FUJITSU MB86291A DATA SHEET

FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP for Graphics Control
Graphics Display Controller MB86291A
■■■■
The MB86291A is an evolved version of the Fujitsu MB86290A graphics controller designed for use in a car navigation system or amusement equipment. The MB86291A is a graphics display controller with a geometr y processor, digital video capture facility, and on-chip SDRAM. Embedding SDRAM implements data transfer at a higher bandwidth, resulting in faster drawing. Integrating the geometry processor reduces the CPU load, thereby improving the performance of the entire system.
DS04-31102-1E

FEATUERS

■■■■
• Operating frequency : 100 MHz (External clock of 14.32 MHz Max)
• Geometry processor : Capable of executing operations for geometric transfor mation and surface front/rear evaluation.
• Memory block: Embedded 16-Mbit SDRAM
• Video capture block: Embedded f acility to capture digital video images, f or e xample , from TV, capab le of easily implementing “Picture in Picture” and video graphics superimposing.
• Host interface: Enables direct connection to var ious CPUs (Fujitsu SparcLite, Hitachi SH3/4 or NEC V83x) .
(Continued)

PACKAGE

■■■■
208-pin plastic QFP
(FPT-208P-M04)
MB86291A
(Continued)
• Drawing features:
Drawing at a peak rate of 800 Mpixels per second (at an internal operating frequency of 100 MHz)
2D drawing functions: Point, line, triangle, polygon, BLT, and pattern drawing
3D drawing functions: Point, line, and triangle drawing, and hidden surface removal by Z-buffering
Special effects: Anti-aliasing, bold/dashed-line processing, alpha blending, Gouraud shading, texture
mapping (bilinear filtering, perspective correct) , and tiling
• Display features :
Maximum display resolution supported : 1024×768 pixels
Color display either with a color palette of 8 bits per pix el or directly using 5-bit RGB colors of 16 bits per pixel
Overlaying four layers of screen, of which two lower layers can be divided into the left and right parts
Supporting two 64×64-pixel hardware cursors
Output of analog RGB and digital RGB signals
Capable of superimposing using an external synchronization mode
• Power-supply voltage : Two power supplies at 2.5 V±0.2 V for internal circuits and SDRAM, and 3.3 V±0.2 V for I/O parts
• Package: Plastic QFP with 208 pins (with a lead pitch of 0.5 mm)
• Process technology : 0.25 µm CMOS
2

■■■■ PIN ASSIGNMENT

VSS208
HSYNC206
VSYNC205
CSYNC204
VSS203
DCLKO202
VDDE201
VSS
VCC0
VCC1
VSS
VCC2 VDDE
VSS
VCC3
VDDI
VSS
VDDE
VSS
VCC4
VDDI
VSS VCC5 VDDE
CLKSEL0 CLKSEL1
RESET MODE0 MODE1
VSS
VCC6
MODE2
TESTL0
VCC7
VSS
R0 R1
R2 R3 R4 R5 R6 R7
G0 G1 G2 G3
G4 G5 G6 G7
B0 B1 B2 B3
B4 B5 B6 B7
GV207
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
VI7200
VI6199
VI5198
VI4197
VI3196
VI2195
VI1194
VI0193
VDDI192
VSS191
DCLKI190
(TOP VIEW)
EO189
RESERVE188
RESERVE187
RESERVE186
RESERVE185
RESERVE184
TESTH5183
CCLK182
VDDE181
VSS180
A24179
A23178
A22 177
A21 176
A20 175
A19 174
A18 173
A17 172
A16 171
VDDI 170
VSS 169
A15 168
A14 167
A13 166
MB86291A
A12
A11
TESTL1
VDDE
161
160
159
VDDI 158
157 VSS
A10
165A9163A8162
164
ACOMPR156 VREF155 VRO154 AVD3153 AOUTR152 AVS3151 AVS2150 AVD2149 AVS1148 AOUTG147 AVD1146 ACOMPG145 AVS0144 AOUTB143 AVD0142 ACOMPB141 VSS140 VDDI139 A7138 A6137 A5136 A4135 A3134 A2133 VDDI132 VSS131 PLLVSS130 S129 OSCOUT128 PLLVDD127 VDDE126 VSS125 CLK124 OSCCNT123 VSS122 VDDI121 WE3120 WE2119 WE1118 WE0117 RD116 BS115 CS114 BCLKI113 VDDI112 VSS111 VDDE110 OPEN109 DTACK/TC108 DRACK/DMAAK107 CKM106 TESTH4105
5355565758596061626364656667686970717273745475777879808182838485868788899091929394
D0D1D2D3D4D5D6
VSS
VDDI
TESTH0
VSS/AVS/PLLVSS VDDH/VDDE VDDL/AVD/PLLVDD/VCC/VDDI AVD PLLVDD VCC OPEN TESTL0/TESTL1 TESTH0 ~ TESTH5 RESERVE
D7
VSS
VDDE
D8
D9
D10
D11
D12
D13
D14
D15
D17
D18
D19
D16
VSS
VDDI
VDDE
: Ground : 3.3 V power supply : 2.5 V power supply : Analog power supply : PLL power supply : Internal DRAM power supply : Do not connect anything. : Input the low level. : Input the high level. : Input the high level.
D20
D21
D22
D23
D24
VSS
VDDI
D25
D26
Notes : The AVD and PLLVDD should be separated on the board.
Insert a bypass capacitor with a superior high-frequency characteristic between the power
supply and ground. Place the capacitor as near the pins as possible.
D27
D28
D29
VSS
VDDE
9576969899
97
D30
D31
RDY
DREQ
INT
100
VSS
101
102
VDDI
TESTH1
103
104
TESTH2
TESTH3
3
MB86291A

