE CURVE PAGE E - 1...................................................
PARTS LISTS:
Pump Model PAGE E - 3..........................................................
Repair Rotating Assembly PAGE E - 5...............................................
PUMP AND SEAL DISASSEMBLY AND REASSEMBLY PAGE E - 6.........................
Back Cover And Wear Plate Removal PAGE E - 6.....................................
Suction Check Valve Removal PAGE E - 7...........................................
Rotating Assembly Removal PAGE E - 7.............................................
Impeller Removal PAGE E - 8......................................................
Seal Removal PAGE E - 8..........................................................
Shaft and Bearing Removal and Disassembly PAGE E - 8.............................
Shaft and Bearing Reassembly and Installation PAGE E - 9............................
Seal Installation PAGE E - 11........................................................
Impeller Installation PAGE E - 14.....................................................
Rotating Assembly Installation PAGE E - 14...........................................
Suction Check Valve Installation PAGE E - 15.........................................
Back Cover Installation And Adjustment PAGE E - 15..................................
PRESSURE RELIEF VALVE MAINTENANCE PAGE E - 16..................................
Final Pump Assembly PAGE E - 16..................................................
LUBRICATION PAGE E - 16.............................................................
Seal Assembly PAGE E - 16.........................................................
Bearings PAGE E - 16..............................................................
Power Source PAGE E - 17.........................................................
SUPER T SERIES OM-05278
PAGE I - 1INTRODUCTION

INTRODUCTION

Thank You for purchasing a Gorman‐Rupp pump.
Read this manual carefully to learn how to safely
install and operate your pump. Failure to do so
could result in personal injury or damage to the
pump. This Installation, Operation, and Mainte
nance manual is designed to help you achieve the
best performance and longest life from your Gor
man‐Rupp pump.
This pump is a Super T‐Series, semi‐open impeller,
self‐priming centrifugal model with a suction check
valve. The pump also is designed with external
shimless adjusters for setting the wear plate to im
peller clearance. The pump is designed for han
dling liquids containing large entrained solids and
slurries. The basic material of construction is gray
iron, with ductile iron impeller and steel wearing
parts.
Because pump installations are seldom identical,
this manual cannot possibly provide detailed in
structions and precautions for every aspect of
each specific application. Therefore, it is the re
sponsibility of the owner/installer of the pump to
ensure that applications not addressed in this
manual are performed only after establishing that
neither operator safety nor pump integrity are com
promised by the installation. Pumps and related
equipment must be installed and operated ac
cording to all national, local and industry stan
dards.
For information or technical assistance on the
power source, contact the power source manufac
turer's local dealer or representative.
If there are any questions regarding the pump or
its application which are not covered in this man
ual or in other literature accompanying this unit,
please contact your Gorman‐Rupp distributor, or
The Gorman‐Rupp Company:
The Gorman‐Rupp Company
P.O. Box 1217
Mansfield, Ohio 44901-1217
Phone: (419) 755-1011
or:
Gorman‐Rupp of Canada Limited
70 Burwell Road
St. Thomas, Ontario N5P 3R7
Phone: (519) 631-2870
The following are used to alert maintenance per
sonnel to procedures which require special atten
tion, to those which could damage equipment, and
to those which could be dangerous to personnel:
Immediate hazards which WILL result in
severe personal injury or death. These
instructions describe the procedure re
quired and the injury which will result
from failure to follow the procedure.
Hazards or unsafe practices which
COULD result in severe personal injury
or death. These instructions describe
the procedure required and the injury
which could result from failure to follow
the procedure.
Hazards or unsafe practices which COULD
result in minor personal injury or product
or property damage. These instructions
describe the requirements and the possi
ble damage which could result from failure
to follow the procedure.
NOTE
Instructions to aid in installation, operation, and
maintenance or which clarify a procedure.
SUPER T SERIES OM-05278
PAGE A - 1SAFETY

SAFETY - SECTION A

This information applies to Super T Se
ries basic pumps. Gorman‐Rupp has no
control over or particular knowledge of
the power source which will be used.
Refer to the manual accompanying the
power source before attempting to be
gin operation.
Because pump installations are seldom
identical, this manual cannot possibly
provide detailed instructions and pre
cautions for each specific application.
Therefore, it is the owner/installer's re
sponsibility to ensure that applications
not addressed in this manual are per
formed only
after establishing that nei
ther operator safety nor pump integrity
are compromised by the installation.
Before attempting to open or service the
pump:
1. Familiarize yourself with this man
ual.
