GE Industrial Solutions Austin Lynx SMT User Manual

Data Sheet September 10, 2013
Austin LynxTM SMT Non-isolated Power Modules:
3.0Vdc –5.5Vdc Input; 0.75Vdc to 3.63Vdc Output;10A Output Current
RoHS Compliant
Applications
Distributed power architectures
Intermediate bus voltage applications
Telecommunications equipment
Servers and storage applications
Networking equipment
Enterprise Networks
Latest generation IC’s (DSP, FPGA, ASIC)
and Microprocessor powered applications
Features
Compliant to RoHS EU Directive 2002/95/EC (-Z
versions)
Compliant to ROHS EU Directive 2002/95/EC with
lead solder exemption (non-Z versions)
Delivers up to 10A output current
High efficiency – 95% at 3.3V full load (V
Small size and low profile:
33.0 mm x 13.5 mm x 8.28 mm
(1.30 in x 0.53 in x 0.326 in)
Low output ripple and noise
High Reliability:
Calculated MTBF = 15.7 M hours at 25
Constant switching frequency (300 kHz)
Output voltage programmable from 0.75 Vdc to
3.63Vdc via external resistor
Line Regulation: 0.3% (typical)
Load Regulation: 0.4% (typical)
Temperature Regulation: 0.4 % (typical)
Remote On/Off
Remote Sense(optional)
Over temperature protection
Output overcurrent protection (non-latching)
Wide operating temperature range (-40°C to 85°C)
UL* 60950-1Recognized, CSA
03 Certified, and VDE Licensed
ISO** 9001 and ISO 14001 certified manufacturing
facilities
0805:2001-12 (EN60950-1)
C22.2 No. 60950-1-
= 5.0V)
IN
o
C Full-load
Description
Austin LynxTM SMT (surface mount technology) power modules are non-isolated dc-dc converters that can deliver up to 10A of output current with full load efficiency of 95% at 3.3V output. These modules provide a precisely regulated output voltage programmable via an external resistor from 0.75Vdc to 3.63Vdc over a wide range of input voltage (V and space-efficient solutions. Standard features include remote On/Off, remote sense, programmable output voltage, over current and over temperature protections.
CSA is a reg istered trademark of Canadian Standards Associat ion.
VDE is a t rademark of Verband Deutscher Elektrotechniker e.V.
** ISO is a registered trademark of the International Or ganization of Standards
= 3.0 – 5.5Vdc). Their open-frame construction and small footprint enable designers to develop cost-
IN
Document No: DS04-031 ver. 1.55
PDF name: lynx_po_smt.pdf
Data Sheet September 10, 2013
Austin Lynx
3.0 – 5.5Vdc Input; 0.75Vdc to 3.63Vdc Output; 10A output current
TM
SMT Non-isolated Power Modules:
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.
Parameter Device Symbol Min Max Unit
Input Voltage All V
Continuous
Operating Ambient Temperature All T
IN
A
-0.3 5.8 Vdc
-40 85 °C
(see Thermal Considerations section)
Storage Temperature All T
stg
-55 125 °C
Electrical Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.
Parameter Device Symbol Min Typ Max Unit
Operating Input Voltage V
Maximum Input Current All I
(VIN= V
IN, min
to V
IN, max
, IO=I
O, max VO,set
= 3.3Vdc)
Input No Load Current V
V
– 0.5V VIN 3.0
O,set
IN
IN,max
= 0.75Vdc I
O,set
IN,No load
5.5 Vdc
10 Adc
25 mA
(VIN = 5.0Vdc, IO = 0, module enabled) V
Input Stand-by Current All I
= 3.3Vdc I
O,set
30 mA
IN,No load
1.5 mA
IN,stand-by
(VIN = 5.0Vdc, module disabled)
Inrush Transient All I2t 0.1 A2s
Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1μH source impedance; V V
= I
IN, max, IO
; See Test configuration section)
Omax
IN, min
to
All 100 mAp-p
Input Ripple Rejection (120Hz) All 30 dB
CAUTION: This power module is not internally fused. An input line fuse must always be used.