PIN DESCRIPTION

■■■■
Host CPU
interface
Clock
D0-D31
A2-A24
BCLKI
RESET
CS RD
WE0-WE3
RDY
BS
DREQ DRACK DTACK
INT
MODE0-
MODE2
TESTL, TESTH
CLK
CKM
CLKSEL0-
CLKSEL1
OSCOUT OSCCNT
DCLKO DCLKI
AOUTR, AOUTG, AOUTB
HSYNC VSYNC CSYNC EO GV
MB86291A
Graphics Controller
HQFP208
S
VREF VRO
ACOMPR, ACOMPG, ACOMPB
R0-R7 G0-G7 B0-B7
CCLK VI0-VI7
Vide output interface
Vide capture interface
4
••••
Host Interface Pins
Pin Name Input/output Function
MODE0 to MODE2 Input Host CPU mode/Ready mode select
MB86291A
RESET D0 to D31 Input/output Host CPU bus data A2 to A24 Input Host CPU bus address (Connect A[24] to MWR
BCLKI Input Host CPU bus clock
BS CS
RD Input Read strobe signal WE0 WE1 WE2 Input D16 to D23 write strobe signal WE3
RDY
DREQ Output DMA request signal (active low with both SH and V832)
DRACK/DMAAK Input
DTACK/TC
Input Hardware reset
Input Bus cycle start signal Input Chip select signal
Input D0 to D7 write strobe signal Input D8 to D15 write strobe signal
Input D24 to D31 write strobe signal
Output
Tristate
Input
Wait request signal (“0” for wait state with SH3; “1” for wait state with SH4, V832, or SPARClite)
DMA request acknowledge signal (Connect this to DMAAK in V832 mode. Active high with both SH and V832.)
DMA transfer strobe signal (Connect this to TC in V832 mode. SH = active high, V832 = active low)
in V832 mode.)
INT
TEST0, TEST1,
TESTH0 to TESTH5
Note : The host interface can connect the MB86291A to the SH4 (SH7750) or SH3 (SH7709) from Hitachi Ltd.
the V832 from NEC, or to the SPARClite (MB86833) from Fujitsu without any external circuit in between. (Using the SRAM interface allows the MB86291A to use another CPU.) The host CPU is set by the MODE0 and MODE1 pins as shown below.
MODE1 pin MODE0 pin CPU Type
LLSH3
LHSH4 HLV832 H H SPARClite
Note : The MODE2 pin can be used to set the Ready signal level to be used upon completion of the bus cycle. To
use the MODE2 signal at "H" level, set the software setting to two cycles.
MODE2 pin Ready signal mode
Output Host CPU interrupt signal (SH = active low, V832 = active high)
Input Test signal
L Set RDY
H Set RDY signal to "Ready" level upon completion of bus cycle.
signal to "Not Ready" level upon completion of bus cycle.
5
MB86291A
Notes : The host interface transfers data signals at a fixed width of 32 bits.
There are 23 lines for address signals handled in double words ( = 32 bits) and 32 Mbytes of address
space.
The external bus can be used at an operating frequency of 100 MHz maximum.
The RDY
sets the wait state in the SH3 mode. Note that the RDY
The host interface supports DMA transfer using an external DMA controller.
The host interface generates a host processor interrupt signal.
The RESET
Fix the TEST signal at high level.
In the V832 mode, connect the following pins as specified :
••••
Vide Output Interface
Pin Name Input/output Function
DCLKO Output Display dot clock signal output
DCLKI Input Dot clock signal input
HSYNC Input/output
VSYNC Input/output CSYNC Output Composite sync signal output
EO Input Even/odd-number field identification input
GV Output Graphics/video select signal R0-R7 Output Digital video (R) signal output G0-G7 Output Digital video (G) signal output
B0-B7 Output Digital video (B) signal output
AOUTR Analog output Analog video (R) signal output AOUTG Analog output Analog video (G) signal output AOUTB Analog output Analog video (B) signal output
VREF Analog Reference voltage input pin ACOMPR Analog R-signal compensation pin ACOMPG Analog G-signal compensation pin
ACOMPB Analog B-signal compensation pin
VRO Analog Reference current setting pin
signal at the low lev el sets the ready state in the SH4 or V832 mode; the signal at the lo w level
signal is a tristate output.
pin requires low lev el input of at least 300 µs after setting “S” (PLL reset signal) to high lev el.
SCARLET Pin Name V832 Signal Name
A24 MWR DTACK TC DRACK DMAAK
Horizontal sync signal output Horizontal sync signal input in external synchronization mode
Vertical sync signal output Vertical sync signal input in external synchronization mode
Notes : The video output interface contains an 8-bit D/A converter to output analog RGB signals. Also, the
eight-bit RGB digital output pins can connect an external digital video encoder.
Using an additional external circuit, the video output interface can generate composite video signals.
The video output interface can provide display synchronized with external video. The mode for
synchronization with the DCLKI signal can be selected as well as the mode for synchronization with a set dot clock as for normal display.
6
MB86291A
The HSYNC and VSYNC signals must be pulled up outside the LSI as they enter the input state upon reset.
Terminate the AOUTR, AOUTG, and AOUTB pins with a resistance of 75 Ω.
Input 1.1 V to the VREF pin. Between this pin and analog ground, insert a bypass capacitor (one with a
superior high-frequency characteristic such as a laminated ceramic capacitor).
Connect the ACOMPR, A COMPG, and ACOMPB pins to the 0.1 µF ceramic capacitor ahead of the analog power supply.
Connect the VRO pin to the analog ground with a 2.7 k resistor.
For noninterlaced display in external synchronization mode, input "0" to the EO pin, for example, using
a pull-down resistor.
The GV signal serves to switch between graphics and video for chroma keying. The pin outputs a low level signal to select video.
7
MB86291A
••••
Video Capture Interface
Pin Name Input/output Function
CCLK Input Digital video input clock signal input
VI0-VI7 Input Digital video data input
Note : The video capture interface inputs digital video signals in the ITU-RBT-656 format.
••••
Clock Input
Pin Name Input/output Function
CLK Input Clock input signal
S Input PLL reset signal
CKM Input Clock mode signal
CLKSEL1, CLKSEL0 Input Clock rate select signal
OSCOUT* OSCCNT*
1
2
Input/output For connection of crystal oscillator (Reserved)
Input For selection of crystal oscillator (Reserved)
*1 : Do not connect anything. *2 : Input the “H” level. Notes : The clock input bloc k inputs the clock signal that serves as the basis f or the reference clock f or the internal
operating clock and displa y dot clock. Usually input 4 Fsc ( = 14.31818 MHz) . The internal PLL generates the internal operating clock signal of 100 MHz and the display reference clock signal of 200 MHz.
The internal operating clock signal to be used can be selected between the clock signal (100 MHz) generated by the internal PLL and the bus clock BCLKI input to the host CPU interf ace. Select the BCLKI input to use the host CPU bus at 100 MHz.
CKM Clock Mode
L Select internal PLL output.
H Select host CPU bus clock (BCLKI)
Note : Use the CLKSEL pin to select the input clock frequency for using the internal PLL with CKM = L.
CLKSEL1 CLKSEL0 Clock Frequency
L L Input 13.5 MHz.
L H Input 14.32 MHz. H L Input 17.73 MHz. HHReserved
Note : Immediately after turning the power supply on, input a pulse whose low lev el period is 500 ns or more to the
S pin before setting it to high le v el. After the S signal goes high, input the RESET µs or more
signal at low level for 300
8