2. Disconnect or lock out the power
source to ensure that the pump will
remain inoperative.
3. Allow the pump to completely cool
if overheated.
4. Check the temperature before
opening any covers, plates, or
plugs.
5. Close the suction and discharge
valves.
6. Vent the pump slowly and cau
tiously.
7. Drain the pump.
This pump is designed to handle liquids
containing large entrained solids or
slurries. Do not attempt to pump vola
tile, corrosive, or flammable materials
which may damage the pump or endan
ger personnel as a result of pump fail
ure.
After the pump has been positioned,
make certain that the pump and all pip
ing connections are tight, properly sup
ported and secure before operation.
Do not operate the pump without the
guards in place over the rotating parts.
Exposed rotating parts can catch cloth
ing, fingers, or tools, causing severe in
jury to personnel.
Do not remove plates, covers, gauges,
pipe plugs, or fittings from an over
heated pump. Vapor pressure within the
pump can cause parts being disen
gaged to be ejected with great force. Al
low the pump to cool before servicing.
Do not operate the pump against a
closed discharge valve for long periods
of time. If operated against a closed dis
charge valve, pump components will
deteriorate, and the liquid could come
to a boil, build pressure, and cause the
pump casing to rupture or explode.
SUPER T SERIESOM-05278
PAGE A - 2 SAFETY
Use lifting and moving equipment in
good repair and with adequate capacity
to prevent injuries to personnel or dam
age to equipment. Suction and dis
charge hoses and piping must be re
moved from the pump before lifting.
Do not attempt to disengage any part of
an overheated pump unit. Vapor pres
sure within the pump casing can eject
these parts with great force when they
are disengaged. Allow the pump to
completely cool before servicing it.
This pump may be used to handle mate
rials which could cause illness through
direct exposure or emitted fumes. Wear
adequate protective clothing when
working on the pump or piping.
Pumps and related equipment must be in
stalled and operated according to all na
tional, local and industry standards.
OM-05278SUPER T SERIES
PAGE B - 1INSTALLATION

INSTALLATION - SECTION B

Review all SAFETY information in Section A.
Since pump installations are seldom identical, this
section offers only general recommendations and
practices required to inspect, position, and ar
range the pump and piping.
Most of the information pertains to a standard
static lift application where the pump is posi
tioned above the free level of liquid to be pumped.
If installed in a flooded suction application where
the liquid is supplied to the pump under pressure,
some of the information such as mounting, line
configuration, and priming must be tailored to the
specific application. Since the pressure supplied
to the pump is critical to performance and safety,
be sure to limit the incoming pressure to 50% of
the maximum permissible operating pressure as
shown on the pump performance curve.
For further assistance, contact your Gorman‐Rupp
distributor or the Gorman‐Rupp Company.
Pump Dimensions
See Figure 1 for the approximate physical dimen
sions of this pump.
OUTLINE DRAWING
NOTE: OPTIONAL ASA OR DIN STANDARD SUCTION & DISCHARGE SPOOL FLANGES AVAILABLE
Figure 1. Pump Model T8A60S‐B, Including /F, /FM
OM-05278 SUPER T SERIES
PAGE B - 2 INSTALLATION
PREINSTALLATION INSPECTION
The pump assembly was inspected and tested be
fore shipment from the factory. Before installation,
inspect the pump for damage which may have oc
curred during shipment. Check as follows:
a. Inspect the pump for cracks, dents, damaged
threads, and other obvious damage.
b. Check for and tighten loose attaching hard
ware. Since gaskets tend to shrink after dry
ing, check for loose hardware at mating sur
faces.
c. Carefully read all warnings and cautions con
tained in this manual or affixed to the pump,
and perform all duties indicated. Note the di
rection of rotation indicated on the pump.
Check that the pump shaft rotates counter
clockwise when facing the impeller.
Only operate this pump in the direction in
dicated by the arrow on the pump body
and on the accompanying decal. Refer to
ROTATION in OPERATION, Section C.
d. Check levels and lubricate as necessary. Re
fer to LUBRICATION in the MAINTENANCE
AND REPAIR section of this manual and per
form duties as instructed.
e. If the pump and power source have been
stored for more than 12 months, some of the
components or lubricants may have ex
ceeded their maximum shelf life. These must
be inspected or replaced to ensure maxi
mum pump service.
If the maximum shelf life has been exceeded, or if
anything appears to be abnormal, contact your
Gorman‐Rupp distributor or the factory to deter
mine the repair or updating policy. Do not put the
pump into service until appropriate action has
been taken.
