ATL010A0X43-SR Non-Isolated Power Modules 12Vdc, Programmable
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A Output Current
RoHS Compliant
Applications
Distributed power architectures
Intermediate bus voltage applications
Telecommunications equipment
Servers and storage applications
Networking equipment
Features
Compliant to RoHS EU Directive 2002/95/EC (-Z
versions)
Compliant to RoHS EU Directive 2002/95/EC with
lead solder exemption (non-Z versions)
Flexible output voltage sequencing EZ-SEQUENCE
Delivers up to 10A of output current
High efficiency – 93% at 3.3V full load (V
Small size and low profile:
33.00 mm x 13.46 mm x 8.28 mm
(1.300 in x 0.530 in x 0.326 in)
Low output ripple and noise
High Reliability:
Calculated MTBF = 15 M hours at 25
Output voltage programmable from 0.75 Vdc to 5.5
Vdc via external resistor
Line Regulation: 0.3% (typical)
Load Regulation: 0.4% (typical)
Temperature Regulation: 0.4% (typical)
Remote On/Off
Remote Sense
Output overcurrent protection (non-latching)
Overtemperature protection
Wide operating temperature range (-40°C to85°C)
UL* 60950-1Recognized, CSA
03 Certified, and VDE
Licensed
ISO** 9001 and ISO 14001 certified manufacturing
facilities
‡
†
0805:2001-12 (EN60950-1)
C22.2 No. 60950-1-
= 12.0V)
IN
o
C Full-load
Description
The ATL010A0X43-SR power modules are non-isolated dc-dc converters that can deliver up to 10A of output
current with full load efficiency of 93% at 3.3V output. These modules provide a precisely regulated output voltage
programmable via an external resistor from 0.75Vdc to 5.5Vdc over a wide range of input voltage (V
The ATL010A0X43-SR series has a sequencing feature, EZ-SEQUENCE
various types of output voltage sequencing when powering multiple voltages on a board. Their open-frame
construction and small footprint enable designers to develop cost- and space-efficient solutions. In addition to
sequencing, standard features include remote On/Off, remote sense, output voltage adjustment, over current and
over temperature protection.
* UL is a re gistered trademark of Underwriters Laboratories, Inc.
†
CSA is a reg istered trademark of Canadian Standards Associat ion.
‡
VDE is a t rademark of Verband Deutscher Elektrotechniker e.V.
** ISO is a registered trademark of the International Or ganization of Standards
TM
that enables designers to implement
Document No: DS05-008 ver.1.22
PDF name: atl010a0x43-sr_ds.pdf
= 9 – 18Vdc).
IN
Data Sheet
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are
absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for
extended periods can adversely affect the device reliability.
Parameter Device Symbol Min Max Unit
Input Voltage All V
Continuous
Sequencing Voltage All V
Operating Ambient Temperature All T
IN
SEQ
A
-0.3 18 Vdc
-0.3 V
iN, Max
Vdc
-40 85 °C
(see Thermal Considerations section)
Storage Temperature All T
stg
-55 125 °C
Electrical Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions.
Parameter Device Symbol Min Typ Max Unit
Operating Input Voltage All VIN 9.0 12.0 18.0 Vdc
Maximum Input Current All I
(VIN= V
Input No Load Current V
IN, min
to V
IN, max
, IO=I
O, max VO,set
= 5.5Vdc)
= 0.75 Vdc I
O,set
IN,max
IN,No load
7.0 Adc
40 mA
(VIN = 12.0Vdc, IO = 0, module enabled) V
Input Stand-by Current All I
= 5.0Vdc I
O,set
100 mA
IN,No load
2.0 mA
IN,stand-by
(VIN = 12.0Vdc, module disabled)
Inrush Transient All I2t 0.4 A2s
Input Reflected Ripple Current, peak-to-peak
(5Hz to 20MHz, 1μH source impedance; V
V
= I
IN, max, IO
; See Test configuration section)
Omax
IN, min
to
All 20 mAp-p
Input Ripple Rejection (120Hz) All 30 dB
CAUTION: These power modules can be used in a wide variety of applications ranging from simple standalone
operation to an integrated part of sophisticated power architectures. To preserve maximum flexibility, no internal fuse
has been provided. Also, extensive safety testing has shown that no external fuse is required to protect the unit.
However, it is still recommended that some type of current-limiting power source be used to protect the module and
evaluated in the end-use equipment.