BLOCK DIAGRAM

■■■■
MB86291A
D0-D31
A2-A24
Host
Interface
Memory Interface
Controller
Embedded SDRAM
External Video
Interface Controller
Display Controller
DAC
Geometry
Engine
2D/3D
Rendering
Engine
RBT656
DRGB
ARGB
9
MB86291A

FUNCTION BLOCKS

■■■■
••••
Host Interfacee
This block allo ws the MB86291A to be connected to the SH3 or SH4 microprocessor from Hitachi Ltd., the V83x microprocessor from NEC, or to the SPARCLite from Fujitsu without any external circuit in between. The b lock provides an interface to transfer display list and texture pattern data directly from main memory to this device’s graphics memory or internal register using the external DMA controller.
••••
Memory Interface Controller and Embedded SDRAM
The embedded 16-megabit SDRAM eliminates the need for e xternal memory . The SDRAM operates at 100 MHz.
••••
Display Controller
This block contains a three-channel, eight-bit D-A con verter to output analog RGB signals. The bloc k has eight­bit RGB digital video outputs, allowing an external digital video encoder to be connected. The block supports resolutions of up to XGA (1024×768 pixels), enabling flexible setting.
••••
External Video Interface Controller
This block can input digital video in the ITU RBT-656 format by connecting an external digital video decoder using the eight-bit video input pin. Input video data is stored temporarily in graphics memory and then displayed on the screen in synchronization with the display scan. The block supports video in the NTSC and PAL formats.
••••
Set-up Engine
The on-chip geometry engine executes mathematical operations required f or graphics processing precisely using the fronting-point format. The geometry engine executes the required geometry processes selected depending on the drawing mode and primitive type settings up to the final drawing process.
••••
2D/3D Rendering Engine
This block draws images in two or three dimensions.
•2D drawing The block provides the anti-aliasing and alpha blending functions to display high-quality images even on a lo w-
resolution LCD.
•3D drawing The block provides true 3D drawing functions such as perspective texture mapping and Gouraud shading.
10

ABSOLUTE MAXIMUM RATINGS

■■■■
MB86291A
Parameter Symbol
Unit
Min Max
Rating
1
V
DDL*
0.5 + 3.0
Power supply voltage
V
DDH − 0.5 + 4.0
Input voltage V
I − 0.5 VDDH + 0.5 (< 4.0) V
Output current IO 13 + 13 mA Power pin current I
POW 60 mA
0 + 70
Ambient operating temperature T
A
30*
2
+ 85*
2
°C
Ambient storage temperature Tstg 55 + 125 °C
*1 : The analog and PLL power supplies are included. *2 : Model supporting a wider range of temperatures
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITION

■■■■
Value
Parameter Symbol
Unit
Min Typ Max
1
V
DDL*
2.3 2.5 2.7 V
Power supply voltage
VDDH 3.0 3.3 3.6 V
V
Input voltage (High level) V Input voltage (Low level) V
IH 2.0 VDDH + 0.3 V IL − 0.3 + 0.8 V
VREF pin input voltage VREF 1.05 1.10 1.15 V VRO pin external resistor R AOUT pin external resistor* ACOMP pin external capacitor*
2
3
Ambient operating temperature T
VRO 2.7 kΩ
RAOUT 75 Ω
CACOMP 0.1 µF
A − 40 + 85 °C
*1 : The analog and PLL power supplies are included. *2 : AOUTR, AOUTG and AOUTB pins *3 : ACOMPR, ACOMPG, and ACOMPB pins
11
MB86291A
Notes : The VDDL and VDDH power supplies can be turned on or off in either order.
Note, however, that the VDDH voltage must not be applied alone continuously for several seconds.
After turning the power on, input a pulse remaining at low lev el f or at least 500 ns to the S pin. Then, set the S pin to high level and input the RESET
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
signal held at low level for at least 300 µs.
12