POSITIONING PUMP
Lifting
Pump unit weights will vary depending on the
mounting and drive provided. Check the shipping
tag on the unit packaging for the actual weight, and
use lifting equipment with appropriate capacity.
Drain the pump and remove all customer‐installed
equipment such as suction and discharge hoses
or piping before attempting to lift existing, installed
units.
The pump assembly can be seriously
damaged if the cables or chains used to lift
and move the unit are improperly wrapped
around the pump.
Mounting
Locate the pump in an accessible place as close as
practical to the liquid being pumped. Level mount
ing is essential for proper operation.
The pump may have to be supported or shimmed
to provide for level operation or to eliminate vibra
tion.
Clearance
It is recommended that 24 inches (609,6 mm) of
clearance be provided in front of the back cover to
permit removal of the cover and easy access to the
pump interior. A minimum clearance of 13 inches
(330,2 mm) must be maintained to permit removal
of the cover.
SUCTION AND DISCHARGE PIPING
Pump performance is adversely effected by in
creased suction lift, discharge elevation, and fric
tion losses. See the performance curve and oper
ating range shown on Page E‐1 to be sure your
overall application allows pump to operate within
the safe operation range.
Materials
Either pipe or hose maybe used for suction and
discharge lines; however, the materials must be
OM-05278SUPER T SERIES
PAGE B - 3INSTALLATION
compatible with the liquid being pumped. If hose is
used in suction lines, it must be the rigid‐wall, rein
forced type to prevent collapse under suction. Us
ing piping couplings in suction lines is not recom
mended.
Line Configuration
Keep suction and discharge lines as straight as
possible to minimize friction losses. Make mini
mum use of elbows and fittings, which substan
tially increase friction loss. If elbows are necessary,
use the long‐radius type to minimize friction loss.
Connections to Pump
Before tightening a connecting flange, align it ex
actly with the pump port. Never pull a pipe line into
place by tightening the flange bolts and/or cou
plings.
Lines near the pump must be independently sup
ported to avoid strain on the pump which could
cause excessive vibration, decreased bearing life,
and increased shaft and seal wear. If hose‐type
lines are used, they should have adequate support
to secure them when filled with liquid and under
pressure.
Gauges
Most pumps are drilled and tapped for installing
discharge pressure and vacuum suction gauges. If
these gauges are desired for pumps that are not
tapped, drill and tap the suction and discharge
lines not less than 18 inches (457,2 mm) from the
suction and discharge ports and install the lines.
Installation closer to the pump may result in erratic
readings.
SUCTION LINES
To avoid air pockets which could affect pump prim
ing, the suction line must be as short and direct as
possible. When operation involves a suction lift, the
line must always slope upward to the pump from
the source of the liquid being pumped; if the line
slopes down to the pump at any point along the
suction run, air pockets will be created.
Fittings
Suction lines should be the same size as the pump
inlet. If reducers are used in suction lines, they
should be the eccentric type, and should be in
stalled with the flat part of the reducers uppermost
to avoid creating air pockets. Valves are not nor
mally used in suction lines, but if a valve is used,
install it with the stem horizontal to avoid air pock
ets.
Strainers
If a strainer is furnished with the pump, be certain
to use it; any spherical solids which pass through a
strainer furnished with the pump will also pass
through the pump itself.
If a strainer is not furnished with the pump, but is
installed by the pump user, make certain that the
total area of the openings in the strainer is at least
three or four times the cross section of the suction
line, and that the openings will not permit passage
of solids larger than the solids handling capability
of the pump.
This pump is designed to handle up to 3 inch (76,2
mm) diameter spherical solids.
Sealing
Since even a slight leak will affect priming, head,
and capacity, especially when operating with a
high suction lift, all connections in the suction line
should be sealed with pipe dope to ensure an air
tight seal. Follow the sealant manufacturer's rec
ommendations when selecting and applying the
pipe dope. The pipe dope should be compatible
with the liquid being pumped.
Suction Lines In Sumps
If a single suction line is installed in a sump, it
should be positioned away from the wall of the
sump at a distance equal to 1 1/2 times the diame
ter of the suction line.
If there is a liquid flow from an open pipe into the
sump, the flow should be kept away from the suc
tion inlet because the inflow will carry air down into
the sump, and air entering the suction line will re
duce pump efficiency.
OM-05278 SUPER T SERIES
PAGE B - 4 INSTALLATION
If it is necessary to position inflow close to the suc
tion inlet, install a baffle between the inflow and the
suction inlet at a distance 1 1/2 times the diameter
of the suction pipe. The baffle will allow entrained
air to escape from the liquid before it is drawn into
the suction inlet.