LINEAGEPOWER
2
Data Sheet
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Electrical Specifications(continued)
Parameter Device Symbol Min Typ Max Unit
Output Voltage Set-point All V
(VIN=
IN, min
, IO=I
, TA=25°C)
O, max
Output Voltage All V
(Over all operating input voltage, resistive load,
and temperature conditions until end of life)
Adjustment Range All V
Selected by an external resistor
O, set
O, set
O
Output Regulation
Line (VIN=V
Load (IO=I
Temperature (T
IN, min
O, min
to V
to I
ref=TA, min
) All
IN, max
) All
O, max
to T
) All ⎯ 0.4 % V
A, max
Output Ripple and Noise on nominal output
(VIN=V
IN, nom
and IO=I
O, min
to I
O, max
Cout = 1μF ceramic//10μFtantalum capacitors)
RMS (5Hz to 20MHz bandwidth) All
Peak-to-Peak (5Hz to 20MHz bandwidth) All
External Capacitance
ESR ≥ 1 mΩ All C
ESR ≥ 10 mΩ All C
Output Current All I
Output Current Limit Inception (Hiccup Mode ) All I
Output Short-Circuit Current All I
(VO≤250mV) ( Hiccup Mode )
Efficiency V
VIN= V
IO=I
, TA=25°C V
IN, nom
= V
O, max , VO
V
O,set
V
V
V
V
= 0.75Vdc η 81.0 %
O, set
= 1.2Vdc η 87.5 %
O, set
= 1.5Vdc η 89.0 %
O,set
= 1.8Vdc η 90.0 %
O,set
= 2.5Vdc η 92.0 %
O,set
= 3.3Vdc η 93.0 %
O,set
= 5.0Vdc η 95.0 %
O,set
Switching Frequency All f
O, max
O, max
o
O, lim
O, s/c
sw
Dynamic Load Response
(dIo/dt=2.5A/μs; VIN = V
IN, nom
; TA=25°C)
Load Change from Io= 50% to 100% of
Io,max; 1μF ceramic// 10 μF tantalum
All V
pk
Peak Deviation
Settling Time (Vo<10% peak deviation)
(dIo/dt=2.5A/μs; VIN = V
IN, nom
; TA=25°C)
Load Change from Io= 100% to 50%of Io,max:
1μF ceramic// 10 μF tantalum
All t
All V
s
pk
Peak Deviation
Settling Time (Vo<10% peak deviation)
All t
s
–2.0
–2.5%
⎯
⎯
+2.0 % V
+3.5% % V
0.7525 5.5 Vdc
⎯
⎯
⎯
⎯
0.3 % V
0.4 % V
12 30 mV
30 75 mV
⎯ ⎯
⎯ ⎯
0
⎯
⎯
200
⎯
3
1000 μF
5000 μF
10 Adc
⎯
⎯
⎯
⎯
⎯
⎯
⎯
300
200
25
200
25
⎯
⎯
⎯ μs
⎯
⎯ μs
pk-pk
% I
Adc
kHz
mV
mV
O, set
O, set
O, set
O, set
O, set
rms
o
LINEAGEPOWER 3
3
Data Sheet
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Electrical Specifications(continued)
Parameter Device Symbol Min Typ Max Unit
Dynamic Load Response
(dIo/dt=2.5A/μs; VIN = V
Load Change from Io= 50% to 100% of Io,max;
Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation)
(dIo/dt=2.5A/μs; VIN = V
Load Change from Io= 100% to 50%of Io,max:
Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation)
IN, nom
IN, nom
; TA=25°C)
; TA=25°C)
All V
All t
All V
All t
pk
s
pk
s
⎯
⎯
⎯
⎯
100
25
100
25
⎯
⎯ μs
⎯
⎯ μs
General Specifications
Parameter Min Typ Max Unit
Calculated MTBF (VIN= V
332 Issue 1: Method 1, case 3
Weight
IN, nom
, IO= I
, TA=40°C) Telecordia SR
O, max
⎯
15,618,000 Hours
5.6 (0.2)
⎯
g (oz.)
mV
mV
LINEAGEPOWER 4
Data Sheet
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Feature Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions. See Feature Descriptions for additional information.
Parameter Device Symbol Min Typ Max Unit
On/Off Signal interface
Device code with Suffix “4” – Positive logic
(On/Off is open collector/drain logic input;
Signal referenced to GND - See feature description
section)
Input High Voltage (Module ON) All VIH―― V
Input High Current All IIH―― 10 μA
Input Low Voltage (Module OFF) All VIL -0.2 ― 0.3 V
Input Low Current All IIL― 0.2 1 mA
Device Code with no suffix – Negative Logic
(On/OFF pin is open collector/drain logic input with
external pull-up resistor; signal referenced to GND)
Input High Voltage (Module OFF) All VIH 2.5 ― V
Input High Current All IIH 0.2 1 mA
Input Low Voltage (Module ON) All VIL -0.2 ― 0.3 Vdc
Input low Current All IIL― 10 μA
Turn-On Delay and Rise Times
(IO=I
Case 1: On/Off input is set to Logic Low (Module
O, max , VIN
= V
= 25 oC, )
IN, nom, TA
All Tdelay 3 msec
ON) and then input power is applied (delay from
instant at which V
Case 2: Input power is applied for at least one second
=V
IN
until Vo=10% of Vo,set)
IN, min
All Tdelay 3 msec
and then the On/Off input is set to logic Low (delay from
instant at which Von/Off=0.3V until Vo=10% of Vo, set)
Output voltage Rise time (time for Vo to rise from 10%
of V
o,set to 90% of Vo, set)
All Trise
Output voltage overshoot – Startup ― 1 % V
IO= I
; VIN = 9.0 to 18Vdc, TA = 25 oC
O, max
Sequencing Delay time
Delay from V
to application of voltage on SEQ pin All TsEQ-delay 10 msec
IN, min
Tracking Accuracy (Power-Up: 2V/ms) All VSEQ –Vo 100 200 mV
(Power-Down: 1V/ms) All VSEQ –Vo 300 500 mV
(V
IN, min
to V
IN, max
; I
to I
O, min
VSEQ < Vo)
O, max
Remote Sense Range All ― ― 0.5 V
Overtemperature Protection
(See Thermal Consideration section)
Input Undervoltage Lockout
Turn-on Threshold All
Turn-off Threshold All
All T
ref
V
IN, max
Vdc
IN,max
― 4 6 msec
O, set
⎯
125
⎯
°C
⎯
⎯
8.2
8.0
⎯
⎯
V
V
LINEAGEPOWER 5
5
Data Sheet
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Characteristic Curves
The following figures provide typical characteristics for the ATL010A0X43-SR modules at 25ºC.