ELECTRICAL CHARACTERISTICS

■■■■
1. DC Characteristics
Parameter Symbol
Output voltage (High level) * Output voltage (Low level) *
Output current (High level)
Output current (Low level)
1
2
MB86291A
VDDL = 2.5 V ± 0.2 V, VDDH = 3.3 V ± 0.3, VSS = 0.0 V, TA = 0 °C to + 70 °C
Value
Min Typ Max
VOH VDDH 0.2 VDDH V
VOL 0.0 0.2 V IOHM* I
OHH* OLM*
I
IOLH*
4
3
4
3
4.0 mA
8.0
4.0 mA
8.0
Unit
AOUT output current*
5
Full scale
I
AOUT
9.90 10.42 10.94 mA
Zero scale 0 2 20 µA AOUT voltage* Input leakage current I
6
VAOUT 0.1 + 1.1 V
L ± 5 µA
Pin capacitance C 16 pF
*1 : Value when −100 µA current flows into output pins. *2 : Value when 100 µA current flows into output pins. *3 : Output characteristics of INT
, DREQ, and RDY *4 : Output characteristics of the signals (excluding analog signals) other than those in *3 *5 : AOUTR, AOUTG, and AOUTB pin output current. Condition V
(The full-scale output current calculation expression is (V
REF = 1.10 V, RVRO = 2.7 k
REF / RVRO) × 25.575)
*6 : AOUTR, AOUTG, and AOUTB pins
13
MB86291A
2. AC Characteristics
Input measurement conditions
(VIH = 2.0 V, VIL = 0.8 V)
r
t
IH
V
Input
VIL
80%
20%
tr, tf 5 ns
Input measurement standard : (VIH + VIL) / 2
Output measurement conditions
VIH
Input
VIL
VOH
t
pHL,
t
pZL
(VIH + VIL) / 2
IH + VIL) /2
(V
tf
80%
20%
tpLH, t
pZH
14
Output 1
VOL
Output 2
VOL
VOH
Output 3
Output measurement standard : t
pLZ : VOL + 0.5 V
t
pHZ : VOH 0.5 V
Else : V
DD/2
VDD/2
tpHZ
tpLZ
V
DD/2
0.5 V
0.5 V
(1) Host Interface
Clock signals
••••
Parameter Symbol
Condi-
tion
MB86291A
Value
Unit
Min Typ Max
BCLKI frequency f BCLKI H period t BCLKI L period t
Host interface signals
••••
BCLKI   100 MHz HBCLKI 1 ns LBCLKI 1 ns
(External load of 20 pF)
Parameter Symbol
Address setup time t
Condi-
tion
ADS 4 ns
Min Typ Max
Value
Unit
Address hold time tADH 0 ns BS
setup time tBSS 3 ns
BS
hold time tBSH 0 ns CS setup time tCSS 3 ns CS
hold time tCSH 0 ns RD
setup time tRDS 3 ns RD hold time tRDH 0 ns WE
setup time tWES 5 ns
WE
hold time tWEH 1 ns
Write data setup time t
WDS 3 ns
Write data hold time tWDH 0 ns DTACK setup time t DTACK hold time t
DAKS 3 ns
DAKH 0 ns
DRACK setup time tDRKS 3 ns DRACK hold time t Read data delay time (to RD
) tRDDZ 3.0 11.0 ns
DRKH 0 ns
Read data delay time tRDD *2 4.5 10.5 ns RDY
delay time (to CS) tRDYDZ 2.5 5.0 ns
RDY
delay time tRDYD 2.5 6.0 ns INT delay time tINTD 3.0 6.5 ns DREQ delay time t MODE hold time t
DRQD 2.5 6.0 ns MODH *1 20.0 ns
*1 : Hold time for reset cancellation *2 : Read data is output one cycle before the CPU samples it.
15
MB86291A
•••• Clock
BCLKI
•••• Input setup and hold times
BCLKI
1/fBCLKI
tHBCLKI tLBCLKI
A2~A24, BS, CS, DTACK, DRACK
•••• Read/write enable (RD
BCLKI
BS
RD, WE
tADS, tBSS, tCSS, t
DAKS, tDRKS
, WE) and input data (D) setup times