This power module can be used in a wide variety of applications, ranging from simple standalone operation to being part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a 15A, time-delay fuse (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data sheet for further information.
LINEAGE POWER 2
Data Sheet September 10, 2013
Austin Lynx
3.0 – 5.5Vdc Input; 0.75Vdc to 3.63Vdc Output; 10A output current
TM
SMT Non-isolated Power Modules:
Electrical Specifications (continued)
Parameter Device Symbol Min Typ Max Unit
Output Voltage Set-point All V
(VIN=V
IN, min
, IO=I
, TA=25°C)
O, max
Output Voltage All V
(Over all operating input voltage, resistive load, and temperature conditions until end of life)
Adjustment Range All V
Selected by an external resistor
O, set
O, set
O
Output Regulation
Line (VIN=V
Load (IO=I
Temperature (T
IN, min
O, min
to V
to I
ref=TA, min
) All
IN, max
) All
O, max
to T
) All ⎯ 0.4
A, max
Output Ripple and Noise on nominal output
(VIN=V
IN, nom
and IO=I
O, min
to I
O, max
Cout = 1μF ceramic//10μFtantalum capacitors)
RMS (5Hz to 20MHz bandwidth) All
Peak-to-Peak (5Hz to 20MHz bandwidth) All
External Capacitance
ESR 1 m All C
ESR 10 m All C
Output Current All I
Output Current Limit Inception (Hiccup Mode ) All I
(VO= 90% of V
)
O, set
Output Short-Circuit Current All I
(VO≤250mV) ( Hiccup Mode )
Efficiency V
VIN= V
IO=I
, TA=25°C V
IN, nom
= V
O, max , VO
V
O,set
V
V
V
= 0.75Vdc η 82.5 %
O,set
= 1.2Vdc η 88.0 %
O, set
= 1.5Vdc η 89.5 %
O,set
= 1.8Vdc η 91.0 %
O,set
= 2.5Vdc η 93.0 %
O,set
= 3.3Vdc η 95.0 %
O,set
Switching Frequency All f
O, max
O, max
o
O, lim
O, s/c
sw
Dynamic Load Response
(dIo/dt=2.5A/μs; VIN = V
IN, nom
; TA=25°C)
Load Change from Io= 50% to 100% of Io,max; 1μF ceramic// 10 μF tantalum
All V
pk
Peak Deviation
Settling Time (Vo<10% peak deviation)
(dIo/dt=2.5A/μs; VIN = V
IN, nom
; TA=25°C)
Load Change from Io= 100% to 50%of Io,max: 1μF ceramic// 10 μF tantalum
All t
All V
s
pk
Peak Deviation
Settling Time (Vo<10% peak deviation)
All t
s
-2.0 V
-3%
+2.0 % V
O, set
+3% % V
0.7525 3.63 Vdc
0.3
0.4
8 15 mV
25 50 mV
% V
% V
% V
1000 μF
5000 μF
0 10 Adc
220
2
300
200
25
200
25
μs
μs
O, set
O, set
O, set
O, set
O, set
pk-pk
% I
Adc
kHz
mV
mV
rms
o
LINEAGE POWER 3
Data Sheet September 10, 2013
Austin Lynx
3.0 – 5.5Vdc Input; 0.75Vdc to 3.63Vdc Output; 10A output current
TM
SMT Non-isolated Power Modules:
Electrical Specifications (continued)
Parameter Device Symbol Min Typ Max Unit
Dynamic Load Response
(dIo/dt=2.5A/μs; V VIN = V
Load Change from Io= 50% to 100% of Io,max; Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation)
(dIo/dt=2.5A/μs; VIN = V
Load Change from Io= 100% to 50%of Io,max: Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation)
IN, nom
IN, nom
; TA=25°C)
; TA=25°C)
All V
All t
All V
All t
pk
s
pk
s
100
100
100
100
μs
μs
General Specifications
Parameter Min Typ Max Unit
Calculated MTBF (IO=I
Telecordia SR-332 Issue 1: Method 1 Case 3
Weight
, TA=25°C) 15,726,000 Hours
O, max
5.6 (0.2)
g (oz.)
mV
mV
LINEAGE POWER 4
Data Sheet September 10, 2013
Austin Lynx
3.0 – 5.5Vdc Input; 0.75Vdc to 3.63Vdc Output; 10A output current
TM
SMT Non-isolated Power Modules:
Feature Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.