95
Vin = 9 V
90
85
80
Vin = 14 V
75
Vin = 18 V
EFFICIENCY, η (%)
70
0246810
OUTPUT CURRENT, IO (A) OUTPUT CURRENT, IO (A)
Figure 1. Converter Efficiency versus Output Current
(Vout =1.2Vdc).
95
90
85
80
75
EFFICIENCY, η (%)
70
Vin = 9 V
Vin = 18 V
Vin = 14 V
0246810
OUTPUT CURRENT, IO (A) OUTPUT CURRENT, IO (A)
Figure 2. Converter Efficiency versus Output Current
(Vout = 1.5Vdc).
95
90
Vin = 9 V
95
90
Vin = 9 V
85
Vin = 14 V
80
Vin = 18 V
75
EFFICIENCY, η (%)
70
0246810
Figure 4. Converter Efficiency versus Output Current
(Vout = 2.5Vdc).
95
90
Vin = 9 V
85
Vin = 14 V
80
Vin = 18 V
75
EFFICIENCY, η (%)
70
0246810
Figure 5. Converter Efficiency versus Output Current
(Vout = 3.3Vdc).
100
95
85
Vin = 14 V
80
75
Vin = 18 V
EFFICIENCY, η (%)
70
0246810
90
85
80
75
Vin=18V
Vin=14V
Vin=9V
EFFICIENCY, η (%)
70
0246810
OUTPUT CURRENT, IO (A) OUTPUT CURRENT, IO (A)
Figure3. Converter Efficiency versus Output Current
(Vout = 1.8Vdc).
Figure 6. Converter Efficiency versus Output Current
(Vout = 5.0Vdc).
LINEAGEPOWER 6
Data Sheet
(V)
September 10, 2013
ATL010A0X43-SR Non Isolated Module 12Vdc, Programmable:
9 – 18Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
Characteristic Curves (continued)
The following figures provide typical characteristics for the ATL010A0X43-SR modules at 25ºC.
5
4
(A)
IN
3
2
1
INPUT CURRENT, I
0
8 1012141618
Io= 5A
Io= 0A
Figure 7. Input voltage vs. Input Current
Io= 10 A
INPUT VOLTAGE, V
IN
(Vout = 3.3Vdc).
(V) (20mV/div)
O
V
OUTPUT VOLTAGE
TIME, t (2μs/div) TIME, t (5 μs/div)
Figure 8. Typical Output Ripple and Noise
(Vin = 12.0V dc, Vo = 2.5 Vdc, Io=10A).
(V) (200mV/div)
O
(A) (2A/div) V
O
OUTPUT CURRENT, OUTPUT VOLTAGE
I
TIME, t (5 μs/div)
Figure 10. Transient Response to Dynamic Load
Change from 50% to 100% of full load (Vo = 3.3Vdc).
(V) (200mV/div)
O
(A) (2A/div) V
O
OUTPUT CURRENT, OUTPUT VOLTAGE
I
Figure 11. Transient Response to Dynamic Load
Change from 100% to 50% of full load (Vo = 3.3 Vdc).
(V) (100mV/div)
O
(V) (20mV/div)
O
(A) (2A/div) V
OUTPUT VOLTAGE
V
TIME, t (2μs/div) TIME, t (10μs/div)
Figure 9. Typical Output Ripple and Noise
(Vin = 12.0V dc, Vo = 5.0 Vdc, Io=10A).
O
OUTPUT CURRENT, OUTPUT VOLTAGE
I
Figure 12. Transient Response to Dynamic Load
Change from 50% to 100% of full load (Vo = 3.3 Vdc,
Cext = 2x150 μF Polymer Capacitors).
LINEAGEPOWER 7
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.