tRDS, tWES
tADH, tBSH, tCSH, t
DAKH, tDRKH
tRDH, tWEH
16
D0~D31
tWDS
tWDH
•••• DREQ output delay time
BCLKI
DREQ (output)
INT
output delay time
••••
MB86291A
tDRQD
BCLKI
INT (output)
RDY
••••
delay value (with respect to CS)
BCLKI
CS
tINTD
RDY (output)
High-Z High-Z
tRDYDZ tRDYDZ
17
MB86291A
•••• RDY/D output delay values
BCLKI
RD
D0~D31 (output)
RDY
•••• MODE signal hold time
RESET
tRDD
tRDYD
Output data
tRDYD
tRDDZ
High-Z
18
MODE0~ MODE2
tMODH
(2) Video Interface
Clock
••••
Parameter Symbol
Condi-
tion
MB86291A
Value
unit
Min Typ Max
CLK frequency f CLK H period t CLK L period t
CLK 14.32 MHz HCLK 25 ns LCLK 25 ns
DCLKI frequency fDCLKI   67 MHz DCLKI H period t DCLKI L period t
HDCLKI 5 ns
LDCLKI 5 ns
DCLKO frequency fDCLKO   67 MHz
•••• Input signals
Parameter Symbol
t
WHSYNC0 *1 3 clock
Condi-
tion
Min Typ Max
Value
unit
HSYNC input pulse width
t
WHSYNC1 *2 3 clock
HSYNC input setup time t
SHSYNC *2 10 ns
HSYNC input hold time tHHSYNC *2 10 ns VSYNC input pulse width t
WHSYNC1 1 
EO input setup time t
SEO *3 10 ns
HSYNC
1 cycle
EO input hold time t
HEO *3 10 ns
*1 : Applied only in PLL synchronization mode (CKS = 0) . The reference clock is the internal PLL’s output with Cycle
= 1/ (14 f
CLK) .
*2 : Applied only in DCLKI synchronization mode (CKS = 1) . The reference clock is DCLKI. *3 : Based on the edge with VSYNC negated.
Output signals
••••
Parameter Symbol
EO output delay time t
Condi-
tion
DEO *1.5 11 ns
Min Typ Max
Value
unit
HSYNC output delay time tDHSYNC 1.5 11 ns VSYNC output delay time t CSYNC output delay time t GV output delay time t
DVSYNC 1.5 11 ns DCSYNC 1.5 11 ns
DGV 1.5 11 ns
* : The EO output varies at the same time as VSYNC is asserted.
19
MB86291A
•••• Clock
1/fCLK
CLK
HSYNC signal setup and hold
••••
DCLKI
HSYNC (input)
•••• EO signal setup and hold
tHCLK
tHDCLKI
tLCLK
VIH
VIL
1/fDCLKI
tLDCLKI
tSHSYNC tHHSYNC
VSYNC
EO (input)
Output signal delay
••••
DCLKO
EO (output) HSYNC (output) VSYNC (output) CSYNC GV
tSEO
tHEO
tDEO, tDHSYNC, tDVSYNC, t
DCSYNC, tDGV
20
(3) Video Capture Interface
Clock
••••
Parameter Symbol
Condi-
tion
MB86291A
Value
unit
Min Typ Max
CCLKI frequency f CCLKI H period t CCLKI L period t
HCCLKI 1 ns LCCLKI 1 ns
•••• Input signals
Parameter Symbol
VI setup time (External load of 25 pF) t VI hold time (External load of 15 pF) t
Clock
••••
tHCLK tLCLK
CLK
VIH
CCLKI  27 MHz
Condi-
tion
VIS 11 ns VIH 2 ns
1/fCLK
VIL
Min Typ Max
Value
unit
•••• Video input
CCLKI
VI0~VI7
tVIS tVIH
21
MB86291A
(4) PLL Standards
Parameter
Min Typ Max
Input frequency 14.31818 MHz Output frequency 200.45452 MHz Multiplied by 14 Duty ratio 93.1 101.3 % PLL output clock H/L pulse width ratio
Jitter 150 + 180 ps
Value
Unit Remarks
Cycle difference between two consecutive cycles
22