Parameter Device Symbol Min Typ Max Unit
On/Off Signal interface
(On/Off is open collector/drain logic input;
Signal referenced to GND - See feature description section)
Input High Voltage (Module ON) All VIH V
Input High Current All IIH 10 μA
Input Low Voltage (Module OFF) All VIL -0.2 0.3 V
Input Low Current All IIL 0.2 1 mA
Turn-On Delay and Rise Times
(IO=I
O, max , VIN=VIN, nom, TA
Case 1: On/Off input is set to Logic High (Module ON) and then input power is applied (delay from instant at which V
Case 2: Input power is applied for at least one second and then the On/Off input is set to logic High (delay from instant at which Von/Off=0.3V until Vo=10% of Vo, set)
Output voltage Rise time (time for Vo to rise from 10% of Vo,set to 90% of Vo, set)
Output voltage overshoot – Startup
IO= I
; VIN = 3.0 to 5.5Vdc, TA = 25 oC
O, max
Remote Sense Range 0.5 V Overtemperature Protection
(See Thermal Consideration section)
Input Undervoltage Lockout
Turn-on Threshold All
Turn-off Threshold All
= 25 oC)
= V
IN
until Vo=10% of Vo,set)
IN, min
All Tdelay 3.9 msec
All Tdelay 3.9 msec
All Trise
All T
ref
V
IN, max
4.2 8.5 msec
1
2.2 V
2.0 V
125
% V
°C
O, set
LINEAGE POWER 5
Data Sheet
O
(A)
)
September 10, 2013
Austin Lynx
3.0 – 5.5Vdc Input; 0.75Vdc to 3.63Vdc Output; 10A output current
TM
SMT Non-isolated Power Modules:
Characteristic Curves
The following figures provide typical characteristics for the Austin LynxTM SMT modules at 25ºC.
90
87
84
81
78
75
EFFICIENCY, (η)
72
02.557.510
VIN = 3.0V
VIN = 5.0V
VIN = 5.5V
OUTPUT CURRENT, IO (A) OUTPUT CURRENT, IO (A)
Figure 1. Converter Efficiency versus Output Current (Vout = 0.75Vdc).
93
90
87
84
81
78
EFFICIENCY, (η)
75
72
0 2.557.510
VIN = 3.0V
VIN = 5.0V
VIN = 5.5V
OUTPUT CURRENT, I
Figure 2. Converter Efficiency versus Output Current (Vout = 1.2Vdc).
94
91
88
85
82
79
76
EFFICIENCY, (η)
73
70
02.557.510
VIN = 3.0V
VIN = 5.0V
VIN = 5.5V
OUTPUT CURRENT, IO (A) OUTPUT CURRENT, IO (A)
Figure 3. Converter Efficiency versus Output Current (Vout = 1.5Vdc).
96
93
90
87
84
81
78
EFFICIENCY, (η)
75
72
02.557.510
Figure 4. Converter Efficiency versus Output Current (Vout = 1.8Vdc).
10 0
97
94
91
88
85
82
79
EFFICIENCY, (η)
76
73
02.557.510
OUTPUT CURRENT, IO (A
Figure 5. Converter Efficiency versus Output Current (Vout = 2.5Vdc).
10 0
97
94
91
88
85
82
EFFICIENCY, (η)
79
76
0 2.557.510
Figure 6. Converter Efficiency versus Output Current (Vout = 3.3Vdc).
VIN = 3.0V
VIN = 5.0V
VIN = 5.5V
VIN = 3.0V
VIN = 5.0V
VIN = 5.5V
VIN = 4.5V
VIN = 5.0V
VIN = 5.5V
LINEAGE POWER 6
Loading...
+ 14 hidden pages