If two suction lines are installed in a single sump,
the flow paths may interact, reducing the efficiency
of one or both pumps. To avoid this, position the
suction inlets so that they are separated by a dis
tance equal to at least 3 times the diameter of the
suction pipe.
Suction Line Positioning
The depth of submergence of the suction line is
critical to efficient pump operation.
Figure 2 shows
recommended minimum submergence vs. veloc
ity.
NOTE
The pipe submergence required may be reduced
by installing a standard pipe increaser fitting at the
end of the suction line. The larger opening size will
reduce the inlet velocity. Calculate the required
submergence using the following formula based
on the increased opening size (area or diameter).
Figure 2. Recommended Minimum Suction Line Submergence vs. Velocity
DISCHARGE LINES
Siphoning
Do not terminate the discharge line at a level lower
than that of the liquid being pumped unless a si
phon breaker is used in the line. Otherwise, a si
phoning action causing damage to the pump
could result.
Valves
If a throttling valve is desired in the discharge line,
use a valve as large as the largest pipe to minimize
friction losses. Never install a throttling valve in a
suction line.
With high discharge heads, it is recommended that
a throttling valve and a system check valve be in
stalled in the discharge line to protect the pump
from excessive shock pressure and reverse rota
tion when it is stopped.
OM-05278SUPER T SERIES
PAGE B - 5INSTALLATION
If the application involves a high discharge
head, gradually close the discharge
throttling valve before stopping the pump.
Bypass Lines
Self‐priming pumps are not air compressors. Dur
ing the priming cycle, air from the suction line must
be vented to atmosphere on the discharge side. If
the discharge line is open, this air will be vented
through the discharge. However, if a check valve
has been installed in the discharge line, the dis
charge side of the pump must be opened to atmos
pheric pressure through a bypass line installed be
tween the pump discharge and the check valve. A
self‐priming centrifugal pump will not prime if
there is sufficient static liquid head to hold the dis
charge check valve closed.
NOTE
The bypass line should be sized so that it does not
affect pump discharge capacity; however, the by
pass line should be at least 1 inch in diameter to
minimize the chance of plugging.
In low discharge head applications (less than 30
feet or 9 meters), it is recommended that the by
pass line be run back to the wet well, and located 6
inches below the water level or cut‐off point of the
low level pump. In some installations, this bypass
line may be terminated with a six‐to‐eight foot
length of 1 1/4 inch I.D. smooth‐bore hose; air and
liquid vented during the priming process will then
agitate the hose and break up any solids, grease,
or other substances likely to cause clogging.
A bypass line that is returned to a wet well
must be secured against being drawn into
the pump suction inlet.
It is also recommended that pipe unions be in
stalled at each 90 elbow in a bypass line to ease
disassembly and maintenance.
In high discharge head applications (more than
30 feet), an excessive amount of liquid may be by
passed and forced back to the wet well under the
full working pressure of the pump; this will reduce
overall pumping efficiency. Therefore, it is recom
mended that a Gorman‐Rupp Automatic Air Re
lease Valve be installed in the bypass line.
Gorman‐Rupp Automatic Air Release Valves are
reliable, and require minimum maintenance. See
AUTOMATIC AIR RELEASE VALVE in this section
for installation and theory of operation of the Auto
matic Air Release Valve. Consult your Gorman‐
Rupp distributor, or contact the Gorman‐Rupp
Company for selection of an Automatic Air Release
Valve to fit your application.
If the installation involves a flooded suction such as
a below‐ground lift station. A pipe union and manu
al shut‐off valve may be installed in the bleed line to
allow service of the valve without shutting down the
station, and to eliminate the possibility of flooding.
If a manual shut‐off valve is installed anywhere in
the air release piping, it must be a full‐opening ball
type valve to prevent plugging by solids.
If a manual shut‐off valve is installed in
a bypass line, it must not be left closed
during operation. A closed manual shut‐
off valve may cause a pump which has
lost prime to continue to operate with
out reaching prime, causing dangerous
overheating and possible explosive
rupture of the pump casing. Personnel
could be severely injured.
Allow an over‐heated pump to com
pletely cool before servicing. Do not re
move plates, covers, gauges, or fittings
from an over‐heated pump. Liquid with
in the pump can reach boiling tempera
tures, and vapor pressure within the
pump can cause parts being disen
gaged to be ejected with great force. Af
ter the pump completely cools, drain the
liquid from the pump by removing the
casing drain plug. Use caution when re
Loading...
+ 28 hidden pages