ORDERING INFORMATION

■■■■
Part Number Package Remarks
MB86291APFVS
MB86291A
208-pin plastic QFP
(FPT-208P-M04)
23
MB86291A

PACKAGE DIMENSION

■■■■
208-pin plastic QFP
(FPT-208P-M04)
30.60±0.20(1.205±.008)SQ
28.00±0.10(1.102±.004)SQ
157
INDEX
208
LEAD No.
1
0.50(.020)
0.22±0.05
(.009±.002)
Note : Pins width and pins thickness include plating thickness.
+0.03 –0.08
0.17
"A"
+.001
.007 –.003
0.08(.003)
Details of "A" part
+0.20 –0.30
3.75
+.008
.148 –.012
0°~8°
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
(Mounting height)
0.25(.010)
0.40 .016
(Stand off)
105156
52
0.08(.003)
104
53
M
+0.10 –0.15
+.004 –.006
C
2000 FUJITSU LIMITED F208020S-c-2-3
Dimension in mm (inches)
24
MB86291A
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353 Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608 Fax: +1-408-922-9179
http://www.fma.fujitsu.com/
Europe
FUJITSU MICROELECTRONICS EUR OPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://www.fme.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220
http://www.fmal.fujitsu.com/
Korea
FUJITSU MICROELECTRONICS K OREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0203
FUJITSU LIMITED Printed in Japan
Loading...